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Abstract. Rigorous results on poles of the 2- and 4-point functions, which yield
2-particle asymptotic completeness and give information on the presence or
absence of 2-particle bound states and resonances, are presented for weakly
coupled even and non-even-field theories with mass gap in space-time
dimension d=2,3 (and for related hypothetical theories in dimension 4).
Methods used are more convenient and more general than those used
previously (with more limited results) for P(¢), theories.
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1. Introduction

Results on poles of the momentum-space 2- and 4-point functions, relevant in the
study of 2-particle asymptotic completeness, bound states and resonances have
been obtained in the second part of the seventies for weakly coupled even P(¢p),
models [GJS, SZ, DE1, 2] and in a more limited way [K 1, GJ] for non-even P(¢),
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or related models (such as ¢3 with strong external field [K 1] or in low temperature
phases [K2, Im]). They have confirmed in particular the existence, expected in
dimension 2 from heuristic arguments, of a pole close to the 2-particle threshold
corresponding to a 2-particle bound or antibound state (depending on P). In these
works, the basic ingredients are “irreducibility” and boundedness properties of the
“2-particle irreducible” (2p.i.) Bethe-Salpeter kernel B and, for non-even theories,
of 21,152, 1-1 2p.i. kernels, established by the methods of [S] (and following
also from those of [IM 1]). These properties are: analyticity in complex energy-
momentum space in strips X, around euclidean space going up to s=(3m)*—¢ in
Minkowski space, or (4m)* —¢ in even theories, where m is the bare mass and s is
the squared energy of the channel, bounds in cst|A|, where 1 is the coupling, and
further bounds in higher powers of 1 after lowest order contributions have been
extracted. (These lower order contributions are shown to coincide with those of
perturbation theory.) However, the methods used in these past works are not
satisfactory under several respects. First, they do not exhibit in a simple way the
complete meromorphic structure of the relevant Green functions near the two-
particle threshold and do not give a clear account of the roles played respectively
by the small-coupling character of the models and by the threshold geometrical
situation; moreover, they do not allow easy calculations of relevant quantities
(positions of the poles, residues). On the other hand, the results obtained are only
partial for non-even P(¢), (or related) models. Finally and more important, the
methods are specifically restricted, as they stand, to P(¢), (or related) models,
namely scalar models in dimension 2.

More recently, a number of new models of interest have been introduced in
constructive theory, such as (1¢p* + A'¢?), in space-time dimension 3, and [FMRS,
GK] the renormalizable, but not super-renormalizable, asymptotically free
massive Gross-Neveu model (GN) in dimension 2 (which involves spin and colour
indices). Moreover, suitable BS or BS-type kernels have also been defined [IM 2]
in these theories: the BS kernel B, linked in P(p), models to the (connected,
amputated) 4-point function F by the BS equation

F=B+BoF=B+FoB (1)

where o denotes Feynman-type convolution with 2-point functions H, on internal
lines, is replaced, in e.g. even theories like the GN model, by a kernel B,, (M fixed)
linked to F via a regularized version of (1) (introduced in the general QFT
framework in [B1, BL]) where o is replaced by an operation o, including
ultraviolet cut-off factors (so as to avoid ultraviolet problems). Starting from the
properties of the 2p.i. kernels and related properties of the 2-point function H,, the
analysis of [B 1, BL by BI 1], which is independent of the model, the dimension d
of spacetime or the coupling, then shows that F is analytic in a 2-sheeted (d even)
or multisheeted (d odd) domain around the 2-particle threshold s=4u?, where
u>0is the basic physical mass defined by the pole of H, [closed to m at small 1 in
P(¢), models], apart from possible poles in s (zeroes of denominators of
Fredholm-type solutions) to be interpreted as 2-particle bound states in the
physical sheet, and resonances in the non-physical sheet(s) (or “antibound” states
at s real in the second sheet). The analysis of [B 1, BL] yields moreover 2-particle
asymptotic completeness in the region (2u)* <s<(3u)®>—¢ or (4u)> —¢ in an even
theory, with respect to particles of mass p, provided there is no pole of F in that
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region (i.e. no bound states embedded in the continuum). It is based on methods
that take into account explicitly the geometrical situation, namely the pinching of
the integration cycle of the operation o by the pole singularities of the two 2-point
functions.

The determination of possible poles (positions, etc. ...) cannot be treated by
such a general analysis without additional information on the kernel B, (or B). It
turns out, as we shall see, that if B,, (or B) is uniformly bounded by a sufficiently
small constant — as it can be proven to hold in all constructible 2 or 3-dimensional
small coupling models with mass gap [IM 1, 2] — the meromorphic structure of the
relevant Green functions around the two-particle physical region (threshold
included) can be completely understood by algebraic methods using refined
geometrical properties of (Feynman-type) two-particle convolution. These pro-
perties represent simple and convenient improvements on certain features of
those presented and used in [BP] (for the study of Fredholm theory in complex
space) based on the original analysis of [L] and [Ph]. On the other hand, a
further algebraic progress linked to our geometrical approach can be performed
for the treatment of non-even theories (determinations of poles etc....). It
removes in particular the cumbersome problem of spurious poles that appear in
the standard methods using one-particle irreducible functions.

Two articles will be devoted to the presentation of our methods and results
(under various aspects), each one being essentially self-contained.

In the present article, stress is laid upon the “U kernel”-method inspired from
[BI1] and more specifically [Ia], which leads to the simplest algebraic description.
We show that it allows one to reobtain and complete previous results on poles for
weakly coupled P(¢),-models, and to extend the analysis to other even or non-
even theories in dimensions 2 and 3 (and to related hypothetical theories in
dimension 4). A summary of methods and results is given in Sect. 2.

The other article [BI2] will give complements on the geometrical background
(making the relevant properties of [Ph] and [BP] used in this article more easily
visualized) and will present an alternative algebraic method (closer in some respect
to the method of [DE2]) based on appropriate decompositions of Fredholm
resolvents in complex space. This method will be also applied to constructing (non-
local) potentials associated with BS type kernels B, (or B) and to obtaining a
comprehensive viewpoint on (2- and 3-dimensional) threshold effects in both QFT
and potential formulations of scattering theory, in the spirit of [B2].

In these papers, we have left aside for conciseness related topics, partly treated
previously for P(¢), models, such as the determination of fields that generate
2-particle bound states (: ¢(x)?:), the C* or analytic dependence in / or also Borel
summability properties [ EE] of various quantities (bound-state mass, 2-particle S
matrix, ...) or the introduction of the S-matrix for processes involving bound
states. All results can be reobtained, improved and extended.

2. Summary of Methods and Results

Throughout this paper, we restrict our attention to regions limited to s=(3u)* —e¢,
or (4u)*—¢ in even theories; ¢>0 is fixed (it can be chosen arbitrarily small but
corresponding constraints follow on the maximal possible values of the coupling).
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We first treat even theories in Sects. 3 and 4 (in any spacetime dimension d).
Non-even theories are treated in Sect. 5. The crucial tool concerning two-particle
convolution, stated as Lemma 1 in Sect. 4, is proved in Appendix 1.

Even theories. The relevant Green function for even theories [at s <(4u)? —¢] is the
4-point function F. It is first shown in Sect. 3! that, at small coupling, possible
poles of F,if they exist, lie either “far away” in the unphysical sheet(s) or close to the
2-particle threshold s=4u? This is due to convergence properties, at small
coupling, of " the Neumann series F=B+BoB+BoBoB+ ... (or F=B,
+ BpouyBy + ...), where terms Bo ... 0B (0r B0, By, ...) are defined by analytic
continuation away from euclidean space, in a 2-sheeted (or multisheeted) domain
around s=4p* (the analyticity of B in a strip X, around euclidean space being
taken into account, as the basic starting point): to that purpose, locally distorted
integration contours (initially euclidean space) over the internal relative energy-
momentum are introduced following [B1, BL] so as to avoid the pole singularities
(at the physical mass) of 2-point functions involved in o (or 0,,)). Problems close to
s=4u* are due to the pinching of this contour between these poles as s—4u?.

Further investigations are then restricted to values of s in a given complex
neighborhood V of s=4u% At d =4, it will be established in Sect. 4 that, at small
coupling, F has no pole for sin V either in the first or second sheet !. In dimensions
2 and 3 the situation is different in view of specific kinematical factors, as well
known from heuristic arguments. The local structure of F for s in V, in its two
sheets (d even) or in a finite number of sheets (d odd), including its possible poles
and residues, and its behaviour at threshold, is then exhibited in terms of the kernel
U defined in [Ia] from the BS kernel B (or B,,) by the equation:

U=B+UVB 2)
(leaving from now on M implicit: U is in fact independent of the choice of M),
where: V=o0—g(s)*. @)
* denotes on-mass-shell convolutionand g=1/2ifdiseven, g= 517—5 Ino,c=4u’—s,

if d is odd: in either parity case, V is shown to be “regular,” i.e. to preserve
analyticity for s in V [in other words, g(s) * extracts the singular part of o at
s=4u?] so that (2) defines U at small coupling as the locally analytic, convergent
sum of the Neumann series B+ BVB+BV BV B+ ... (U is equal to B at lowest
order in the coupling). In view of (2), the BS equation (1) is transformed into the

tion:
equation F=U+g(s)U*F (3)
=U+g(s)F*U, 3)

i.e. U coincides on shell with the “K-matrix” [H, Z, POLE] at d even or its
substitute introduced in [BI] at d odd, defined in these works in terms of F by
Eq. (3) (which can also be used to define U off shell: see [Ia]).

Remark. Local analyticity of U is derived in these axiomatic, S-matrix or field
theory approaches from 2-particle unitarity or asymptotic completeness (AC)

! These results, which are essentially contained in Proposition 3 of [BP], are given here a more
condensed derivation, in a form which is better adapted to the problem under study
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(and some further technical assumptions) via Eq.(3). In the present work,
concerned with constructible QFT models, 2-particle AC is not assumed but is
part of the results to be established, so that the local analyticity of U has been
derived instead from the analyticity of B in X, via Eq. (2).

At d=2, the on-mass-shell convolution * reduces to a mere multiplication.
Equation (3) can therefore be solved for F by clementary algebra and yields, with

Pir—P2 ,_DP3—P
k=p1+p2=p3+p4,z= 12 292: 32 4:

U (k,2) U(k,2)
a(s)—u(s)

F(k,z,z')=U(k,z,2')+ 4)
where U, and |U are the well defined values of U obtained for values of z/,
respectively of z, such that p,, p,, respectively p,, p,, are on-shell, u is the full on-
shell restriction of U and a(s) is a kinematical factor [arising from g(s) and *]
behaving like csto'/? as 6—0, 0 =4u? —s. This factor is at the origin of one and
only one pole for sin V [namely the zero of a(s) -u(s)] at s = uj < 4u>, however small
A s, either in the physical sheet or in the second sheet depending on the sign of u
near 0 =0:1in e.g. a AP(¢), theory with a non-zero + A¢* term, u= Fcst/, as B, at
lowest order in 4, and one has respectively an antibound or bound state, with
|g—2ul=cst|A[*+O(43). One can similarly obtain from the equation a(s, 1)
—u(s, )=0 asymptotic expansions of ug(4) to higher orders in J, starting from
those on Bin terms of Feynman integrals and using those on u that follow from the
Neumann series of Eq. (2). [For related results, e.g. on the residue of the (bound
state)—(bound state) 2-point function at its pole at s= pu3, see Sect. 4.]

Spinorial models like the GN model are treated in the same way, with only
minor changes (see Sect. 4). o 1 o

At d=3, the results are similar F is decomposed as F+ F where F is the

. 1 . .
“I=0 partial wave component” of F and F is its complement, shown to be

locally bounded. IO7 is again given by formula (4) with U replaced by (0] . The factor
a(s) now behaves like cst/Ino as 0 —0: hence, there is in general (at small coupling)
either no pole for s in ¥ or one pole in the physical sheet at s=puz<4u?, with
|up— 2u| x cste ™ Y% There is no pole for 3. There will be one pole in the non-even
(Ap*+ 1'@3); models for some values of 4, 1.

Non even theories. The 4-point function F satisfies the equation:

F=F,+ =®-(k,2) Hy(k)-Or (k, 2), )

where F, = =(Dr is the (connected, amputated) 1-p.i. function, linked to the 2-p.i.
BS kernel B (or B,,) by the BS equation, and =1)-, Tr are similar 3-point 1-p.i.
kernels satisfying e.g.

- =0+ =00, (6)

where =2)- is the 2-p.i. kernel and the last term is the Feynman-type convolution
F,0=2)—. On the other hand, the kernel <)~ defined as — 1/H,, equal e.g. in P(¢),
to s—m?+1,, where I, is the actual 1—1 1-p.i. function, satisfies:

D= +-0-@- )
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where 2 =s—m?*+1, in P(¢),, I, being the actual 2-p.i. kernel. Equation (7)
follows from the similar relation between I, and I,:

L=1+-0~@-. ™)

From (5)—(7) and known properties ([S], [IM1,2]) of the 2-p.i. kernels, the
analogue of the result of Sect. 3 is again established (Sect. 5.1). Note that F has a
pole, as H ,, at s= u? and that H, is now expected to have itself poles, if F has, in the
neighborhood V of s=4u>

Two methods are given to determine the structure of F and H, for sin V. The
first one (Sect. 5.2) starts, as [K 1], from (5)—(7) and makes use of results on F,
which are obtained in the same way as in even theories from the BS equation and
the properties of B: the simple and more complete results obtained on F, (in
particular onits behaviour at threshold) and those on VV allow an easy derivation of
complete results on F and H,, in contrast to [K 1] where only partial results (at
s<4u?) were obtained.

An alternative method (Sect. 5.3) makes use of the “modified” or “direct” BS
kernel G linked to F itself by the BS equation. G was defined in [B1] in terms of F
by this equation, and its analyticity properties were then derived from 2-particle
AC (and further conditions). In this work, where 2-particle AC is not assumed, G
will be defined instead in terms of the basic 2-p.i. kernels by the relation:

k,2 z
G:=®=_=®“(,_<g_@=(k, ). ®)

This relation, which is new to our knowledge, yields properties of G similar to those
of Bat small coupling, at least away from a neighborhood of s = u? (where a zero of
~2)~introduces a pole close to u?). The analysis of F for sin ¥, where G is analytic,
is then completely analogous to that presented in Sect. 4 for even theories, with B
replaced by G. Results on H, also follow.

As a matter of fact, both methods are closely related. As expected from general
arguments (see Sect. 5.1), possible poles of F, and of F (and H,) are different. The
cancellation of the pole of F; with a corresponding pole in the second term in the
right-hand side of (5), and the possible appearance of a different pole, are easily
seen in the first method. The second one has the conceptual advantage of avoiding
this problem from the outset by eliminating F,. (Note, however, that G introduces
spurious poles elsewhere as already mentioned.)

3. Away from the 2-Particle Threshold (Even Theories)

We consider any theory in dimension d=2,3, or 4, depending on a coupling
parameter A, in which

(i) either [asin AP(¢p), or 2p%], a BS kernel B linked to F by Eq. (1) is defined,
with B(k, z, z') and (k* — u?) H,(k) analytic in respective (complex) domains of the
form (k,z,2)edx P x 2 and ke A', 4,2, A" as in [BL, SZ], in particular [Rek,|
<4pu—e¢, >0 fixed for k in 4; here k is taken real in Minkowski space and purely
imaginary in euclidean space so that s=k3 if k is of the form (k,,0). |B| and
|(k* — u?)H ,|aremoreover bounded in theirdomains by C, | A]and by C, respectively;
k* =k —k>2
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(ii) or, as in the GN model or possibly in hypothetical theories at d =4, there
exist quantities B, H™’, M fixed, linked to F by the relation

F=By+FoyB,, )

B,, and H{™’ having the analyticity properties indicated in (i) for B and H,, H{™’

having the same pole at s=pu? and same residue there as H,. |B,,| is bounded by

C,|A and |(s— p2) HM|, e.g. (as shown in [IM 2] for the GN model) by C,e ™I,
We then state:

Proposition 1. Given any bounded ( compact ) region D in the 2-sheeted (d even) or
multi-sheeted (d odd) domain of F whose distance to s=4yu? is strictly positive,
346 >0 such that F has no pole in D if |1 <A,.

Proof. The terms Bo ... 0B (n factors B) of the Neumann series of F in terms of B,
defined away from euclidean space by analytic continuation as indicated in Sect. 1,
satisfy in D bounds of the form:

I(Bo ... 0B) (k, 2,2')| < C(C,|2))", (10)

where C, C| depend on C, and on D but not on 4. (The dependence on D is due to
the fact that the contour must be more and more distorted as D becomes larger and
larger and that it must approach more and more the pole singularities of 2-point
functions as the distance of D to s=4u? tends to zero.)

The Neumann series is absolutely convergent, and F is bounded (thus has no
pole) at small enough 4. Q.E.D.

4. The Neighborhood of the 2-Particle Threshold (Even Theories)

4.1. Preliminary Definitions and Results. We restrict our attention from now on to
values of s in V (see Sect. 1). We start for simplicity with scalar models. (Easy
modifications for spinorial models like the GN model are left to the discussion of
this model in Sect. 4.2.)

The operation =, will denote, in the region s real, s>4u* obtained from the
directions Ims>0 of the physical sheet, on mass-shell convolution over two
internal energy-momenta: more precisely given two kernels A(k, z,z'), B(k, z, z'),

A *y B(ka Zy Z’): IA(ka Z, C) B(k9 C’Z()Zzé <<§ +C>2 _.u2> 5((; _C>2 _,u2> dg

(11)
with here k, e.g. of the form (k,, 0), k, real; Z is the residue of H, at its pole.
Equation (11) can be equally written as:

2 d—3

(A*, B)(k,z,z')= z (—a) 2 [A(k,z,{(s, Q) Bk, (s, Q),2)dQ, (119

21/5

where Q is a variable varying on the real unit (d — 2)-dimensional sphere (reducing
to an angle 0 at d =3, the integral reducing moreover to a sum over two points at
d=2), and if e.g. k is of the form (ko,0), s=k2, {,(s,2)=0, {*(s, Q)= —o0.
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Formula (11') allows us in turn to define * by analytic continuation for real or
complex values of s in a one-sheeted (d odd) or 2-sheeted (d even) domain
around ¢ =0, assuming here analyticity of A and B for s in V.

The operation o will denote, for values of s in a 2-sheeted (d even) or infinitely-
sheeted (d odd) domain constructed on V, Feynman-type convolution
(“G-convolution” in the sense of [B1, BL]) with the integration measure
ok, )dl, w(k,)=H, <§ —|—C> H, <I§ —C), over the possibly locally distorted
contour I'(k) already mentioned in Sect. 1 [B1, BL].

The operation V is defined by Eq. (2') (V =0 —g(0) *).

We then state:

Lemma 1. Given two functions A(k,z,z), B(k,z,z') analytic in AX D x Dn{seV},
and bounded in modulus by constants | A|| and || B|| respectively, AN B is analytic and
bounded there in modulus by C'|| A|| x || B||, where C' is a given constant, independent
of |A| and ||B| (and depending only on the given bounds on |(k* —u*)H,|).

The uniformity of V(A 'V B uniform when one turns around ¢ =0)| has already
been explained in [1a]. This and the more complete proof of Lemma 1 are given in
Appendix 1.

Lemma 2. 31,>0 such that Y1, |A| <2y, Eq. (2):
U=B+UVB

defines the kernel U(k,z,z') as an analytic functionin A x 9 x 9, se 'V, bounded by
C|Al, where C'| depends only on the bounds on |B| (in C,|A|) and of those on
|(k*> — u?)H,|. Moreover the relations (3)(3')

F=U+g(s)F+U=U+g(s)U*F
as also

F=U+gs)UxU+g(s)?UxF*U (12)
hold for s in a 2-sheeted (d even) or multisheeted (d odd ) domain constructed over
VA{s=4p?}.

Proof. This result is essentially contained in [Ia] except that the kernel U was only
shown there to be meromorphic and uniform around ¢ =0, but not analytic. We
here complete the proof. From Lemma 1 and the bounds on |B|, the terms
BV B...V B|(nfactors B) are bounded by C,|4|(C'C,|A|)"~!. The Neumann series
U=B+BVB+BVBVB+... is thus absolutely convergent [for e.g.
[Al<1/(2C,C’)] and results on U follow.

Equation (3) is obtained by writing e.g.

F=B+BoF=(U-UVB)+UcF—(UVB)oF,
and using
(UVB)cF=UV(B-F)=UV(F—-B)=UVF—-UVB.
(The equality BV U =UV B is straightforward.)
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Equation (3') is obtained similarly and (12) follows by a repeated application of
(3) and (3").

Remarks. 1) Wenote that (through an adaptation of Fredholm theory in complex
space [ BP] to the operator V) Eq. (2) defines U in terms of B even in cases when the
series B+ BV B+ ... would not be convergent: U is in general uniform when one
turns around =0, but might have poles in s.

2) Results above can be recovered formally by starting from the series F =B
+ BoB+ BoBoB + ... and replacing o by (g(s)*)+ V. A simple regrouping of terms
gives

F=Y(B+BVB+..)g(s)*(B+BVB+...)g(s)*...

=Y Ulgls)*) Ug(s)*)U ...,
which is the Neumann series of F in (3).

4.2. Applications to Theories in Dimension 4, 2, 3. We now draw conclusions in
dimensions 4, 2, and 3 respectively.

d=4. Proposition 1 still holds when the restriction on the distance of D to s =4u?>
isremoved. The series Y’ BoB ... oB remains in fact convergent at small coupling for
sin V as can be seen by decomposing near 6 =0, 0 as V +3 * and noting that the
factor ¢/~ 3/2 = g1/2 generated by * [see formula (11')] gives no problem (see also
[BP], where a detailed derivation of bounds on the terms [BoB ... 0B| has been
given in the proof of Proposition 3). Alternatively, the fact that F is bounded (and
thus has no pole) near 6 =0 can be derived from the convergence of the Neumann
series U+ gU * U+g>U* U * U+ ... of F in terms of U (due to the same reason).

d=2 [scalar models such as P(¢),]. The mass-shell is trivial at d =2 (the relation
pi+Dp.=k, pi,p, on shell, determines? p,, p,). Values of F and U when p;,p,
(respectively p;,p,) are on shell but not necessarily p,,p, (respectively ps,p,)
depend only on s and z (respectively s,z’) and will be denoted F(s, z) and U (s, z)
[respectively |F(s,z'), U(s, z')]. The full mass-shell restrictions of F and U depend
only on s and will be denoted f(s) and u(s).

The composition product (*) involved in Eq. (3') then reduces to:

g(s)[F+U](k,z,2)= %F(k, 2),U(k,2), (13)

where the factor 1/a(s) is the product of £ Z? with the kinematical factor generated

by * [see (11), (11')], of the form cst/(]/g al’?).
One therefore obtains

Proposition 2. The following structural equations, in which U, U, \U, and u are
analytic for s(=4u2—a) in V, hold, respectively on-shell and off-shell:

2 Up to the permutation (p;, p,)—(p,, p;); in fact, the mass shell reduces to a zero-dimensional
sphere, i.e. a couple of points on which U, as well as F, takes the same value in view of the
symmetry of these functions with respect to the two incoming and to the two outgoing field
operators in the channel considered
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a) fs)=uls)+(1/a(s)) f(s)uls), (14)
N ~ ., Uk, 2),U(k,z')
b) F(k,Z,Z)—U(k,Z,Z)‘FW (15)

Proof. Equation (14) follows directly from Egs. (3) and (13). Equation (15) follows
in turn from Eq. (12), rewritten in the form:

1 1

where [in view of (14)]:

f=- (17)

a—u’

These relations completely characterize the local structure of f and F,forsin V,
including possible poles (=zeroes of a—u), their residues and their behaviour at
threshold: F remains bounded as o —0 (for any given, small, 1) if u is different from
zero at 0 =0 (as is the case at small 4+ 0: see below) and F, | F or f tend to zero as a,
ie. like ¢'/2, as 0. q.e.d.

U is equal at first order in A to B. On the other hand, B is known (by the
methods of [GJS], [SZ] or of [IM1]) to be equal to a first known term in A
(theories with a ¢* term) or A* (theories without ¢* term) plus a remainder
bounded by higher powers of 4 (times a constant). Since a(s)=(cstﬁ)a” 2 (s near
442, o near zero), all results already known follow easily: at small A and for sin V,
one and only one pole at s= 3, up<2u, |up—2u| =cst 2>+ 0(23) in theories with
a + Ap* term in the interaction (see Sect. 1) either in the physical sheet (— A¢p*) or in
the second sheet (+ A¢p*). From Eq. (15), one also determines the residue r(4) at its
pole s=uj of the (bound state)—(bound state) 2-point-function: r(4)

= lim (—s+ uz) &(Fr—e ~csth (using U ~cst 4, O~csta ™ /% hence ~cst/lat
SUB

the pole). The case with no ¢* term is also treated easily (one two-particle bound
state. The lowest order contribution to Bis in A2, with a sign that gives a pole in the
physical sheet, again at s = u% <4u?: see e.g. [DE2]. Note that in this case |uz — 24|
=cstA*+ 0(A%) as exhibited by Eq. (17)).

d=2 (spinorial case: GN model). All equations involve now matrices (whose
coefficients are functions of k, z, z/, ...), e.g. for the GN model 4 x 4 matrices, some
of which arise from the 2 x 2 matrices associated with 2-point functions, or in the
case of Eq. (14) of their residues at the pole k? = pu?.

The results are, however, essentially unchanged.

Poles of F are now the zeroes of det(a(s)1 —m(s) u(s)), where m(s) is the 4 x 4
matrix obtained from the 2 x 2 residue matrices. The matrix m has elements that
are almost all equal to zero at threshold ¢ =0 so that conclusions at small coupling
are easy.

The detailed analysis requires, however, the consideration of different channels
(yy or yp, spin and colour indices) and is thus omitted for conciseness.
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0 1 0 1
d=3 (¢%). It is useful to introduce the decompositions F=F+F, B=B+B,

U= l(} +(1] by the following procedure. In view of invariance properties (namely
Lorentz invariance and symmetry of the four-point interaction considered with
respect to the two incoming and to the two outgoing field operators), F, G, U are
analytic functions of the variables s =k?, z,, 2, zi,, z%, and cos0, 0 being the angle
between z,7z' (ie. the “scattering angle” of the s-channel). Then one puts

0 1 1 00 0 1 1
F= 2—7;j F df (at fixed values of s, zy, 2%, z,,z*)and F=F — F; B, U, B, U are defined

similarly.

We now notice that the operation o can be represented by integration cycles
I'(k) that are invariant under the rotation group of the z-plane; o therefore
decomposes into a convolution in the angular variable of this rotation group and
integration in the “mass variables” (z,, [z*]/?) which play the same role as the
variables (zq,z;) of the two-dimensional operation o. Similar properties hold
obviously for the operation V, since * is a pure angular convolution on the mass

shell. It therefore follows from the definition of }% together with the relation

1 0o 1 0 1 0 1
{ Bd0=0, that one has the orthogonality relations B B=B* B=BY B=0 which
imply the decoupling of Egs. (1), (2), (3), namely

0 0 0 0

F=B+FoB, (18)
0 0 0] 0

U=B+UVB, (19)
0 0 1 0 0

F:U-{—ZlnaF*U, (20)
1 1 1 1

F=B+Fo-B, (21)
1 1 1 1

U=B+UVB, (22)
1 1 i 11

F=U+o InF+U. (23)

00 O

F, B, U do not depend on 8 and can thus be treated in the same way as at d =2. The
. . . . 2 .

only difference is that, in the factor a(s), ¢'/* is replaced by — ﬂl% (realat 0>0, i.e.

s<d4u?, in the physical sheet): the factor ¢~ '/* generated by * at d=2 is absent at
d=3 (d—3=0) but the factor Ing comes from g(s). Still denoting (by an abuse of
notation) by a(s) this new factor, Eqgs. (14)—(16) hold again with F, U replaced by
0 o

F,U. 1
Let us now show that, at small coupling the solution F of Egs. (21), (23) is
necessarily bounded (although ramified in the Riemann surface of Ing at 6 =0) for

0 1 0

s in V, so that the possible pole structure of F=F + F is entirely given by F.
We first notice that, since the mass shell reduces to the single point z, =0,z =0
at 0=0, the Lorentz invariant function B(k,z,0)|,-, is independent of 6 and

1
therefore B(k, z,0)|,-, vanishes identically. By applying Schwarz’ lemma (in the
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1 1
variable 0) to the analytic function B,=B(k, z,2')|,,=¢, ;2= - for s in V, one then
1
obtains (since B and therefore B are uniformly bounded by cst x|i|) sup|B||

<cst x|g]]A|, and therefore [in view of Lemma 2 applied to Eq. (22)] supl(lfll
<cst x [a] [4]. We now use, this estimate in Eq. (23), first taken on the mass shell in
order to obtain that sup|f| <cst x |o]|4|, and then off-shell under the form similar
to (16),
F= U+t L'lnall] « U— L(lna)2 U *fl* U
o 171 (2%)2 I I

o obtain that F is bounded (like U) for s in V. We note that the bounds obtained on

1 1
| f] and |F| are valid in any finite number of sheets of the Riemann surface of Ina,
provided the value of A is chosen sufficiently small.
We can therefore state

00 o
Proposition 3. At d= 3, the following equation, in which™:U, U,,\U and i are analytic
for sin V, holds in any finite number v of sheets (over V) of the Riemann surface of
Ino, for couplings || <2Ay(v) (Ao(v) tending to zero when v tends to infinity):

0 0
0 U,- .U 1
F=U+»aljllof+F. (24)

In the latter, the kinematical factor a(s) is equal to [Ing] ™! up to an analytic factor

1
cst]/s, and F is analytic and bounded at ¢ =0 in its multisheeted domain.

1
Remarks. 1) This result on F can be alternatively derived from the convergence of
1 1 1
the Neumann series > BoB...oB of Eq.(21) by using the decomposition

0=V +g(s)* and the fact that |113|| is bounded by cst x |a| |A].

2) The decompositions above of F, B, U correspond to decompositions into
the “partial wave” [=0 and the remainder. A more detailed analysis of the (non-
holonomic) structure of F at threshold can be made via a further decomposition of
the remainder into partial waves /=1 (see in this connection [BI1]).

Conclusions for ¢} are those mentioned in Sect. 1: no pole, hence no bound
state or resonance or antibound state locally (a— i does not vanish in view of the
respective signs of a and 1 in the physical sheet at s <4u* and of the imaginary part
of Ino elsewhere). In hypothetical even theories with u ~ 4 at first order (instead of
—A), a pole corresponding to a 2-particle bound state at s= u3, g <2p, 2u— g of
the order of e ~*!* would occur. There is no known even theory of this type, but
such 2-particle bound states will be encountered for non-even theories: see Sect. 5.

5. Non-Even Theories

5.1. Preliminaries and Results Away from the 2-Particle Threshold. We start from
Egs. (5)~(7) and from the analyticity and boundedness properties of the 2-p.i.
kernels 2= =B, =2)— and I,. The latter are shown in the models to be analytic in
strips around euclidean space going up to (3u)*>—e and to satisfy bounds in cst|/|
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and related asymptotic expansions: see [S, K 1] for P(¢), models, or (in all cases)
[IM1, 2].

It is known that generically poles of F,; will yield [via (6), (7)] corresponding
poles on =7~ and <1)-, but that possible poles of F are different: since
H,= —1/<1), apole of F, at s=s, yields a zero of H, at s=s, cancelling one of
the poles of <D~ and OF . Moreover the pole at s=s, is cancelled, generically,
between F, and the second term in the right-hand side of (5): this is seen easily from
the factorization of the residue of the pole of == [as @(k, z) ¢(k, z')]. This type of
result will be rigorously established in Sect. 5.2 for s in V.

At weak coupling, Proposition 1 of Sect. 3 and its stronger version of Sect. 4 at
d=4[removal of the condition dist(D, s=4m?)>0] apply similarly [for regions D
limited to s =(3u)*> —¢ in Minkowski space] to Fy, and in turn via Eq. (6) (since at
d=4,0=V+1%) to <O~ and 7F . On the other hand, |I,| remains bounded by
cst(D)|4| so that at small enough coupling, H, has no pole in D other than that
already known at s=pu?. Hence one has:

Proposition 4. Given any bounded compact region D in their 2-sheeted (d even) or
multisheeted (d odd ) domains, whose distance to s=4u* is >0, 34, such that F and
H, have in D one and only one pole, at s = u?, if || < Ay. The same result holds also at
d=4 when the condition dist(D,s=4u>) >0 is removed.

5.2. The Neighborhood of the 2-Particle Threshold (First Method). We first
present in a), b) the easy calculations that can be made directly at d=2, 3. More
general equations that can be written in any dimension and from which previous
results can also be derived are given in c¢) (and proved in Appendix 2).

a) Case d=2. Equation (24) yields in this case, as in Sect. 3:
U,U
il

F,=U+ PR (25)
where U is defined in terms of the 2-p.i. BS kernel B. In turn, one has:
Proposition 5.

__(a—wid
H,= T (26)
Fek+ X 'Ilf 27)
where
Kik.z,2) = Uk.z, 2) =V~ (k, z) <@=(k, 2) ’ (29)
d(s)
=N-=D-+UVD-, (29)
d=-@ + @ V=@
=@+ @V + -DVUVO-, (29)

2
and k is the mass-shell restriction of K : k=u— %, n(s)= |=®— . The kernels N, d, and

K are analytic at small coupling for s in V, N and d being moreover different from
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zero (and equal to lowest order in A to X2~ or @F, and ~2~ respectively; in
particular d remains close to 3u*).

. 1 )
Proof. Using 0=V +gx*, gA*B= 5A| |B, we first have:

U\(k, z) n(s
%34&ﬂ=%}%hn+—£—ﬁﬂﬂ. (30)
a(s)—u(s)
[To see this, write e.g. from (6) and (25):
1
© =@ +UV-O-+_ U, O
U
and use u=(u—a)+a in the last term in the right-hand side.]
In a similar way, via (7)
nZ
(D =d+ . (31)
a—u

Equation (26) follows from (31) (since H,= —[-(0)-]""). To obtain (27), write in
turn, from (5), (30), (26):
U U nU

B uwu yﬂ nU\ a—u
F=U+ a—u * <=®— * a—u><_®= * a—u)d(a—k)' (32)

Terms having a pole when a—u=0 add up to:

U||U[1+ n? ]:U”U d(a—u)zU”U (33)
d(a—k) a—u dla—k) a—k’
and (27) is in turn obtained [writing e.g. a—u, in the term =Qr x -Q)=
X (a—u)/d(a—k), as a—k—n?/d].
In all the formulae, the analyticity of N, d, and K follows from the properties of
V (Lemma 1).

b) Case d=3. The terms <0)-, 1rF, H, do not depend on the angle 6 and the
term =1~ H, (1> in the right-hand side of (5) thus belongs entirely to the /=0

0 0
component of F. F,,<(1)~, H,, and F are thus given by the same formulae as at
0 0 0
d=2 with U and K replaced by U and K(N = N) and a(s) replaced as in Sect. 4 by

0 1
the adequate factor at d=3. F is the sum of F plus the bounded term szlf]
(treated as in Sect. 4):

a—u

Proposition 6.

0
a—u)/d
Hy=— = (34)
a—k
K K
0 1
F=K+ -2 1 F . (35)
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Remark. Expressions like UV=2— can be written also as LOJ V=2 (since
1
UV=2=0,=2) being independent of 0).

¢) General Equations.

Lemma 5.
D ==Q-+F,%=Q@-, (36)
Fi % ==Q-=U%-Q-=, (37
O =d+ @ ¢ =@, (38)
F=K+F%K=K+K#%F, (39)

where, in Lemma 5, *=g*, and N, d, K are defined in any dimension by Egs. (29),
(29, (28).

The proof is given in Appendix 2.

5.3. The Modified or Direct Bethe-Salpeter Kernel and Related Results. The
modified or direct BS kernel G defined by Eq. (8) is analytic as 2, 2=, 2)—at
small coupling for s <9u?—e¢, if <2 +0: this is the case at small coupling away
from a given neighborhood of s=pu? [In view of its definition, e.g. 2~ =s
—m?+1, in P(@),, [I,| <cst|A|, <@ has at s <(3u)* —¢, only one pole at s=pu'2, i’
close to u.] In particular, G is analytic at small coupling for s in V' and is bounded
there by cst|4|.
On the other hand:

Proposition 7.
F=G+F-G. (40)

Proof. One has to check that

022 -(0-232)-(o-22)

{)—@=>

(%)

This is easily seen by expanding the right-hand side as a sum of 4 terms and using
D-—@ = . DO - DB =0,
-0 =- -0

Remark. Equations (8), (40) also follow from suitable regroupings of terms in the
graphical expansion of F, convergent at small coupling in e.g. euclidean space,
obtained from [IM1, 2]: G is then defined as the sum of graphs that cannot be

divided into two parts by cutting 2 lines, with respect to the 2—2 channel
considered.

Local Structure of F. From (40), one obtains in turn as in Sect. 3:

F=K+g(s)F*K, 41)
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where K is defined for s in V in terms of G via the equation
K=G+KVG, 42)

and is, at small coupling, locally analytic as G in V' (and equal to G at lowest order
in A).

Remark. The fact that the kernel K thus defined coincides with that of Sect. 5.2 fol-
lows from the identity of (41) and (39). Alternatively, one checks directly that (42) is
satisfled with K=U — W:d—@l):

algebraic proof as that of (40) using here UV=2x =U —=Q=, UV Q) = =Q)
@ @V = @ and @-VQ =d— ]

The results on F already mentioned in Sect. 5.2 for sin V, such as (27)atd =2 or
its analogue at d =3 follow in this approach from (41).

and G replaced by its definition (8) [same

Local Structure of the 2-Point Function H,. Concerning H ,, results can be derived
from those on F by the formula:

H2=—_C;>_+ —®:®(__é_—%=®=®_, (43)
easily checked from (5)—(7) and H,= —1/-(1)-.
Proof. From (5), &2 = -2 —( @<~ )*/-()-. Then write
@ +-OOD = -0 =-0O--O.
Remark. Equation (43) also follows graphically from the expansion (convergent at

small coupling in euclidean space) of H, in terms of the 2-p.i. kernels I, and 2x.
E.g. in P(p),:

Hy= Y500 . MR+ YD) 0 () @8 D, (43)
where —— denotes the bare propagator and where > ::)-b - ::)—” is equal to
—1/<2) (by definition of -2)-).

Equation (43) gives for s in V (using 0=V + %)
| | OO +C -0+ VD 44)
@ (@) ’

H,=—

where
© =@ +KV@-. (44)
In turn (independently of the dimension):

2 _ lz
(@) Hz—f"'aTk, (45)

where
f=19)=—-@ + @ VO
=@ + @ V-0 + @ VKV, (46)
[=l(s)=<D-. 47)
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In all the expressions, L, [ (as K, k) are locally analytic in neighborhood of 6 =0
in view of Lemma 1. We summarize results on F and H, in:

Proposition 8. K K
F=K+ =12, (48)
a—k
12
= / _— 4
H,=f"+ e (49)

where f', I, k are analytic for s in V (at small coupling ).

In (49), f'=f/-2))% I'=1l/<2)- and, as already mentioned, @~ =3u>
+0(2)(£0).

The coincidence of the expressions (49) and (26) of H, is checked directly in
Appendix 2.

5.4. Applications. Results on poles and residues are obtained as in Sect. 4 with U
replaced by K (itself equal to G at lowest order in A).

In P(p), models, one finds again, according to the model, one pole in the
physical or second sheet.

In a model like e.g. (Ap* + 4'¢?) in dimension 2 or 3 (or models that reduce to it
such as those mentioned in Sect. 1), the kernel k is equal at lowest order in 4, 2’ and
at ¢=0, to a sum of contributions of the form — 4 (graph ><)

1

A%/u* (graphs of the form ‘p1=...=p, at 6=0)

3
2

A
and — 32 (graphs ]2>———< in 2~ H, @, H,= —

1
=
order in 4,7/, <2 zl’). There will be one pole in the physical sheet (hence a

! tl t
— —— at lowes
3u?

2-particle bound state) at s=pu3, uz<2u if the sum is >0. This depends on the
relative values of 4 and 1/, e.g. on the constant « if /’>=aA. In this case, |uz— 24|
behaves at d =3, as already mentioned in Sect. 1, as e~ *V* as A—0. If a is such that
the sum is <0, there is one pole in the second sheet at d =2 and no pole (for sin V)
at d=23. If « is such that the sum is zero, a calculation to next order is needed.

Appendix 1: Results on 2-Particle Convolution

This Appendix gives the proof of Lemma 1 of Sect. 4 according to which the
2-particle Feynman-type convolution o is regular at the 2-particle threshold after
extraction of g(s)*.

Lemma 1 will be established in Sect. b) for d=2 and d =3 by a procedure that
makes use of known results on the Feynman integral <> and of a simple
geometrical idea (presented in detail and extensively applied in [BI 2]). We first
outline in Sect. a) an alternative proof based on geometrical properties of the
contour I'(k), to which the analysis of simple quadratic pinch situations of
[L, Ph] is applicable; the latter is valid for any dimension d.
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a) Geometrical Proof. It is known from the outset that 4V B can be analytically
continued, as A- B and g(s)A4 * B, in a two-sheeted (d even) or multisheeted (d
odd) domain around o =0. The fact that 4 B is uniform when one turns around
o=0 is, as already indicated in [la], a consequence of the relation (see
[Ph, BP])*:

0, —0_=%,, (A1)

where 0, and o_ are the restrictions of o to values of k in the region s>4pu?
obtained respectively from the sides Ims>0and Ims <0 of the physical sheet [and
correspond to integration contours I' (k), I'_(k)]. In fact, (g(s)*) . —(g(s)*)_ is also
equal, by direct inspection in each parity case, to *, so that V, —V_=0.

The proof of Lemma 1 can be completed from more refined geometrical results
of [Ph] (see also [BP]). At d even, I'(k) can be written as:

I'(k)y=rI+ 3 é(k), (A2)

where I is a fixed cycle independent of k whose support stays at a fixed (>0)
distance of the poles of 2-point functions and é(k) is a cycle whose support
surrounds the mass-shell, such that integration over é(k) reduces to * by a residue
formula. From its definition (2), V thus amounts to integration over I' and
Lemma 1 follows in a straightforward way from the fact that the support of I' is not
pinched as s—4u2.

At d odd, a decomposition of I'(k) into three parts given by [ Ph], which is more
complicated and does not provide a simple expression for V, is obtained. It can be
used to show that |4 o B|<cst|ln|g|| (as in [Ph] and [BP]), and therefore that

* | is bounded by cst|In|a]|. The uniformity

|AV B| <where v is defined as o — ’lzr;"

of AV B then yields its local analyticity for s in V and Lemma 1. Note that a more
explicit geometrical characterization of V will be given in [BI2] and will allow a
simpler and more satisfactory presentation of the argument.

b) Proof Making Use of Results on the Feynman Integral for d=2,3. We below
evaluate 4o B as follows. It will be assumed, as is the case in the application in
view of Lorentz invariance, that the dependence of A(k,z,{) or B(k,(,z') with
respect to { reduces to a dependence on {,, {7 at d=2, or at d=3 on {,,¢* and
supplementary angle variables [angle between z and {, or § and z’; k is taken of
the form (k,, 0)]. By definition:

AoB(k,z,z)= [ A(k,z,{) w(k,{) B(k,{,2')dC, (A.3)
where w can also be written as:

1 1
(k)0 =12 (k)2 —0)*—u

C()(k, C) 2 O((k, C)

3 This relation corresponds to a special case of the Picard-Lefschetz formula, which expresses the
variation of the integration cycle around the singularity created by a pinch situation. In the
present case, it can be proven directly, e.g. by the argument given in the course of the proof of
Theorem 1 of [BL] [derivation of the third term of the discontinuity formula (2), given in
paragraph 2.4.3]; another simple proof of it will be found in [BI2]
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with a(k, ) analytic and bounded in 4 x 2.
A will then be decomposed into 4+ A’, where

Al(k,z,C):A<k,z,C0=O,§2= — %,9),

N =

¢
k.0)

o, . . .
{p=0,8*=— 7 being the values that make the intermediate momenta k, =

—

on-shell: k% —u®=0. B(k,(,z') is decomposed similarly as B+ B/, as also o

(2(k(0-5))+)

The basic geometrical idea to be used below is the following. The differences
A'=A~— A, B=B— B or o'=0—q generate factors that will cancel one of the
poles produced by the Feynman propagators: it is then easily seen that the
integration contour in corresponding contributions is no longer pinched and can
thus be moved so as to avoid the remaining pole singularity. Such contributions
will therefore be analytic in the neighborhood of ¢ =0.

More precisely, we separate contributions to the integral (A.3) into two parts:

(i) Those corresponding to the terms A), B, &, which do not depend on (o, C2

The Feynman integral

)= s :

(R + 02—~ ()= 02—

is known explicitly (as will be admitted here) and can be analytically continued
when k is taken away from euclidean space. It has a singularity in ¢~ !/? or Ino in
the complex neighborhood of ¢ =0 and the explicit straightforward evaluation
then shows, in view of the definition of *, that:

| Ay Bad{
[((k/2)+0)? = 12T [(k/2) = £)* — u*]

where the term C is analytic for s in V and satisfies the properties required in
Lemma 1.

(ii) All other terms which will be evaluated by dividing the integration contour
into a local part conveniently chosen and the remainder. The latter is treated by
separating all terms that occur in the differences 4— A4, B—B or a—ga. It is
checked that all contributions can be analytically continued with no singularity at

ag, (A.4)

=g(s)(A*B)+C, (A.S)

s=4u? (the factors ki —u*= — % +{* + ko, do not vanish |.
Finally, the local part is treated by noting that the differences generate factors
. 1
{o or 3+ % equal respectively to P [(k% —u?)— (k%2 —u?)] or L[(k% —u?)
0

+ (k% — u?)], so that this part is equal to a sum of terms in which one of the two
Feynman propagators has been cancelled. This is seen also by going from the

k 2 .
variables (,, |{] to s,,5_,5,= <§ -I_-C> —u?. The geometrical idea described

above thus applies to this part.
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Analyticity of AV B, once g(s) A * B has been subtracted from 4o B, is thus
established and the bounds of Lemma 1 are easily obtained for all relevant
contributions.

Appendix 2: Technical Complements (Non-Even Theories)
a) Proof of Lemma 5. Equation (36) is obtained e.g. by writing

@ +=Q- =D (@- + UV )
===+ @ +(=D=4 V) VO~
—-D—-@ UV @ =D~

(where we have used <0 ¢ U==(D=—U, o=V +#). Equations (37) and (38) are
also obtained easily. Finally, to prove (39), one has to check that

> (o2
(o (o i)

This is achieved by expanding the right-hand side as a sum of 4 terms and using
=D=—U==0F % U, as also (36)—(38).

b) Direct check of the coincidence of the expression (26) and (49) of H,.
Equation (26) will be written (using a—u=a—k—n?/d) in the form:

1 n?/d?
H,=- d + a—k’

In (45), L(and in turn f,]) are defined in terms of K by Eq. (44'). Replacing K by

its expression U —=N—--®= /d, one has:

O ==+ UV TV
o112

==Q)r %——(since NV D =d— 2)).
Hence 12/(2-)* =n?*/d* and:

=@+ VO T~ (@,

where we have used again -QF V=Q-=d—-@-.
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