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Abstract. We give a description of a large class of plane billiards with Pesin
region of measure one. Open conditions including properly those founded by
Wojtkowski [Wl] for C4 focusing boundaries are obtained. Lyapunov's
forms, introduced by Lewowicz, are used.

0. Introduction

Boltzmann's hypothesis about the ergodicity of the model (Boltzmann-Gibbs) of
the gas of hard spheres is in the basis of the study of the statistical properties of
dynamical systems. Sinai's proof [SI] of the simplest case of this hypothesis
concerns the plane with two balls and a square box represented by the torus
{(x, y) mod 1}. This situation is immediately extended for billiards with boundaries
of negative curvature (dispersing billiards).

Birkhoff, Krylov, and Arnold gave intuitive interpretations of the relations
between the dynamical systems of the billiard type and the geodesic flows of
surfaces. The study of ergodic properties of these flows in surfaces of negative
curvature showed the importance of the transversal stable and unstable foliations
(separately, Hopf and Hedlund, 1939). This methods were profitably used since the
sixties in the study of the so-called Anosov systems and other topics [see for
example (Al)].

The above mentioned relations justify the use of the same techniques in the
study of ergodic properties of billiards with dispersing boundaries. This is the
central idea od Sinai's work.

In the billiards with focusing boundaries the situation is more complicated and
the pioneer works of Birkhoff suggested the non-ergodicity of plane billiards with
boundaries that consist of a smooth curve of positive curvature. Bunimovich [B2,
B3], indicated that billiards whose focusing pieces of the boundary have constant
curvature and that do not contain dispersing components, are Bernouilli (the
stadium, for example).
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In [Wl] it was proven that some examples of billiards (the cardioid, an
epycycloid, a square with a hole of the shape of an astroid) have Pesin region of
measure one. Besides, this property is preserved under small perturbations of their
boundaries. In this work it is proved that the condition obtained by Wojtkowski
for focusing curves is not generic. More precisely, open conditions for focusing C4

curves, different than those in [Wl], are obtained.
We use procedures [L1-L4] which permit the study of all this properties

looking at the asymptotic behaviour of certain quadratic forms. The existence of
contracting and expanding subspaces detected by these forms (see the Appendix)
permit the application of Pesin's theory (see [PI, pp. 58, 61-62, 71-73] which
guarantee the construction of local stable and unstable foliations that generally are
not uniform, neither in length nor in their angle, but are sufficient to obtain certain
ergodic properties.

1. Notation and Wave Fronts

Following Cornfeld-Sinai-Fomin [Cl], with β o = R 2 , let

Mί = {xedM:(n(q),x)>0,q = π(x)},

where n(q) is the unit inward normal vector at

Q^dQλ U dQk,

dQi being a regular component of the boundary; π is the natural projection from
the tangent bundle to R2, π{q9υ) = q; dMi = π~\dQi); dM= [j dMt.

If s is the arc length of the parametrization α(s) of the component dQt of the

boundary, the curvature k(s) is defined by α" = — =kn = kia'. Then we have
as

regular components of the boundary dQ + , dQ~, dQ°, respectively with positive
(focusing components), negative (dispersing components) and zero curvature
(neutral components).

Given x = (q, υ)eM1} Tx (if it exists) is obtained moving forward, in the billiard
surface, in the direction υ, a distance (time) f(x) till the intersection with dQj inqv

Tx = (qu w), where w = v — 2(n(q1), v) niq^): the angle of incidence equals the angle of
reflection. (Differences with the notations of the first publications of Sinai,
Bunimovich, Gallavotti, etc. should be observed.)

Fig. 1
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The billiard transformation T: H-+H is measurable, bijective, continuous and
v-measure preserving. Here H = MX\K, where K contains the points of Mί such
that Tk is not defined or not continuous (see Fig. 1, where x,yeK); furthermore
has v-measure zero. As usual dv = ds dθ cos θ, where θ is the angle between n(q) and
υ; v is normalized. T:H-+H is a diffeomorphism of order p — ί, p being the
differentiability order of δQ.

A wave front is given by a curve (α(s), v(s)) in M l 5 where v(s) is the vector of the
front, and its state after colliding with dQj is (y(σ(s)), w(σ(s))) (see Fig. 2). So, we can
write T(oc, v) = (y, w). The symbol' will designate the derivate with respect to s or σ.
Then

υ(s) = i(xf{s)eιθ{s\

w(s) = ίy'(σ{s))eiδ{σ{s)\

(s)i<x'(s)eίθis).

(1)

(2)

It is simple to prove the following formulas:

dθ _( _dδ\dσ

C O S $ = —r~
dδ

— cos ό

where ko,kί are respectively, the curvatures in α(s0), y(σ0). These expressions
correspond to Lemma 2.3 of Sinai [SI] , adjusted in Lemma 3 of [B2], and are
important for constructing the locally contracting and expanding fibres.

Fig. 2
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If Mγ is parametrized by (s, β) instead of (5, θ), where β is the angle formed by a
fixed axis with v, we have

2. Quadratic Forms

Given a manifold M, 5 : TM-+R is a quadratic form in M if Bx = BTχM is a
quadratic form in the usual sense, B is non-degenerate if for every x, Bx is not
degenerate. B is positive if Bxv>0 for every x e M , ve TXM, vφO. If / is a
diffeomorphism and B a quadratic form in M, we denote by / * B (pull-back of B by
/) the quadratic form defined by (f#B)xu = Bf{x)(fx(uj).

This work continues the application of quadratic forms to investigate stability
and ergodic properties of dynamical systems, begun by Lewowicz in [ L I ] (cf.
[L2-4]).

A proof of a theorem similar to the following one is suggested in [L3], and
given in details, in the appendix.

Σ(f) will denote the Pesin region of/, that is, the set of regular points that have
non-zero Lyapunov exponents. Notations are as in Mane [ M l ] .

Theorem. Let f:H->H be a Cr-diffeomorphism, r ^ l , that preserves the smooth
measure v; H = H1\K. H1 is a compact 2-manifold,

Let B: TH1 ->Rbe a bounded quadratic form, continuous and not degenerate in TH,
such that Px = (f^B — B)x is positive for every xeH, and

Sx = {ueTxH:B((fnYu)<O,n^O}

Ux = {ueTxH:B((fn)fu)>0,n^0}.

Then v(Σ(f))=l and the proper spaces of the negative (positive) Lyapunov expo-
nent in x is Sx (respectively Ux).

The theorem is valid if P is positive eventually: for every n e N there exists fceN
such that B{(fk+ί)')u)-B{(fk)'u)>0 for every ueTxH, w + 0 and almost every
xeH.

The proof that the billiard transformation T verifies the conditions of the
theorem are given, in details, in Part V (Plane Billiards as Smooth Dynamical
Systems, by M. Strelcyn) of [ K l ] . In particular, to apply Corollary 4.1 and
Theorem 5.1, it is needed for dQt to be C 2 and for \k\ to be uniformly bounded.

In order to define a quadratic form on TH in the case of billiards we must
consider curves x(t) = (<x(s(t)),v(s(t))) in H such that x(0) = x and assign to each
vector u==(cL/v)\t = o a r e a l number Bxu. ' indicates derivative with respect to t.

Here we study, three different forms, whose expressions are based in methods
employed to study stability problems of geodesic flows [L4].

A. Bxu = (ά0, iv0) (i), iv0) = - sg cos θo(ko + 0'o).
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Using (3) we obtain Bxu= -cosθ0— - —-, where | T 5 - - > is a basis of the
at at [at at)

tangent space TXH. Then Bx is a quadratic form with proper values ±a/2,
a = cosθ0.

Pxu = (T*B-B)xu = (sσ')2[-2k1cosδ+f(kι-δ')2'],

which is definite positive (eventually) if the regular components of the boundary
are dispersing or neutral and the trajectories pass by the not neutral components in
finite time [i.e., for almost every x5 there exist ke¥ί such that π(Tkx) is in a not
neutral component]. This remark on trajectories eventually going through the not
neutral pieces is valid in each of the following cases.

Sinai [SI] proved that these billiards are ergodic (actually they are Bernouilli).
So our result on the full measure of the Pesin region is weaker.

B. Bxu = f(v, ίv)2 + 2(ά, iυ) (t), iυ) = s2(kQ + 0') [/(/c0 + θ') - 2 cos θ

= f[-r) ~2oosθγγ~\ with proper values (/± | / / 2 + a2)/2

Pxu = (sσ')2 [(Λ +f)δ'2-2ki(f-fι)δ' + kι{fι +/)~4/c1 cosδ] ,

where fγ is the distance between Tx and T2x.
If k1 ̂ 0 , P is definite positive (eventually).
lΐkι>0, P is definite positive if the discriminant of the expression in brackets

as a polynomial in δ' is negative: —%k\ffx Λ-^kx{fγ + / ) c o s ^ < 0 . If Lx is the time
that the trajectory spends inside the osculating circle of radius Rί = l/k1 before

L k
(or after) colliding with the boundary at y(σ0), we have cos (5= -^—- (see Fig. 3),

and P x > 0 when the trajectory collides a focusing component of the boundary if
and only if

Li(fι+f)<2ffi. (4)

C. Bxu = L(ύ,iv)2 + 2(ά,iv)(ύ,iv)

if fc>0? L is the time that the trajectory spends in the osculating circle of α(s)
before (or after) colliding.

Fig. 3



92 R. Markarian

In this case

So, when kγ :gθ, k0>0, Px>0 if the dispersing or neutral components do not
intersect the semicurvature circles of dQ^s)):2/ — L > 0 . When k0,kt^0 there is
no additional condition. If k> 0, the semicurvature circle is, by definition, inside
the billiard, tangent to the boundary and has radius equal to R/2. When kγ >0, a
similar calculus gives a necessary and sufficient condition:

2f. (5)

3. Conditions on the Boundaries. New Results

We study here, separately, Cases B and C of the previous section.
B. In the case of the form Bxu = f(v, ίv)2 + 2(ά, iv)(v, iv) the conditions of the

theorem are verified if π(Tx) is in a neutral or dispersing component of the
boundary. If π(Tx) is in a focusing component (4) gives a necessary and sufficient
condition. In this case, if

Lr<f,fι, (6)

condition (4) is fulfilled and the hypotheses of the theorem are verified if the
osculating circles in points of any focusing component do not intersect any other
component of the boundary. So the interior angles between two focusing
components must be bigger than π, and the interior angles between a focusing
component and a not focusing component must be not less than π (in case the not
focusing component is neutral the angle can be bigger than π/2).

But (6) is not fulfilled in general if two successive collisions are in the same
focusing component. Let γ(A) = r(A)γ'(0)eiA, r(0) = 0} the boundary curve in a
neighbourhood of the collision point y(0) (Fig. 4).

fγ = r(A) = r(0)A + f{0)A2/2 + Ύ(0)A3/6 + ...,

Fig. 4
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Condition (4) is written —- sin A(r(A) — r( — A)) < — 2r(A) r( — A), and if the curve is
k1

symmetric, r(A) = — r( — A), this simple condition is obtained

MO)
sin A <r(A)- (7)

In the general case, using Taylor's development, for small angles A, we obtain

P(0) f(0) r(0)
< +

•3kk<2k2.

Or, using derivatives with respect to s,

?l/3\

(8)

Observe that (7) is a condition valid in a point, for trajectories coming from any
point of the same focusing component of the boundary. But as (4) is an open
condition, (7) holds, for long trajectories, in some neighbourhood of the point
[cf. (2)].

Observe also that (8) is an open condition valid for C4-curves, but it guarantees
only the positivity of Px for trajectories close to tangent lines which is the situation
more difficult to elucidate. So, curves that verify simultaneously conditions (7) and
(8) give open C 4 families that satisfy (4) for consecutive collisions in the same
focusing component.

If r(A) = A, ~A0<A<A0, (7) and (8) are verified.
In the case of the ellipse of Fig. 5,

r(A) =
2a2btgA

-π/2<A<π/2, fc(0) =

and condition (7) is equivalent to a2<b2; so A = 0 correspond to a vertex of the
longest axis. If the ellipse is parametrized in the usual way: x = cosί, y = bsint,

b2

— π/2 ̂  t < 3π/2, (8) is verified, for b2 > a2 if sin21 > —^ ^ which corresponds, in
the first quadrant, to the part emphasized. a

C. If Bxu = L(ύ, iv)2 + 2(ά, iv) (v, iv), conditions for the validity of the theorem
have been given in the cases of dispersing components, condition (5) is verified if
the semicurvature circles do not intersect themselves.

Fig. 5



94 R. Markarian

If two consecutive collisions are in the same focusing component of the
boundary, (5) is equivalent [Wl] to

2k'2 < kk" o R"{s) = -~ < 0. (9)
as

Condition (9) has the advantage of being global and is verified by arcs of the
epicycloid, hypocycloid, cycloid. In particular, by the cardioid r(A) = i H-cos A In
the case of the ellipse x = a cos t,y = b sin t, — π/2 S t < 3π/2, if b2 > a2, (9) is verified
if cos2ί > 0 => — π/4 < t < π/4 or 3π/4 < t < 5π/4. This is a part of the ellipse disjoint
of the one indicated in the preceding section.

Conclusion

In this work we prove the existence of two types of billiards with Pesin region of
measure one, with open focusing conditions in the curvatures. This allows us to
make small C 4 modifications in the boundaries, and maintain ergodic properties.

The C2-components of the boundary can be of any type, with the following
sufficient conditions (which are not necessary in general).

a) In Case B of this section, the focusing components verify (4) - with the
observations of expressions (7) and (8) for permitted C 4 curves - the osculating
circles of adjacent focusing components do not intersect not adjacent components
of the boundary; adjacent focusing components form interior angles bigger than π;
focusing and dispersing components form interior angles not less than π; focusing
and neutral components have interior angles bigger than π/2.

b) In Case C, C4-focusing components verify (9), semicurvature circles of
focusing components are disjoint; components with k^O do not intersect the
semicurvature circles of focusing components; the conditions for adjacent
components are as in a).

Billiards of type b) are those studied by Wojtkowski. But the class of billiards of
type a) is large enough to prove that his assertion [Wl, p. 412] that "typically"
condition (9) "is in some sense a necessary condition for nonvanishing of Lyapunov
exponents" is not true.

Appendix

Proofs of the following lemmas are suggested in [L3].

Lemma 1. Let f:H-+H, be a Cr-dijfeomorphism, r ^ l ; v an f invariant measure;
H — H^K; Hua compact 2-manifold; v{K) = 0. Let B: TH1-^R, be a quadratic form
bounded on TH x, continuous and not degenerate on TH such that Px = (f*B — B)x is
definite positive v-a.e. x e H.

Then v-a.e. xeH,

Sx={ueTxH:B((fn)'u)<O,n^O},

Ux = {ueTxH:B((f)'u)>0,nS0}
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are one dimensional linear subspaces of TXH that depend continuously on x, and

Proof. For n > 0 let wneTJn{x)H be such that Bfn{x)wn<0.
Since Px>0, Bx((f~n)'wn)<0. But {{f~n)wn} has a convergent subsequence,

say, to w^ with {fni)'wnι convergent to (/"O^Όo? a n d so if J5((/]v)'woo)^0 for some
JV^O, B((fnj)'w(X))>0 for rij>N and the same inequality is valid in some
neighbourhood of (/"'')'wx. ThenB((f n) lwJ<0 Vn^O, w(X)eSx andS xcontains a
one dimensional subspace. Idem for Ux.

Let now u,veSx be linearly independent vectors and D compact, DcH, such
that fnk(x) e D for an increasing sequence {nk}. The existence of D is a consequence
of the Poincare recurrence theorem.

Since P>0 and D compact there exist b,c>0 such that c||w||25ΞP^w^fc||w||2,
for every w = (/Πk)'w, ueTyH9 y = fnk(x\ fceN. Then 5((/m)'ii)-B(w)

= \ HfϊuY^c Σ \\(fnk)fu\\\ nN^m-ί^nN+1 and if ||(/"*yw||^0 we have
i = Q k= 1

B((fmyu)-^ + oo for m-> + oo5 which is a contradiction. Then lim \\{fnk)'u\\ = 0
and k " + 00

lim ||(/Bk)'(ΛM + μt;)||=O Λ μ e Λ . (1)

This implies B{{fn)'{λu + μυ))<0 because otherwise B{{fnk)r (λu + μv))
>B((fNy(λu + μv))'^:O, a contradiction with (1).

Then the subspaces spanned by u, v would be in Sx=> Sx~ TXH. This is absurd,
and therefore Sx, Ux are one-dimensional.

Since / increases the values of B,SxnUx = OX.
In order to prove the continuity of Sx let uneS, un-+ue TXH. Continuity of B

and positivity of P (same arguments to the ones made with w^) imply that

B((fn)'u)<0=>ueSx.

In the following lemma the condition on log || f'x || - which indeed is a restriction
on the behavior of/ near K - is needed to apply the ergodic multiplicative theorem
of Osedelets [Ol ] that assures the existence of Lyapunov's exponents and proper
spaces v-a.e. w.

Lemma 2. // the assumptions of Lemma 1 are fulfilled and

log + ! l(/ ± )Ί|eL 1 (H,v), where log+ s = max{0, logs},

then, if R is the Pesin region for f v(R) = 1 and the proper spaces offonx are Uχ9 Sx.

Proof. Let Ux, Sx be as in the previous lemma for every xeH, and DcH compact.
There exist a > 0 such P(u)>aB(u) for every ueUx,xeD. Then B{f'{u)) = B(u)

+ P ( M ) > ( 1 +a)B(u) and if fnk(x)eD for an increasing sequence {nk}, it results:

B((fnk + ι)'u) > (1 + a) B((/"k)' u) > (1 + a) B((fnk ~ * f 1)' u)

>(l+a)2B(fnk^)'u) > . . . > ( ! +aγB{u).

So B((fn)'u)>(ί +a)NnB(u), where
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Since B is bounded there exists b>0 such that \B(w)\<b\\w\\2 VweTH. Then

\\(fn)'u\\2^ i(l+a)NnB(u) Vrc^O and,
b

liminf-log||(/Λ)'u|| ^ ^log(l +α)l iminf—. (2)

Applying the Birkhoff-Khinchin theorem to XD, the characteristic function of

D, we get that v-a.e. w. there exists

1 n~ι N (x)
XD(x)= lim - X XD{fJ(x)) = lim - ^ ,

and since

_ /Y (x)
v(D)= \XDdv= ΪXDdv, lim — ^

is positive in D with v(D) ^ v(D).

Now, iϊu = vι

Jrv2, vt e £i(x), being £ t (x) the proper subspaces of / in the regular

point x, associated to the exponent lt(x), λ1(x)>λ2(x\

lim - l o g ( / 7 M ^ lim ~log2 | | (/7ι ; ι | |=λ 1 (x) .
n~* + oo fi n> + oo γi

The positivity of the largest Lyapunov exponent in D is deduced from this

inequality and (2).

E2(x) C Sx because if w e E2(x)

lim ί log || (/")' w || < 0 => lim log | |(/")' w || = — oo ,
«->• + oo Yi n ->• + oo

lim ||(/")' w|| = 0, B((fn)'w)^0\/nsZ. The last step results from the boundedness
n-> + oo

of B (B((fnyw<b\\(fnyw\\2=>B((fn)'wSO) and the positivity of P. Idem for
Eι(x)cUx working with n-> —oo. So £2(x) = 5ί

x, £1(x)=(7J C.
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