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L The Chern Character*
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Abstract. We construct a cocycle on an infinite dimensional generalization of a
p-summable Fredholm module. Our framework is related to Connes’ cyclic
cohomology and is motivated by our work on index theory on infinite
dimensional manifolds. The p-summability condition is characteristic of
dimension O(p). We replace this assumption by the requirement that there
exists an underlying heat kernel which is trace class. Then we use the heat
kernel to regularize states in dimension-independent fashion. Our cocycle may
be interpreted as an infinite dimensional Chern character.

1. Introduction

This paper continues our work on index theory on infinite dimensional manifolds
[8-12] and connects it with Connes’ theory of cyclic cohomology [2-4]. Our aim is
to formulate non-commutative differential geometry in an infinite dimensional
setting. We define the notion of a quantum algebra and formulate a cohomology
theory for such algebras. Our framework is similar to Connes’ theory of
@-summable Fredholm modules [4].

Non-trivial, infinite-dimensional examples of these structures arise from
existence theorems for two-dimensional, supersymmetric, i.e. Z,-graded quantum
fields. In this case, the underlying, infinite-dimensional manifold is the loop space
of a finite-dimensional manifold M, namely the space AM of smooth maps from
the circle to M,

AM={¢:S'>M}. (L1)

The field theory examples constructed so far [8-12] arise from the choices M =C
and M =R. They yield a Hilbert space

H = LAM)@Ly(AM),

* Supported in part by the National Foundation under Grant DMS/PHY 86-45122
** Permanent address: Mathematics Department, E.T.H.-Zentrum, CH-8092 Ziirich,
Switzerland



2 A. Jaffe, A. Lesniewski, and K. Osterwalder

defined in terms of a measure du on the space of functions on AM. In these
examples, there is a Dirac operator Q on #, whose Atiyah-Singer index we have
computed in [8-12]. Another example of these structures arising from represen-
tation theory is given in [3].

In order to find further invariants, we follow the methods of Connes. However,
his main analytic tool, the p-summability assumption, cannot be used in the
infinite dimensional context. Motivated by our field theory models, we propose to
replace p-summability by heat kernel regularization. That means that we set

H=0?,
and use the trace class operator exp(— H) to regularize the states we study. This
allows us to construct a coboundary operator and a character form which is a
cocycle, even though our algebras are not p-summable Fredholm modules. An
alternative proposal along these lines was given in [4].
We define a quantum algebra .o as a Z,-graded algebra of operators on a
Hilbert space, with certain additional structure, including a graded derivation d.
Our cocycle t* has an n=2k"™ component t%(a,, ...,a,) of the general form,
(—p)y "2 | Str(agda,(t,)da,(t,) ... da,t,)e P7)dt (L.2)
B

0=t 2. St

see Sect. 5 for a complete definition. The cohomology classes defined by t* are
independent of f3.

We plan to use this cocycle to investigate other invariants of the theory. Heat
kernel regularization allows us to work with functional integral representations of
the cocycle, as we already did in the discussion of the index of Q [8-12].

II. Quantum Algebras

Quantum algebras arise as a mathematical abstraction of graded (supersym-
metric) quantum field theory.

Definition I1.1. A quantum algebra is a quadruple (<7, #, I, Q) with the following
structures (i)—(v):

(1) The algebra o/ acts on # . The space # is a separable Hilbert space over C.
The algebra 7 acts as a unital algebra of bounded linear operators on .

(1) I'isaZ, grading of <, of L(H), and of # . The operator I'is a selfadjoint,
unitary operator on #. Thus I' is a Z, grading operator for s, and

H=H DA, (IL1)

where A, are the positive and negative eigenspaces of I'. Furthermore I" defines a
Z, grading of (), the algebra of bounded operators on #°, namely

LAH)=LAH) @LA) -, (11.2)

where #(#), are the diagonal entries of £ () with respect to the decomposition
(IL.1). This is equivalent to writing A=A, + A _, where

A, =4A4+A4"), and A'=TAT. (I1.3)
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Thus £ (). are respectively even or odd under conjugation by I'. We define
deg(4,)=0, deg(4_)=1, so

AQ =(— 1)deg<’“)Ai .

We require that o/ C¥(x) is invariant under conjugation by I, namely
AT =T/ T C.o/. Thus

A=A, DA_.

(iti) Q is selfadjoint and odd. The operator Q is a selfadjoint transformation on
A and

0"'=-0. (I1.4)
Thus
0 Q,>
= , 115
(. ¢ (1)
where Q. : #, —»#+ and Q _ =Q%. Furthermore we define

010, 0 ) . (I1.6)

=0%=
=0 <0 0*0_

In our examples, Q is a Dirac operator and H is a Hamiltonian (or a Laplacian).
(iv) The heat kernel is trace class. We assume that for all >0, exp(—fH) is
trace class.
(v) 7 has a graded derivation d. We assume that each operator in Q.7 is
densely defined on #. Thus we can define

da=[iQ,a,]+{iQ,a_}, (1IL.7)
where [a,b]=ab—ba and {a,b} =ab+ba. We assume that
d:of - , (IL.8)
or in other words
d:od, - . (11.9)
It follows that
da=il'[I'Q,d]. (I1.10)
We define the norm
lall,=llal+ldal, ae<, (IL11)
where || - || is the operator norm. ./ is a normed algebra with respect to | - |,
layayly = llag ] llazll,. (IL12)
For ae .o/ note that
a=(a")", (IL.13)

(da)" = —d(a"), (11.14)



4 A. Jaffe, A. Lesniewski, and K. Osterwalder
and for a,be o,
d(ab)=(da)b+ ar(db) . (IL.15)

Thus we also obtain

(ay...a;-y)'daja;,y ...a,). (11.16)

1

dla,a,...a,)=

II.M B

J

As a special case,

da,day ... da)=dayda, ... da,+ Y (— 1)} ... dal_ )dafda;. , ...da,).
" (I1.17)
For ae .o/ and 01, define
a(ty=e "Hae™ (IL.18)

Clearly a(t) is an (unbounded) operator with domain Range(exp(—tH)). Hence
Qal(t) and a(t)Q are densely defined and we set

d(a(t)) =e Mdae™ =(da)(t).

Proposition I1.2. For ae.o/ and t =0,

d*a(t) (1). (11.19)

:Ea

Proof. By assumption d: .o — .o/, so d*a(t) is well defined. Furthermore from (I1.9)
and the identities

{lQa [IQ’ a]f = [Q27 a] = [lQ’ {IQ’ a}] 5

we obtain (I1.19).
Let I, denote the p-th Schatten class of bounded operators on #” with the norm

[Al,=(Tr(4*Ay)"r. (11.20)
For Ael,, we define the supertrace by
Str(4)=Tr(I'4). (IL.21)

Definition I1.3. Let Ae L(#) and >0, then A®=e " 4e * is the heat kernel
regularization of A.

Proposition [1.4. The heat kernel regularization of Ae ¥(A)is trace class: A9 el
for ¢>0.

&

Proof. Since ¢~ *! is assumed to be trace class for all & >0, the desired fact follows
from Holder’s inequality on /.

Proposition IL5. Let A= B be the heat kernel regularization of Be L(A’). Then
Str(dA4)=0. (11.22)

Proof. With our assumptions, both QA4 and AQ are bounded. Also by (I1.10),
Str(dA)=iTr([IFQ,A])=iTr(I'QA— AI'Q). (11.23)
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Let R=e¢ *#/2_ Then using the fact that Tr(CD)=Tr(DC) for C bounded and
Del,, we have

Tr(I'QA)=Tr((F'QR)RBR?*)=Tr(RBR?*I'QR)=Tr(R*BR*I'Q)=Tr(AI'Q).
Thus (I1.23) vanishes and the proof is complete.

III. Cohomologies of Quantum Algebras

In this section we summarize cohomology theory of quantum algebras. Our
framework is based on the work of Connes [2-4] and also Loday and Quillen [13].

Let .o/ denote a quantum algebra, and let ¥"(/) denote the space of (n+ 1)-
linear functionals on A4, continuous with respect to the norm | - |, of (I1.11). We
define a norm | - ||, on ¥"(<7) by

[ fally=sup |flag,ay,....a,)l. (L)

[la;llx=1

Let
S=Uo f1: 12 -2) (IIL2)
denote a sequence of f, e 6"(o/). We use the following definition of Connes [4]:

Definition I11.1. The space %(7) of entire cochains consists of sequences (I111.2)
such that

Z (D2 Sl 2" (ITL3)

is an entire function of z. For z positive, || ||, defines a norm on #(.+7).
The grading I" of .o/ lifts to a grading I' of ¥(.«7). The action of I" on €"(.7) is
defined by

(If)(ag, ...,a,)=fab, ...,al). (I1L.4)
Also I'f=(I'fo, I'f,,...). Thus
CA)=C (A)DC (),
where
G () =H1+DVE(A) (I1L5)

are the even and odd cochains under I'.
We also decompose (.27) according to whether n is odd or even. Write

C(A)=C(A)VDEC°(A), (I1L.6)

where
(Jor Jos Jar - )EC(A), (1o f3: fss . ) €B°(A). (IIL.7)

Clearly,
C(A)=C(A)DC° (L), (IIL.8)

CoAd)=C(A)VDEC(A). (ITL.9)
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In this paper we are concerned with
C(A)=C(A)DCLA).
An operator S: % (o/)>% (/) of the form

(S)u=S8u1n>

where S, acts on ¢"(<7) is called diagonal on %, (.<7). Let T denote the diagonal
operator on % , (/) defined by

(T, f)(ag,ay, ..., a,)=(—1)f(al, aq, ...,a,_,). (1I1.10)
Note that T"*' =1 on 4".(+), so (III 10) defines an action of the cyclic group on
€".(o/). Also define the diagonal operator N by
=3 T (IL11)
j=0

Note that
(T,—1N,=0. (IIL.12)
We now define two coboundary operators
B, €" ()>%" (),
b 6" (A) " ().

which anticommute.
To simplify later calculations we first introduce two operators U and V on
% .(</) by setting

(Uf)ags -, 1)=(—1)"f{ap, a1, .., ay_ 1, 1), (I11.13)
(an)(a05"' n+l) (_1)"+1frl(a5+la03ala'“’an)' (III14)
Then we set
B,=N,_U(T,—1), (TTL.15)
n+1
=3y T YT VVTY. (I11.16)
j=0

Notice that {B,} and {b,} induce continuous homomorphisms B and b on
% (/) which map % (/) into €°.(.</) and vice versa.
More explicitly B, may be defined by

anNn~ IBr(n) P
where

(Bof)(@os ays vy Oy )= FolL, Gy oy By )+ (= 1) i, ooy -1, 1)
Alternatively

(B f)(amaum Z (n I)i(fn(l’af:—jw"aa£~1>a0>"'aan—j~1)

VU Ual- L a, o 1), (I11.17)



Quantum K-Theory 7

Similarly b, is given by

n

(bufu)(ag, ays ..., ayiy) = 2 (—flao, - Aljs g5 Oy t)

i=0

+(“1)n+1fn(a£+la07al>"”an)' (11118)

Proposition I[I1.1. The operators B and b, as defined by (111.15-16) are coboundary
operators, i.e.

B*=0, (IIL.19)
b*=0, (111.20)

which anticommute
{B,b}=0. (IIL.21)

Proof. a) Equation (I11.19) follows from
Ban+1:Nn-lU(T;l_l)NnU(Tn+1_l):

and from Eq. (I111.12): (T,,—1)N,=0.
b) To verify (111.20) we use

Lemma 1. For 0<k<n+1,
VLGV T = — TG VT V.

This follows readily from (II1.10, 13-14).
Now we get

n+2 ntl
byothy=Y S T 'VI s YT
0
r—1 n+1 n+1

r=0 s=
n+2
=X X+ X Z)T"“IVT"S“IVTS. (I11.22)

r=1s=0 r=0 s=r

Using Lemma 1, we write the first double sum on the right-hand side of this
equation as

n+2r—1 n+l s

. Z Z T—s~1VTs—rVTrf]____ Z Z T—r*lVTr~s~lVTs
r=1s=0 s=0 r=0
n+1 n+1

— Z Z T*rleTr~sv1VTs$
r=0 s=r

which is up to the sign equal to the second double sum in (IIL1.22). Therefore,
b, . b,=0, which proves (I11.20).
c) To prove (I11.21) we use

Lemma 2. (i) UV=1.
(i) T, 'UT,,,V=~1L
(i) TTUT, "\V=—VTr-UT, ", for 1<r<n.
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From (I11.15-16) we get

n n+tl
B, iiby+by-By= 3 % (TnjUTnl'iVE"—EjUﬂlkl‘lVﬂ")
j=0 k=0
n n-—1
+5 ST WITITRUT,— T, W TIFRUY . (IT1.23)
J=0 k=0

In the second double sum we change the order of V' and U, using (iii) of Lemma 2.
Reordering terms and renaming the summation variables we then show that all
the terms in (I11.23) cancel, if we use the fact that T"" ' =1. This proves (IIL.21)
and the proof of Proposition II1.1 is complete.

Now we set
0=b+B. (I11.24)
Note that
(Of Wlag, ay, ..a) =~ fu- )@, aq, ...,a)+(Bys i fue )0, ay, ....a,).
(I11.25)

Relations (IT1.19)—(I1L21) imply that 0?=0), i.e., ¢ is a coboundary operator.
Definition I11.2. We call the cohomology of the complex

G A) > GO A )= G (A ) ... (I11.26)

the entire cyclic cohomology of the quantum algebra /. The corresponding
cohomology groups are denoted by H¢ (.o7) and H (7).

IV. The Regularized Trace Form

In this section we study a regularized trace form which is multilinear on the algebra
LAY+ The regularization of bounded operators is provided by heat kernel
regularization as described in Chap. I1.

Definition IV.1. Given >0 and neZ,, we denote by Fi or {-)={-),, the
regularized trace form on L(H#)" "1,

FlAgy s Ay =CAgy ooy Adgn= [ SU(AgA,(t)) ... Aty )i (IV.1)

Here 0,=0? denotes the n-simplex

a,=1{ty, .., 1) 0=, S, .. <P} (IV.2)

and
A(t)y=e 4, (1v.3)

Proposition IV.2. The regularized trace form is a continuous multilinear functional
and satisfies the bound

1 n
IFM(Ags s Al =1 A, .oy Adp ol S o B Tr(e” M) TT 14,1 (Iv.3)

j=0
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Proof. Define t,=0, t,,,=p, and 6;=(t;—t;_,)/f for j=1,2,...,n+1. For tea,,
Y. 0;=1. Thus we can use Holder’s inequality on the integrand in (IV.1), namely on
the 2n+ 3 factors in the I, Schatten class

TAA(ty) ... Aft)e =T Age P A e Pl | 4 o Ponesll — (IV 4)

Choose the I, Schatten class norm [the operator norm on ()] for I' and 4,
and choose the I+ norm for exp(— B6,;H), or the L, norm if 6;=0. Since ||I'| =1
and

le™ P25 =(Tr(e "),

it follows that for tea,,
n+1
IStr(AoAy(t)) ... A(t,)I=Tr(e™ ") HO 14,1 (Iv.5)
i=

The volume of o, is f"/n!, yielding the desired bound.
Proposition 1V.3. The regularized trace form satisfies

Fl(Ay, ..., A)=FYNAL Ay, .., A, ) =FKAL, .., AD). (IV.6)
Thus with T defined in (I1L.10), (TF#),=(—1)"F®.

Proof. Use the fact that ¢, is parameterized by 6;>0,) 6,=1; hence ¢, is invariant
under cyclic permutation of the ¢,’s. The desired identity follows from

Str(AgA,(t,) ... Aft)=Tr(FAge PHA . Ao FoneH)
=Tr(FAle Pt 4oe =Pl A, e Py (IV.])

Proposition IV.4 (Integration by parts formula). Assume that A;e L(H) for
i=0,...,n+1. Then
(@) If Aje L(A), then

Fo (Ao Ajon A Ay gy Ay )=Fl(Agy oo Aj A A s Ay )

—FlAq, .. Ajo Ay Ay Ayiy)
(IV.8)
Jorj=1,..,n
(1) If Age L(H), then

F£+1(A07A13A2, ..,,An+1)=F£(A0A1,A2, sy An+1)“Fy/f(A17 ---:An+ 1Ag)-
(IV.9)

(iii) If A, € L(H), then

F€+ 1(A0’ “"An’An+ 1)=F£(A5+1A09A15 ~-~3An)_~F£(AOaA1; -'-5AnAn+1)'
(IV.10)

Proof. We prove (IV.8) for j=1; then the other desired identities follow from the
cyclicity property (IV.6) of the trace form F¥.
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Consider the integration over ¢, in

s .
(f) Str(AgA;(t)A5(t5) ... Ayri(t, 4 1)e—BH)dt1

=Str(AgA,(t2)A5(t,) ...)— Str(Ag A, (0)A5(t,) ...)
=Str(Ag(A,4,)(t) ...)— Str((AoA ) As(L,) ...

Here we have used the fact that 4,(0)= A,. If we now integrate over t,, ..., t,€0,_ 1,
we obtain (IV.8) with j=1.

Propesition IV.5. For Ay, Ay, ..., A,, and dA,, ...,dA, € L(H),
[ Str(d(AoA;(t,) ... At,)e P)dt=0, (IV.11)
and
FidAg,dA,, ....dA)=— Y FNAL (A, .. .(dA; ) AudA;, ... dA,).
j=1
(IvV.12)

Proof. Let A=AyA(t,)... A (t,)e P, We first assume that t,<pf. Thus by
Proposition IL.5, Str(d4)=0. Since Q and I' commute with exp(— fiH), it follows
that dA=d(A,A,(t,)... A,(t,))e P¥. The integrand dA, as in the proof of
Proposition I'V.2, is continuous in t also at the boundary. Hence the proof of
(IV.11) is complete. Equation (IV.12) follows from (IV.11) and (IL.16, 19).

Proposition IV.6. For A, ..., A, € L(H),
n-1
'ZOFf(AO, e A LAy A ) =BF (A, Ay (IV.13)

J
Proof. Notice that F#(A4,, ..., A,) may be written as

n+1
j Str(Aoe“:lHAle‘sz Ane*én*ﬂ‘f)é(.gl fla/))> dé

£&i=0

Hence

Fi(Ag, . AL Ay, Ay )= | Str(dge S"A, ... A~ & F el

&z0

n+1
XAjiy ... A,,Ale"f"*"’)é('_zl éi—ﬁ> dé.

Now we change variables:

G=&  for 1=igj—1,

=&, for j+2<Zi<n+1,
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The range of integration of n is the interval [0, £’], while all the £} are only restricted
by £;=0. Nothing in the integral depends on #, thus integration over 5 yields a
factor £ We thus find that

F{)I(Am" A 1A1+1>-~5An—1)

)

= .f Str(AOe':EHAle><Z/H"'An 16’ Hleé(Z él ﬁ>dé

§20

n
Summing over j and using ) {;=f in the integral, we obtain the desired result.
j=1

V. The Character Form

In this section we construct a cocycle T =1# € 4°.(.«7). We show that 7 is closed with
respect to the coboundary operator 0, and therefore it defines a cohomology class
in H% (7). We call 7 the character form.

Definition V.1. For aq, ..., a,, € </, let

Ao, -..r Az ) =(— ) *Fh(ag,da’, da,, dd, ..., da,)), (V.1)
where F% is the regularized trace form (IV.1).
Equivalently,
g, ... ay)=(—PB) % [ Tr(Faglda,(t)[day(t,) ... [da,ty)e "Myt .
(V.2)
Also let
?=(h, 15,14, ...). (V.3)
Proposition V.2. For 120, the norm (I11.3) satisfies
(%), <exp(r?f) Tr(e PH). (V.4)

Proof. We use Proposition IV.2. Thus the norm (I1.1) can be estimated for 5, from

[T5(ag, - az;c)l_(ik'), B Tr(e ") flag| ﬂ day|

»[f"Tre BH) ﬂ la,lly -

(2k)‘
Thus
1
(R I q— ~pH
"ka“*: (2]()‘ ﬁ Tr(e )7

from which (V.4) follows.
Proposition V.3.
e’ (A).
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Proof. Since we have verified the entire growth condition, we need only check that
5, is even under I', namely I't5, =15,. However, this follows from the represen-
tation (V.2) and cyclicity of the trace.

Theorem V.4 (The cocycle condition).
otP=(b+ B)t"=0.

Proof. We claim that

. B 1
(Bawe w2l lor o) gyhpn - (dag, da, . odal, .. oda5ss). (V.5)
(bszgk) (agy ooyl s1)

Verification of (V.5) for B: Using formula (I11.17) we get for n=2k + 2,

(ang)(ao,..., Z (_1 Tﬁ a, - /)"~>a£—l>a0a"'aan—j—l)
_Tﬁ(an Ja~~7a£|——19a0>~~~3an—j—191))'

Substituting (V.1) and using d1=0 as well as Proposition 1V.3, we obtain

(B,th) (ags -, @y 1)

’( ﬂ S Z Fﬁ(da()ﬂdalan daz;njj 11>1>d rI:n}J’H da rn 1)

j=0

Notice that the factors of (— 1) have been used to bring day, ...,da,_;_, infront, as
(da)' = —da". Now it follows from Proposition IV.6 that

(ang) (aOa cees Oy — 1)= _(_ﬁ)‘kng l(daOa dallg . da!“" ‘)
as claimed in (V.5), n=2k+2.

Verification of (V.5) for b: We set n=2k and calculate the terms in the sum of
(IIL.18).
1) For j=0,

Tg(“oahaz’ sy 1):(_ﬂ)kag(aoalvda§> da§2> ~~~;da511)'

i) For j=1,

th(ag, ayay, ay, ..)=(—=B)~*Flia,, d(aid}), dd’, ...)
=(—pB) *Fhay,dd’ - a,dal’, ...)+(—B) *Fl(ay, a,dal, ddb’, ...
=(—PB) *Fhay,da’ - ab,day’, ...)+(—B) *Faya,,dab,ddy’, ...)
+(=B)*F (ag, dy. dab, day’, ),

where we have used (IV.8).
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i) For 1<j<n,

Aoy oo Qjj 4 gy s Uy )
1 n
:(_ﬁ) kFg(aOada{>~'~’d(ajaj+1)rj "“adaf;-)-l)
Z(—ﬁ)*kFg(aOadallﬂa"-ada]I'J'af—JFla" daf;:l)
+(_ﬁ)_kF§(aOsda{a"" F]Hd ]+1>'-'>da511)
— +1 n
=(—p) "F{,’(ao,daf,..,,daj’ ]+l7d Jriz,-~->da5+1)
+(—p) *Flag, dat, ....dat” - al’  daly L dal )
+(—B)FE, (ag.ddl, ....dat a7 ddl . L da) ).
iv) For j=n+1,
Tﬁ(a£+1(lo,a1,... an+1) ( [3) kF( n+1a0>da1>~-~7dar{n)'

Multiplying the terms in (i)—(iv) by (— 1)/, using (II1.18), and summing yields

(bt (ag.ay, ...y s ) =(—p) 7" ,Zl(- 1y
=
x i, (ag,ddl, ....dat"" ' at" " dal . .. dal )
+( ﬁ) k(F (a()»dala’";dan".any-;-l)

—Fbal, jay,ddt, ..., dal")
n+1 .
-pF L (=1
=
X FI, (ag,daf, ....dal" ' al”  ddb ], .. dal ).
Using (IV.12), (IV.6), and (I1.14), we infer
(bt (ag,ay, .. ayi )= (=) kFgﬂ(dao,dal,...,da” odal’y,
as claimed in (V.5). This completes the proof of Theorem V 4.

Remark 1. As explained in Sects. 2-3 and Sect. 7 of Connes [4], if a cocycle 7° exists,
then it defines a pairing between H (/) and K (7). See also [ 5] for elaboration of
this point.

Remark 2. In fact, if Q'=$Y2Q and d'a=iI'[I"Q’,a], then for n =2k,
ag, . a)=(—1)F [ Str(agd'di(t,) ... d'al(t,)e~")dr (V.6)

1 )
Thus using H' = Zd/Q’, we infer that

d n
ﬁaﬁflj(%’ Q)= —2-rff(a0, ...a,)

i n
— 1)’% .ZO Flo(agddl,....dd" . d Q' dajiy,....da"), (V.7)
i~



14 A. Jaffe, A. Lesniewski, and K. Osterwalder

where the first term arises from differentiating d'a;, while the second one arises
from differentiating e "' Define the cochain

ng~1(ao: vyl )

i 2k—1

== 'Zo (— 1Y Fl(ag dal, ....dal”, Q' d'all, ... .dab)" ). (V.8)
=

We compute dG* as above and obtain from (V.7) that

i (‘g) =0G". (V.9)

Hence the cohomology classes defined by ¥ are independent of f.

Acknowledgements. We wish to thank Alain Connes and Ping Feng for comments and helpful
discussions.
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