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Abstract We construct a cocycle on an infinite dimensional generalization of a
p-summable Fredholm module. Our framework is related to Connes' cyclic
cohomology and is motivated by our work on index theory on infinite
dimensional manifolds. The p-summability condition is characteristic of
dimension O(p). We replace this assumption by the requirement that there
exists an underlying heat kernel which is trace class. Then we use the heat
kernel to regularize states in dimension-independent fashion. Our cocycle may
be interpreted as an infinite dimensional Chern character.

I, Introduction

This paper continues our work on index theory on infinite dimensional manifolds
[8 12] and connects it with Connes' theory of cyclic cohomology [2-4]. Our aim is
to formulate non-commutative differential geometry in an infinite dimensional
setting. We define the notion of a quantum algebra and formulate a cohomology
theory for such algebras. Our framework is similar to Connes' theory of
(9-summable Fredholm modules [4].

Non-trivial, infinite-dimensional examples of these structures arise from
existence theorems for two-dimensional, supersymmetric, i.e. 2£2-graded quantum
fields. In this case, the underlying, infinite-dimensional manifold is the loop space
of a finite-dimensional manifold M, namely the space AM of smooth maps from
the circle to M,

ΛM = {φ:S1-+M}. (I.I)

The field theory examples constructed so far [8-12] arise from the choices M = <C
and M = R. They yield a Hubert space
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defined in terms of a measure dμ on the space of functions on AM. In these
examples, there is a Dirac operator Q on 3tif9 whose Atiyah-Singer index we have
computed in [8-12]. Another example of these structures arising from represen-
tation theory is given in [3].

In order to find further invariants, we follow the methods of Connes. However,
his main analytic tool, the p-summability assumption, cannot be used in the
infinite dimensional context. Motivated by our field theory models, we propose to
replace p-summability by heat kernel regularization. That means that we set

and use the trace class operator cxp(-βH) to regularize the states we study. This
allows us to construct a coboundary operator and a character form which is a
cocycle, even though our algebras are not p-summable Fredholm modules. An
alternative proposal along these lines was given in [4].

We define a quantum algebra sd as a Z2-graded algebra of operators on a
Hubert space, with certain additional structure, including a graded derivation d.

Our cocycle τβ has an n = 2kth component τf(α0, ...,an) of the general form,

(-βΓnl2 I Stτ(a0daί(t1)da2(t2)...daMe-βH)dt; (1.2)

see Sect. 5 for a complete definition. The cohomology classes defined by τβ are
independent of β.

We plan to use this cocycle to investigate other invariants of the theory. Heat
kernel regularization allows us to work with functional integral representations of
the cocycle, as we already did in the discussion of the index of Q [8-12].

II. Quantum Algebras

Quantum algebras arise as a mathematical abstraction of graded (supersym-
metric) quantum field theory.

Definition II. 1. A quantum algebra is a quadruple (j/5 3tf, Γ, Q) with the following
structures (i)-(v):

(i) The algebra J / acts on 2tf. The space Jf is a separable Hubert space over C
The algebra srf acts as a unital algebra of bounded linear operators on ffl.

(ii) Γ is a Έ2 grading of s$, of if(Jf), and of Jf. The operator Γ is a selfadjoint,
unitary operator on ffl. Thus Γ is a Έ2 grading operator for f̂, and

J f - j r + ® J T _ , (II.l)

where J>f± are the positive and negative eigenspaces of Γ. Furthermore Γ defines a
TL2 grading of if (Jf), the algebra of bounded operators on J-f, namely

where <£{ffl)Λ are the diagonal entries of if (Jf) with respect to the decomposition
(II.l). This is equivalent to writing Λ = A+ +A_, where

, and AΓ = ΓAΓ. (II.3)
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Thus J2?(jf?)+ are respectively even or odd under conjugation by Γ. We define
) = 0, deg(>4_) = t, so

AΓ

±=(-l)άe*{Λ±)A±.

We require that j /Ci fp f 7 ) is invariant under conjugation by Γ, namely
Γ ^ . Thus

(iii) β is selfadjoint and odd. The operator β is a selfadjoint transformation on
#e and

βΓ=-e. (Π.4)

Thus

HI '.-)•
where β + \ $?+-*$?+ and β_ = 6 * . Furthermore we define

In our examples, Q is a Dirac operator and H is a Hamiltonian (or a Laplacian).
(iv) The heat kernel is trace class. We assume that for all β>0, exp( — βH) is

trace class.
(v) s4 has a graded derivation d. We assume that each operator in Qjtf is

densely defined on J f. Thus we can define

, α _ } , (11.7)

where [_a^b]—ab — ba and {a,b} = ab + ba. We assume that

d:s/-+s/, (II.8)

or in other words

d\sί±-+rfτ. (11.9)

It follows that

dα = zT[Γβ,α]. (11.10)

We define the norm

HαlU = ll«ll + l|dflil, ae.fi/, (11.11)

where || || is the operator norm. ,<si is a normed algebra with respect to || • Ĥ ,

For aestf note that

a = (aΓ)Γ, (11.13)

(dάf=-d{aΓ), (11.14)
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and for a, b e jtf,

(11.15)

Thus we also obtain

n

d(a1a2...an)= Σ (ai ••• aj^1)
Γdaj(aj+1 ... a n ) . (11.16)

As a special case,

ft

d ( a ί d a 2 •••dan) = d a ι d a 2 •••dan + Σ { — \ ) l ( a Γ

ι . . . d a Γ j _ ι ) d 2 a ] { d a j + ι . . . d a n ) .

(11.17)

For aestf and O^ί, define

a{t) = e~tHaetH. (11.18)

Clearly α(ί) is an (unbounded) operator with domain Range (exp( —ί//)). Hence
and α(f)β are densely defined and we set

Proposition Π.2. For aestf and t ^ 0,

d2a{t)=—a(t). (11.19)

/ By assumption d: j^-> J / , so rf2α(ί) is well defined. Furthermore from (II.9)
and the identities

we obtain (11.19).

Let Ip denote the p-th Sehatten class of bounded operators on <ff with the norm

M|| j P = (Tr(4*4) p / 2 ) 1 / p . (11.20)

For Aelί9 we define the supertrace by

Str(A) = Ύr(ΓA). (11.21)

Definition 113. Let ^ e ^ ( j T ) and e>0, then A{ε) = e~εHAe~εH is the heat kernel
regularization of A

Proposition ΪI.4. T/ze heat kernel regularization of Ae 5£(Jf) is ircice c/αss: ^4(ε) e 7 l 5

/or ε > 0.

Proof Since g~εiί is assumed to be trace class for all ε>0, the desired fact follows
from Holder's inequality on i\.

Proposition II.5. Let A = B(ε) be the heat kernel regularization of ΰ e ^ ( ^ f ) . Then

Str(<L4) = 0. (11.22)

Proof With our assumptions, both QA and AQ are bounded. Also by (11.10),

Str (dA) = i Tr ([Γβ, /!]) - i Tv{ΓQA - AΓQ). (11.23)
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Let R = e~εIί/2. Then using the fact that Ύr (CD) = Tr (DC) for C bounded and
Delu we have

Tr (ΓQA) = Ύr((ΓQR)RBR2) = Ίr(RBR2ΓQR) = Ύr(R2BR2ΓQ) = Ίΐ(AΓQ).

Thus (11.23) vanishes and the proof is complete.

III. Cohomologies of Quantum Algebras

In this section we summarize cohomology theory of quantum algebras. Our
framework is based on the work of Connes [2-4] and also Loday and Quillen [13].

Let stf denote a quantum algebra, and let ̂ "(^/) denote the space of (n+1)-
linear functional on A, continuous with respect to the norm || Ĥ  of (II. 11). We
define a norm || Ĥ  on ̂ n(s^) by

! I / J L = s u p | / n ( α 0 5 f l l 9 . . . , « „ ) ! . (III.1)
| | α j | | * = l

Let

f=(fo,fi,f2,.~) (ΠL2)

denote a sequence of fn e ̂ n(s^). We use the following definition of Connes [4]:

Definition III.1. The space ^(srf) of entire cochains consists of sequences (ΪII.2)
such that

lί/llz= Σ (w!)1/2ll/nli^π (πi.3)

is an entire function of z. For z positive, | | / | | 2 defines a norm on ^(M).
The grading Γ of sd lifts to a grading Γ of c€(^). The action of Γ on ^"(jtf) is

defined by

(Γfn)(a0,...9an)=fn(aΓ

0, :.,<&- (ΠL4)

Also Γf=(Γfo,Γfί9...). Thus

where

are the even and odd cochains under Γ.
We also decompose ^(j/) according to whether n is odd or even. Write

where

Clearly,

(III.
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In this paper we are concerned with

An operator S : ^ + («β/)->^+(^) of the form

(Sf)n = SJa,

where Sn acts on ^"(jtf) is called diagonal on ^+(<*/). Let T denote the diagonal
operator on ^+(«*/) defined by

Note that T^ + 1 = lon # + ( J / ) , SO (III. 10) defines an action of the cyclic group on
^ + (^). Also define the diagonal operator JV by

7 = 0

Note that

0. (111.12)

We now define two coboundary operators

which anticommute.
To simplify later calculations we first introduce two operators U and V on

by setting

^.^^X-ir/Kα,...,^^,!), (111.13)

Then we set

Notice that {Bn} and {έ>π} induce continuous homomorphisms B and fc on
^+(j/) which map ^ ( J / ) into ^+(eβ/) and i /cβ

More explicitly Bn may be defined by

where

Alternatively

(111.17)
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Similarly bn is given by

(&«/») (0O>fll> >0«+l)= Σ (-l) J />Ov,flfrlr-^« + l )
7 = 0

+ ( - t ) " + 1 / X + ^ o ^ i ? . ? ^ ) (ΠL18)

Proposition III.1. The operators B and b, as defined by (III. 15-16) are coboundary
operators, i.e.

B2 = 0, (III. 19)

&2 = 0, (111.20)

which anticommute

{B,b}=0. (111.21)

/ a) Equation (III. 19) follows from

and from Eq. (III. 12): (Tn~l)Nn = 0.
b) To verify (111.20) we use

L e m m a 1 . For O ^ ^ ,

l/T-(k+l)yτfc_ _ γ-(k+l)yrpk y
v 1n+ί y 1n — An + 2 v 1n+ίy

This follows readily from (III. 10, 13-14).
Now we get

n + 2 n+ 1

K+iK= Σ Σ τ~ r ~ 1 κr r - s ~ 1 FT s

/n+2 r- 1 n+ 1 n+ l\

= Σ Σ + Σ Σ T " l ' " 1 7 Γ r " s " 1 F T s . (111.22)
\ r = 1 s = 0 r = 0 s = r/

Using Lemma 1, we write the first double sum on the right-hand side of this
equation as

n+2 r-1 n+1 s

~ Σ Σ τ~s~ιvτs~rvτr~1 — ~ y y τ-r-ιyjιr~s~1vτs

r=1 s=0 s - 0 r=0

i i + l « + 1
___y y j'-r-lyj^Γ-s-l^'j-s

r = 0 s = r

which is up to the sign equal to the second double sum in (111.22). Therefore,
bn+ibn^Q, which proves (111.20).

c) To prove (111.21) we use

Lemma 2. (i) UV=h

(ii) T-lUTn+1V=-l.
(lii) VxυTn'+\V= -VΊϊl}UT-r+1,
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From (III. 15-16) we get

£ Σ
j=0 k=0

+ Σ "Σ (T^'-'VTjlίUT^T-^'VTjliU). (11123)
j=0 k=0

In the second double sum we change the order of V and [/, using (iii) of Lemma 2.
Reordering terms and renaming the summation variables we then show that all
the terms in (111.23) cancel, if we use the fact that Tπ

w + 1 = 1. This proves (111.21)
and the proof of Proposition IΠ.l is complete.

Now we set

(111.24)

Note that

(111.25)

Relations (TII.19)—(111.21) imply that <32 = 0, i.e., d is a coboundary operator.

Definition III.2. We call the cohomology of the complex

^ ^ . . . (111.26)

the entire cyclic cohomology of the quantum algebra stf. The corresponding
cohomology groups are denoted by H\(stf) and H°+(jtf).

IV. The Regularized Trace Form

In this section we study a regularized trace form which is multilinear on the algebra
eέf(Jf)w + 1. The regularization of bounded operators is provided by heat kernel
regularization as described in Chap. II.

Definition IV.1. Given β > 0 and n e Z + , we denote by Fβ

n or <•> = <•>/?,„ the
regularized trace form on + 1

β^ (IV.l)
σn

Here σn = σf denotes the n-simplex

and

) = e~tHΆetH.

Proposition IV.2. The regularized trace form is a continuous multilinear functional
and satisfies the bound

^ β"T(^H)Y\ \\Aj\\. (IV.3)
j=o
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Proof. Define to = 0, tn + 1=β, and δj = (tj — tj-ι)/β for j = 1,2, . . . , n + l . F o r
^ .̂.— l. Thus we can use Holder's inequality on the integrand in (IV. 1), namely on
the 2ft+ 3 factors in the Ix Schatten class

Choose the I^ Schatten class norm [the operator norm on jSf(«^)] for Γ and Ap
and choose the/^.-i norm for Qxp(-βδjH), or the L^ norm if <57 = O. Since ||Γ|| = 1
and

it follows that for t e σn,

\Stτ(A0A1{t1)...AM)\^τr(e-ι>B)''u \\Aj\\. (IV.5)
7 = 0

The volume of σn is βn/n\, yielding the desired bound.

Proposition IY.3. The regularized trace form satisfies

Fβ(Ao, , Λn) = Fβ{AΓn, Λo, ,An_ x) = F j « . . . , ^ ) . (IV.6)

Thus with T defined in (IIL10),

Proo/ Use the fact that σn is parameterized by δj ^.O,YJδj=l; hence σΛ is invariant
under cyclic permutation of the δfs. The desired identity follows from

Proposition IV.4 (Integration by parts formula). Assume that Ai e S£(J4?) for
z = 0, . . . , n + l .

(i) //i,

j p j

(IV.
for j = \, ...,n.

(ii) / / i o e ^ ( ^ f ) , then

(IV.9)

(iii) / / i n + I

^«+ ll^o? J ̂ -n? An+ ι) = r n{An+ γA^A^^ ..., y±nj r H\AQ^ A^ ..., AnAn+ γ).
(IV. 10)

Proo/ We prove (IV.8) for j = 1 then the other desired identities follow from the
cyclicity property (IV.6) of the trace form Fβ

n.
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Consider the integration over tί in

...)-StrίyVMOμ^)...)

Here we have used the fact that A i(0) = A1. If we now integrate over ί2,..., tn e σn_,,
we obtain (IV.8) with j = l.

Proposition IV.5. For Ao, Au..., Aπ, and dA0,..., dAn e Sf

f Stΐ(d(AoA1(l1)...An(tn))e'βH)dt = 0, (IV.11)
σn

and

Fi{dA0,dAu...,dAn)- - £ FΪ(AΓ

0,(dAtf,...,{dA^f,Aj9dAj+1?...,dAn).

(IV.12)

/ Let A = A0Aι(tι)...An(Qe~βH. We first assume that tn<β. Thus by
Proposition II.5, Str(ί/A) = 0. Since β and Γ commute with cxp(-βH), it follows
that ί/̂ 4 = ί/(A0^41(ί1)...^n(ίn))e"^H. The integrand dA, as in the proof of
Proposition IV.2, is continuous in t also at the boundary. Hence the proof of
(IV. 11) is complete. Equation (IV. 12) follows from (IV. 11) and (11.16,19).

Proposition IV.6. For Ao,..., An_ ί e

7 = 0

Proof. Notice that F^(A0, ...,An) may be written as

Hence

Fζ(A09...9Aj9l,Aj+1,...9An-1)= J

Now we change variables:

ξ^ξ't for 1 ^ 7

ξj + ξj+1 = ξ'j,

ξt^ξ'i-i, for

Σ ξi-β)dξ.
=l /

..A*
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The range of integration ofη is the interval [0, ξ'j], while all the ξ[ are only restricted
by ξ'i ̂  0. Nothing in the integral depends on η, thus integration over η yields a
factor ξ'j. We thus find that

Summing over j and using Σ ζ'j^β ^n ^ e integral, we obtain the desired result.

V. The Character Form

In this section we construct a cocycle τ = τβ e ^ + ( J / ) . We show that τ is closed with
respect to the coboundary operator d, and therefore it defines a cohomology class
in He

+(jtf). We call τ the character form.

Definition V.I. F o r ao,...,a2k€£#, let

τfkfao, •» β2fc) = (~βV kF β

2 k{a 0,da Γ

l 9da 2, dai . . , d a 2 k ) , (V.I)

where Ff is the regularized trace form (IV. 1).
Equivalently,

) . . . Γda2k(t2k)e-βH)dt.

(V.2)

Also let

τ̂  = (τg,τ iτί . . . ) . (V.3)

Proposition V.2β For rΞ>0, ί/ie norm (III.3) satisfies

\\τβ\\r^Q^{r2β)Ίr{e-βH). (V.4)

/ We use Proposition I V.2. Thus the norm (III. 1) can be estimated for τβ

2k from

2k

Thus

from which (V.4) follows.

Proposition V.3β
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Proof. Since we have verified the entire growth condition, we need only check that
τβ

2k is even under Γ, namely Γτβ

2k = τβ

2k. However, this follows from the represen-
tation (V.2) and cyclicity of the trace.

Theorem V.4 (The cocycle condition).

Proof. We claim that

~(β2k+2τ2k+2)(a0^ •• >02fc+l)l / R\-kfβ (Aa AnT J^Γ* s]nΓ2k+i)
>—{ — p) Γ 2k+l\aa0>aal> - >aai > •- >aa2k+l)'

(&2*τy(αo> >tf2fc + i) J

Verification of (V.5) for B: Using formula (III.17) we get for n = 2k + 2,
n-l

(Bnτ
β)(α0, . . . , « „ _ ! ) = X ( - iy(τ j( l , flf_7 ,..., α^_ u aθ9..., α π _ •_ J

j = o

- τ f ( α ^ i ? . . . , β̂ _ l 5 α 0 ? . . . , α ^ ^ l 51)).

Substituting (V.I) and using dl = 0 as well as Proposition IV.3, we obtain

Y
7 = 0

Notice that the factors of (— 1) have been used to bring da0,..., dan^j_1 in front, as
(da)Γ — —daΓ. Now it follows from Proposition IV.6 that

as claimed in (V.5), n = 2k + 2.

Verification of (V.5) for b: We set n = 2k and calculate the terms in the sum of
(111.18).

i) For j = 0,

ii) F o r j = l,

= (-β)~kHia0,da[• aΓ

2,da\\ ...) + (-β)~kFξ(aoa,,daΓ

2,daΓ

3\ .

H-β)-kFί+M^άudaldaK\\...),

where we have used (IV.8).



Quantum K-Theory 13

iii) For 1 <j 2Ξ n,

τβ

n{a0,...,ajaj+ι,...,an+ι)

= (-βrkFls

n(a0,da\,,..,day • aΓ/+ι, da^2\ ...,daζ"+ι)

H-β)~kFβ

n{aϋ,da\,...,daΓ

jί^-aΓ

j''\daΓ

j

1

+ι,...JaΓ

n"+ι)

+ ( - βΓkFβ

+ jίαo, da\,..., dar

}L\\ d f" ' , daΓ/+ u..., daΓ

nl,).

iv) For 7 = 72 + 1,

τfι(aΓ

n+ιa0,au..^an+ι) = (~βykFβ

n{a^+ιa0JaΓ

ι,...JaΓ

n

n).

Multiplying the terms in (i)—(iv) by ( — ί)\ using (111.18), and summing yields

Γ"+x Fβ

n+ ,(α0,da[,...,dtfί\\ά]'"',daΓ

}'+u ...,daΓ

n

+ (-βΓk(Fβ(a0,da'1,...,daΓ

n"-aΓ

n"+1)

-Fi(aΓ

n+ιa0,da\,...,daΓ

n

n))

x Fn+ i( βo ? ^
f l ί ? •-> dtfί\\ ά]3~ \ da^u ..., daΓ

n

n

+ x ) .

Using (IV. 12), (IV.6), and (11.14), we infer

(bnτξ)(a0,au...,an+ί) = (-βykF^1(da0Jal..^

as claimed in (V.5). This completes the proof of Theorem V.4.

Remark 1. As explained in Sects. 2-3 and Sect. 7 of Connes [4], if a cocycle τβ exists,
then it defines a pairing between H\(^) and K0(,Q/). See also [5] for elaboration of
this point.

Remark 2. In fact, if Q' = β1/2Q and d'a = iΓ[ΓQ',ά]9 then for w = 2fc,

τ f ( α o , . . . , α , J H ( - l ) f c f Sir (a.d1 a^t,)... d'aΓ

n

n(tn)e-
H)dt. (V.6)

Thus using H'= —d'Qf, we infer that

β jβ 4(aθJ..., a„) = -̂  τf(α0,..., αj

+ ( - l ) " i Σ iΓ

B^i(flo^/αί,...,d/αf,d^d/α^V ϊ- . ^ / 0 5 ( V 7)
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where the first term arises from differentiating d'a-p while the second one arises

from differentiating e~H'. Define the cochain

2= - ~ 2Σ \-ίY+kFlk(a0,d'a[,...,d'a?, β', rf'<Λ..., rf^Γ-1) (V.8
λ j=o

We compute δGf as above and obtain from (V.7) that

Hence the cohomology classes defined by τβ

n are independent of β.
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