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Fermionic Fields on Z^-Curves
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Abstract. The line bundles of degree g — 1 on Z^-curves corresponding to 1/JV
nonsingular characteristics are considered. The determinants of Dirac
operators defined on these line bundles are evaluated in terms of branch points.
The generalization of Thomae's formula for 2^-curves is derived.

1. Introduction

In this paper we continue our investigations of conformal field theories that are
induced in some specific way from algebraic curves. Our global strategy will be the
following. Consider an algebraic curve represented as an iV-sheeted ramified
covering over CP1. Such representation fixes the unique singular metric whose
projection onto CP1 is dzdz. The determinants of different operators defined for
line bundles of definite degree and corresponding to some characteristics can be
represented as correlation functions of some conformal fields defined on a complex
plane. We call such conformal fields twist operators or σ-fields. These operators
simulate the proper monodromy behaviour and make the fields be multivalued
fields defined not on a complex plane but on a ramified covering. This ideology
takes its origin in the works of Sato et al. [1]. Our investigations of this problem
were highly stimulated by a recent work by Zamolodchikov [2], who succeeded in
representing the determinant of the scalar Laplacian defined on a hyperelliptic
curve as a correlation function of some spin operators from the Ashkin-Teller
model.

It turns out that the twist operators are actually the conformal fields with
respect to the full stress-energy tensor

T(z)= Σ *"(*)• (1-1)
sheets

T(z) is a single-valued function on CP1 that may only have poles at the branch
points. To evaluate the conformal dimensions one has to analyze the behaviour of
T(z) in vicinities of the branch points. In a vicinity of the branch point the variable z
defined on a complex plane is not a proper coordinate on the covering. The proper
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variable is ζ = (z — a)i/k, where k is the index of ramification. The stress energy
tensor t(ζ) is a smooth function in terms of ζ. Thus, one can reexpress the stress-
energy tensor in terms of z:

(^J +f^{ζ,z}, (1.2)

where {(, z] is the Shwarz derivative, c(j) is the conformal anomaly. One may easily
see that T(z) has poles of the first and the second order only. The coefficient of the
pole of the second order is uniquely determined by the Shwarz derivative and
coincide with the conformal dimension of the twist operator:

In this paper we consider not the general case but the most simple one. The
conformal field theory formulated below corresponds to the 2^-curves and the line
bundles of degree g— 1 and of definite characteristic. The 2^-curves are described
by the equation

(1.4)

We suppose that the covering is not ramified at infinity and thus ΣRtΞO (modJV).
Each field ψ(q) on a ramified covering can be represented as a vector valued field
ψ(ζ) on the complex plane according to the rule

where the projection of all the points q1,...,qNis& point ζ e CP1. The vector field
φ(0 is not single valued but is multivalued on CP 1 . When ζ moves around the
branch point the field ψ(ζ) transforms via

(1.6)

where M is the monodromy matrix. The determinant of δ can be expressed as a
path integral over sections of line bundles

det<5"= |2)φZ)χexp- IψΈχΨζ. (1.7)

The fields ψ(ζ) and χ(ζ) are the sections of the line bundles L and L+ such that
L®U is the line bundle of holomorphic 1-forms. Only in this case the action is a
well defined functional on a surface.

For ZN-curves there exist line bundles of degree g —1 corresponding to ί/N
characteristics. Their divisors are integer combinations of the branch points. For
these bundles the determinant of the 3-operator has the most simple form and is
expressed as a Coloumb gas in terms of the branch points. Comparing this
expression with the well known expression for det^via the theta constants we
derive the generalized Thomae's formula [3].
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2. Line Bundles of Degree (g — 1).
Fermionic Fields in the Presense of External Vector Fields and Determinants

In this section we follow the discussion of paper [4]. We recall how the
determinant of the Dirac operator depends on the point in the moduli space of line
bundles. All the needed mathematics can be found in the books [3,5].

To define a fermionic field on a curve one has to introduce a zweibein field (two
orthogonal to each other vector field of the same length) e"(ζ) or, in other words, a
pair of one-forms ea(ζ) = el(ζ)dζa. The metric on a curve is defined as:

(2.1)

On the intersections of charts Ut and Uj the zweibein field transforms via

where ^ e l R x SO(2)~ C* = <C\{0}. In the conformal gauge the zweibein field can
be chosen as follows: e+ — eφdz, e~ = eφdz, where (2φ) is the conformal factor. The
field e+ is a smooth section of the holomorphic bundle of 1-forms. In what follows
we denote the holomorphic bundle of 1-forms by Jf.

A spinor bundle is a bundle of the form X 1 / 2 ®K 1 / 2 , where Kι/2 is a
holomorphic line bundle such that K®1 = Jf\ Thus the degree of a spinor bundle
equals (g — 1). The sections of spinor bundle transform as 1/2-forms, i.e. as ψ(dz)1/2.
Thus the transition functions are the square roots of the transition functions of the
holomorphic bundle of 1 -forms and the problem of the choice of signs arises. When
the point ζ performs a full rotation along a cycle which is not homotopic to zero the
spinor field acquires the sign factor. Let {a^b^ be a basis of H^X.Έ). The spinor
bundle is uniquely determined by the set of sign factors {sign(flj), sign(bf)}. Thus
there is a one-to-one correspondence between the spinor bundles and half integer
characteristics m in the Jacobian variety Jac(X):

k Σ (1 i ^ ) ) ! } ( 2 . 3 )

We will consider not only spinor bundles but arbitrary line bundles of degree
(g —1). Roughly speaking the difference between these bundles is the following:
when the point ζ moves around a loop non-homotopic to zero, a section of an
arbitrary line bundle acquires a phase factor exp/'φ instead of sign. Let us represent
the line bundle of degree (g — 1) in the form:

where K1/2tm is a fixed bundle of 1/2-forms and L0(u) is the line bundle of degree
zero. As is well known the line bundles of degree zero are classified by the points u
of the Jac(X). Recall the connections between a vector ΠeJac(X) and the
monodromy properties of the sections L0(u). An arbitrary line bundle of degree
zero admits a hermitian metric with a flat connection d-\- A corresponding to the
complex structure

d + A = (dz + Az)dz + (dz + A-Z)dz, As = 0. (2.5)

An arbitrary line bundle of degree zero admits the global smooth trivialization,
and thus one may consider the connection A defined on the trivial bundle I x C .
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In this case A does not correspond to the complex structure o n l x C and the
complex structure is determined by the following condition: the section ψ is
holomorphic if and only if D2(A)ψ = 0. Obviously, different flat connections on
X x C may produce the same holomorphic line bundles L. To make this procedure
unambiguous one may specify the connection A imposing the unitarity of the
monodromy factors (Wilson factors):

W{y) = Pexp J Aadζa, | W(y)\ = 1, (2.6)
y

where γ is a contour non-homotopic to zero. One may also prove that for an
arbitrary set of (2g) phase factors eιφ\ ..., el(p2g there exists a unique flat connection
such that W(yj) = Qxpiφp where (yl5 ...,72^) *s a basis in HX{X,Έ). Thus we
explained that there is a one-to-one correspondence between the line bundles of
degree zero and the sets of (2g) phase factors. Obviously, (2g) Wilson factors W(y^)
determine a torus R 2 7 Z 2 ^ which is a realization of the Jacobian variety. Now let
us establish the correspondence with the standard definition. Let the cycles
al9...9ag9 bl9...9bg be a canonical basis of HX{X,ΊL). The vector
u = (u!,...,ug)eJac(X) = <Dι/(Z0+TZβ) {T is the period matrix) with the
components

Uk = 0ίk— lkιPι \*"i)

corresponds to the set of Wilson factors W(ak) = Gxp2πίotk W(bk) = Qxp2πiβk and
the flat connection is determined by the formula:

A = 2πίύk(T- T)kj

la)j(z)+ h.c. (2.8)

where ωj^z) are the normalized holomorphic 1-forms.
Now consider a doublet of spinor fields χ s p and φ s p of the same characteristics m

coupled to the external vector field A with the following action:

S[xp9 x] = J ed2ζχsvy
 ae«a{Da + Aa)ψsv, (2.9)

where Da is the covariant spinorial derivative. We will also assume that the
strength of A equals zero. Locally the vector field A may be gauged away and the
action (2.9) takes the form:

2ζ, (2.10)

where χm and xpm are the sections of the line bundles K1/2tm{u) and Kί/2im{ — u)
respectively. Clearly, (2.10) may be written for an arbitrary pair of the line bundles
Lj and Li-^ of degree j(2g — 2) and (1 —;)(2g —2) respectively, provided

Lj®Lι_j = Jf. (2.11)

The determinant of the Dirac operator in the external vector field may be
expressed in the form (see [4]):

det(D + A) = \F(ϊi)\2 x(anomaly). (2.12)

The anomaly is the contribution to the determinant that is not represented as the
square of the module of an analytic function in u. The anomaly contribution can be
easily evaluated (see [4]):

anomaly = exp — —- j AzA^dz Λ dz. (2.13)
zπ



Fermionic Fields on Z^-Curves 693

Substituting the expression (2.8) for A into (2.13) and multiplying (2.13) by
appropriate holomorphic and antiholomorphic functions one gets:

anomaly = expίπ(u-ΰ)k(T- T)k/{u-u)^. (2.14)

The structure of the anomaly (2.14) allows us to determine the dependence of F(u)
on u. The determinant (2.12) is invariant under the change of variables
u-*u-\-n+Tfh for % fheΈ9. Under such changes the anomaly contribution is
multiplied by the factor exp[zπm(T— T)fh + 2πifh(u — u)~\. Thus F(u) has the
following transformation rules:

F(u + n) = Qxp(2πina)F(u),

F{u + Tfh) = exp ( - 2πίm(u +5) - iπfn Tfh) x F(u) (2.15)

for some vectors a, SEIRA These transformation laws determine F(u) up to a
constant factor:

F(u) = const x Θ(S + u \ T), (2.16)

where 6>(...|T) is the Riemann theta function, S=a-\- T&, const t does not depend
on u but strictly depends on the point in the moduli space of the curves. One may
also show that:

(2.17)

where A — is the Riemann constant; 7() is the Jacobian map, D is the divisor,
corresponding to the line bundle Kί/2tm{u) [see Eq. (2.4)]. Namely, Θ(A—Ί(D))
equals zero if and only iϊ D = Σ0~1pj due to the Riemann theorem. For the line
bundles determined by such divisors the determinants of the Dirac operators are
identically zero due to the existence of the holomorphic sections. The dependence
of const x on the point of the moduli space of the curves may be easily determined.
Recall a formula derived in [6]:

(det5"1/2, J(det5o) 1 / 2 = const 20M(O| Γ), (2.18)

where m is an even characteristic, const2 is a number. Finally we get

F{u) = const 2 (det d0) ~1 / 2 Θ{2 - 7(D)). (2.19)

On the other hand the determinant of the Dirac operator (2.12) may be
represented as the square of the determinant of the 5-operator that acts on the
sections of the line bundle of degree (g— 1):

det(D + ̂ ) = |detδ(iί)|2. (2.20)

The determinant of cΠs an analytic function on the moduli space of the curves and
is determined by the following path integral:

det d(u) = f DχDψ exp - S[χ, ψ] . (2.21)

(For the definition of S[χ, φ] see (2.10)). Comparing the formulas (2.12) and (2.20)
we derive an expression for detd(u) in terms of theta functions:

detΰ(μ)~exp(iπβkTk,β,) x (det5"0)" ι/2Θ(A -/(/))). (2.22)
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For the ΈN curves and non-singular 1/iV characteristics (that will be defined below)
detδ(w) can be expressed in terms of the branch points. Substituting this expression
for detδ(u) in (2.22) we get a generalization of Thomae formula well known for the
hyperelliptic curves [3].

3. Monodromy Matrices and Operator Product Algebra

For the scalar fields the monodromy matrices coincide with the permutation
matrices that determine the order in which different sheets are glued together [1].
For the fermionic fields the situation is more subtle. We keep the term "fermionic
fields" for the sections of arbitrary line bundle of degree (g— 1). First of all one has
to specify a system of cycles {yf} that is a basis of Hγ(X,Έ). Let us make (L— 1) cuts
(αL, flt ), i = 1,2,..., L— 1 on each sheet. The cycle y\ starts on the /-th sheet near the
right edge of the cut (αL, αf), passes around at and runs along the left edge to the
point aL. Then the cycle y\ make v rotations around aL returning to the starting
point. The number v satisfies the equation vRL -f R{ = 0 (mod N). This equation has
an integer solution if (Ri9 N) = 1, ί = 1,..., L[[R, N) is the greatest common factor].
The cycles y\ are linearly dependent:

Σ yf= V yf=o. (3.i)

When the point ζ makes the total rotation along y\ the fermionic field is multiplied
by the phase factor exp2πiφ(yf). The phases φ(yf) turn out to be linearly dependent
due to (3.1):

Σ (p(yi)=Y φ(yί)^0 (modZ). (3.2)
€ = 1 ι = l

The monodromy matrices satisfy the following equations:

(MjMl\n = ( - 1 ) " - M ln exp 2 π i φ ( $ . (3.3)

We consider the case of 2^-invariant characteristics. Then the phases φ(γf) do not
depend on f (φ(yi) = φ(yi))' Equations (3.3) may be rewritten in form:

f 1 (3.4)

Now the monodromy matrices turn out to be commutative. This fact drastically
simplifies the problem. In what follows we consider the case of prime N. In this case
the system (3.4) has a solution

Mj=±MR>exp2πikj/N9 j = l,...,L, (3.5)

where φ(yj) = kj/N, all k} are integers, kL = 0. M— is the matrix of cyclic
permutation of N elements: (l-*2-»...->iV->>l).

Now we may introduce the fields σk

R that simulate the proper monodromy
behaviour. As a point ζ rotates around a point a the correlation function
transforms via

(«) > (3.6)
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As two branch points a{ and a} tend to each other a new branch point with
R = Ri + Rj (modJV) arises. The fields σk

R obey the operator product algebra

^i)^)~[4L (3.7)

where R~ Rt-\-Rj (mod N) and .RφO(modN); /cΞΞfcί + /c/(modN). Let us consider
the case i^ + J^ ΞΞOΐmodiV), but /c + fcyφOtmodiV). In this case the branch point
disappears but the marked point arises. A section of the bundle "remembers" that
the surface had branch points. When ζ rotates around this marked point the
fermionic field is multiplied by a non-trivial phase factor. We keep notation σ£ for
the operators simulating the marked points. All the operators {σk

R} obey the
operator product algebra (3.7). Let us point out that there is an ambiguity in
correspondence among the branch points and the twist operators σ^ due to the fact
that the point aL becomes the marked one after we choose a basis in H^X, Έ). This
ambiguity produces a symmetry of the correlation functions of twist operators,
that we are not going to discuss here. The determinant of ^is determined as the
path integral (2.21) over the fields χ(ζ) and ψ(ζ) that are sections of the bundles
^i/2, m(w) and K1/2m(-u) respectively. Let us define the fields ψ^(ζ) (χ^(ζ)) by the
formula:

vK0=Σ*wΛ0, (3.8)

where ve are the eigenvectors of the monodromy matrix. We suppose that / runs
over the set

ψ — /_If/V — 1) —UN— 1)4-1 MN — 1Π Π Qϊ

The transformation properties of the correlation functions (3.6) uniquely deter-
mine the operator product expansion rules:

rAr^ίϊ ^ι\Qp(i<,k) V * (sΛ _i_ ^Q 1 Π^

flj^^ς—ύtj e i i ί W "T" • ' (y.lUJ
where

The operator product expansion rules for the field χjζ) would coincide with (3.10)
but for the substitution fc-» — k in the expression for q^R, k). Note also that the
composite fields Jt?,n = :ψjχn'. make the GL\N) Kac-Moody algebra.

4. Zjy-Invariant 1//V Characteristics

As was mentioned above, a line bundle is uniquely determined by the set of Wilson
factors W(yϊ) = exp2πikj/N. Now we would like to describe a situation when all the
kj are integers and the arising line bundle does not admit a holomorphic section.
This is just the case when dQtd(u) is not identically zero. A holomorphic section if it
exists may be expressed in the form

Uz)= Π {z-a^'P(z), (4.1)
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where P(z) is a polynomial. The obstruction for the existence of the zero mode (4.1)
is the pole at infinity. Thus the line bundle determined by exp2πίkj/N does not
admit a holomorphic section, if the numbers k} are chosen so that

β,= Π ^ Λ ) ^ 0 (4.2)
i= 1

for arbitrary ft 2 [see (3.9)]. Note that if jR φOίmodiV) for all i and (4.2) is
satisfied then all Q^ = 0{modN) for all t. This characteristic will be called a
nonsingular 2^-invariant 1/JV characteristic. Unfortunately this description is not
explicit. We only succeeded to get an explicit description for nonsingular curves
(Rι = 1 for all i). First of all we consider a simple example N = 2 (the hyperelliptic
curves). For the hyperelliptic curves the indices kt take only two values: 0,1, and
the index ί runs over the set ££ = {— | , \). Let us divide all the branch points into
two sets Jfo and «#\ with respect to the value of k,

Denote by ||JfJ the number of elements in JΓM. One may easily show that
condition (4.2) implies that \\Jfo\\ = | |^il |. Thus there is one-to-one corre-
spondence between nonsingular 1/2 characteristics and partitions of the branch
points into two sets with the same number of elements. This is a well-known result
of the theory of hyperelliptic curves. A divisor corresponding to such a bundle may
be written explicitly. Namely

Vi/2(z)= Π ( z - ^ ' W ' V l / j ^ ) (4.3)

is a meromorphic section with first order poles at the infinities and zeros in Xγ.
Thus the divisor of φ1/2(z) equals

)= Σ fli-oθi-002. (4.4)

Note that D(jf0) and D(JΓX) are equivalent.
For N = 3 the situation is just the same. The indices kt take three values: 0,1,2.

Thus all the branch points have to be decomposed onto three sets: JΓ0, Jf1? Jf2. The
conditions (4.2) lead to the following system of inequalities:

II jfoii ^ ll^i II II ΛΊ II ̂  M M l ^ ll^oll (4.5)

that have only one solution: ||jfo|| = \\Jfι\\ = ||Jf2ll Thus we get the same result.
There is one-to-one correspondence between the nonsingular 1/3 characteristics
and the partitions of the branch points on the three sets with the same number of
elements. The divisor for this line bundle may be easily determined:

D= X α + 2 Σ ai-oo1-co2-cΌ3. (4.6)
JT! XT 2

This consideration is trivially generalized to the case of an arbitrary prime N. The
Zyy-invariant 1/iV characteristics are uniquely determined by partitions of the
branch points into N sets JΓ0, XU ..., JfN_1 with the same number of elements.
This partition is determined by the value of the index k. The divisor corresponding
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to this line bundle is

aλ- Σ oot. (4.7)
) i = 1

For nonsingular ί/N characteristics one may find N linearly independent
meromorphic sections with the first order poles at infinities:

Uz,n)= ΓΠz-α^rfz)1/2. (4.8)

Here r—q^R^k^) [see expression (3.10)].

5. The Determinant of the d Operator

In this section we evaluate the determinant of the d-operator acting on K1/2tJu).
Vector u corresponds to the ZN-invariant nonsingular 1/N characteristic. A vector
field A is determined by the expression (2.8). First of all one has to determine the
Green function {ψn(z)χ^(w)}, and then to evaluate the average of the stress-energy
tensor. The expectation value of the stress-energy tensor determines the variation
of the correlation function under small variations of branch points. The Green
function (ψt(z)χn(w)y is a meromorphic section of the line bundle E1j2tm(u)
(E 1 / 2 m( — u)) in the variable z(w) with the only first order pole as z tends to w and the
residue equals δί+n0. IfY + n + 0, there is no pole and the Green function is a
holomorphic section in either variable z or w, and thus it is identically zero since u
corresponds to a nonsingular characteristic. Hence, (ψn(z)χt(w)y~δt+nt0. One
may find the expression for the Green function terms of meromorphic sections
/π(z|S)[see(4.8)]:

δj + n 0 —

Now one may easily find the expectation value for the currents

\.Jn,AΔ)/—υn + έ, 0 ZJ * \J'Δ)
i Z &i

Hence the numbers qn(R,k) [see (3.10)] are the charges of the twist operators σk

R

with respect to the currents Jn -n{z). The expectation value for the stress-energy
tensor is:

+ Σ — * — Σ ^ ^ , (5-3)

where Ai = (N2 — 1)/24AΓ for a prime N. The coefficients ytj are determined by the
expression:

j). (5.4)

For N = 2 the expression for ytj can be easily computed and ytj turns out to be
y . ^ ^ j l / 8 for k~kj (respectively k^kj). If N = 3, then yo = 2/9 for k~kj and

7ij=-1/9 for kt + kj.
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One may easily integrate the expression (5.3) for the expectation value of the
stress-energy tensor and obtain the following result for the determinant of the
Dirac operator

Π |fli-fl/ y i j C a ). (5.5)

The vector field A determined by a vector u [see (2.8)] corresponds to a
2^-invariant 1/JV characteristic.

Now let us formulate the bosonisation rules. The currents J Λ _e form a Cartan
subalgebra of GL\N), and thus we may define the currents Je _e as J Λ _£ = dzψ£,
where φe(z) are free scalar fields. The charges of the fermionic fields ψn,χ-n are bnJ,
— bnj correspondingly with respect to Je _£. Thus, they may be bosonized by the
expressions:

ψn{z)=\Qxpφn{z)\, (5.6)

φπ(z):. (5.6')

The fields σk

R may also be represented as exponents of free scalar fields

σk

R=:expΣ<l«(RΛ)φn(z)-- (5.7)
n

These bosonization rules reproduce all the correlation functions.
Now we would like to analyze the expression (5.7) for the determinant.

Consider the simplest case of the hyperelliptic curves, the torus N = 2, L = 4 . For
this case there are three nonsingular 1/2 characteristics corresponding to different
boundary conditions on the torus ( —, —), ( + , —), ( —, +), and the singular one,
( + , + ) . There are also three different partitions of the branch points on two sets
with two branch points in each set. The determinant of the Dirac operator is

*= j] \ai-aj\~ί/l2F(x,x), (5.8)

where x is the anharmonic ratio. One may easily get for different partitions:

for (aίa2)u(a3a4)
6 for (α 1α 3)u(α 2α 4) (5.9)

| x Γ 1 / 6 | l - x | 1 / 3 for (a4i

F{x9x)=

The expression (5.8) for the determinant on the torus looks very unfamiliar. One
usually works on the torus represented not as a two-sheeted covering but as a
parallelogram (l,τ) with the identified boundaries. Let us compare the results for
the Dirac determinant arising in these representations. The answer of the Dirac
determinant computed on the parallelogram is as follows:

(detD)(τ,τ) =

|6)o(T)02(T)(93-
2(T)r2/3 for ( - , - )

|<90(τ)Θ2~
2(τ)6>3(τ)Γ2/3 for ( - , + ) (5.10)

\Θo2(τ)Θ2(τ)Θ3(τ)\~2'3 for ( + , - ) .

These expressions are written in terms of theta constants. The formulas (5.10) may
be easily rewritten in terms of the anharmonic ratio x = (Θ3/Θ2)*'.

(detD)(τ,τ) = F(x,x). (5.11)
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At first glance we have got a very strange result. The Dirac determinant computed
in the representation of the branch points differs from the Dirac determinant
computed on the parallelogram by the scale factor f] |α£ — α7 | ~

1/ 1 2. The resolution

of the problem is rather simple. Due to the conformal anomaly the determinant
explicitly depends on the metric on the surface. The determinant (5.8) is evaluated
at a singular metric on a surface that projects into dzdz on CP1. The formulas (5.9)
are written under the assumption that there is a flat metric dzdz on the torus.
Hence, the derived results have to be different by a scale factor that is nothing other
than the Liouville factor. The direct calculations of the Liouville factor give the
desired result: f] \at — dj\~1/12.

6. Thomae's Formula

In this section we rewrite the expression (2.22) in terms of the branch points. The
determinant of d0 was computed in terms of the branch points in our previous
paper [7]:

Π fe-fl ΓMdetiΓ 1/ 2, (6.1)

N-ί

where μo = ̂  £ {^RJN} {ίRJN}, A is the matrix of α-periods of the non
*f = 0

normalized holomorphic 1-forms:

zk~1dz

y^z)=γ[(z-aif
Rί/N}. Combining the formulas (6.1), (5.5), and (2.22), we get the

generalized Thomae's formula

(det i ) 1 / 2 ~ Π (ai-aj)-y"-μv

x Qxp{iπβkTkιβι)θ(2 -Ί(D)), (6.3)

where the divisor D is determined by (4.7). For N = 2 the formula (6.3) reduces to
the ordinary Thomae's formula for the hyperelliptic curves [3]. The classical
Thomae's formula allows us to get the Frobenius relations [8] that are satisfied by
the period matrices of hyperelliptic curves. We believe that there are analogues of
Frobenius relations for Z^-curves that allow one to describe the structure of the
period matrices for Z^-curves. We also think that there exists a generalized
Thomae's formula for arbitrary curves that may turn out to be useful for the
Shottky problem.
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