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Abstract. We show that the three-dimensional Ising model coupled to a small
random magnetic field is ordered at low temperatures. This means that the
lower critical dimension, dx for the theory is dx ̂  2, settling a long controversy
on the subject. Our proof is based on an exact Renormalization Group (RG)
analysis of the system. This analysis is carried out in the domain wall
representation of the system and it is inspired by the scaling arguments of Imry
and Ma. The RG acts in the space of Ising models and in the space of random
field distributions, driving the former to zero temperature and the latter to zero
variance.

1. Introduction

An interesting class of disordered systems is obtained by coupling impurities to
the order parameter of a statistical system. This situation may be modelled e.g.,
by the Ising model (or the 04-theory) with a random magnetic field. This random
field Ising model (RFIM) describes actual physical systems, such as dilute
antiferromagnets in a uniform field [1] and has been used to study, among other
things, the effects of impurities on the fluctuations of interfaces [2,3]. It has also
served as a useful playground for various theoretical ideas: the replica trick, [4,5]
dimensional reduction [6,7,8,9] and supersymmetry [10].

As usual, one of the interesting theoretical questions is to determine the upper
and lower critical dimensions of the model. The most elegant argument for the
upper critical dimension du (i.e., the dimension above which the theory is Gaussian
in the infrared) is dimensional reduction, which says that, at long distances and
near du, the (quenched) correlation functions for the random system behave as
those of the corresponding deterministic system, but in two less dimensions. The
argument was, basically, to replace the random system by its tree approximation,
a stochastic differential (or difference) equation, which, via its representation in
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terms of a SUSY field theory was argued (and proved [11]) to undergo dimensional
reduction. While this argument is now known to have many problems, [12,13],
its prediction, du = 6, is nevertheless believed to be correct.

Since the lower critical dimension dx (above which there is symmetry breaking)
of the deterministic system is one, the formal extension [4,16] of the dimensional
reduction argument would yield dx = 3 for the random system. This result was in
contradiction with the earlier scaling arguments of Imry and Ma, [14] which
predicted dx = 2. The controversy was amplified further by the study of the SOS
and related interface models for the RFIM. The interface between + and — spins
in a system of linear size L was found to diverge as L(5~d)/2 by the use of the replica
trick [4]. This was consistent with the dimensional reduction result, dx — 3, because,
if an interface diverges like its linear size L, one does not expect separation of the
system into + and — phases. On the other hand, an Imry-Ma scaling argument
[15,2], yielded L(5~d)/3, predicting dx = 2. The situation was subsequently greatly
clarified by two results. First, Fisher, Frδhlich and Spencer [16] and Chalker [7]
put the Imry-Ma argument on a much more solid basis and finally a strong case
for dx = 2 was made by Imbrie [18], who proved rigorously, that at zero
temperature, the ground state in d = 3 is ordered. However, the case for dx = 3
could still be made (on the basis of dimensional reduction): the same result for the
ground state also holds for the pure system at d=ί, but for TΦθ the one-
dimensional Ising model is disordered.

In this paper we settle the controversy by proving that, for d = 3 and small
disorder, the RFIM is ordered at low temperatures. Thus dx ^ 2.

Although our result is at variance with the above mentioned predictions of
some ε expansions (with ε = 5 — d\ our proof vindicates rather than contradicts
the Renormalization Group approach to phase transitions. Indeed, we construct,
with no replicas or dimensional interpolations, a straightforward Renormalization
Group transformation (suggested by the Imry-Ma argument) under which the
system flows towards the zero disorder, zero temperature trivial fixed point.

A combination of our result with the one of [19,20] on the large disorder
regime shows that a phase transition occurs when the variance of the disorder is
varied (for d ^ 3 and at low temperatures). Moreover we show that, in the ordered
phases, the correlation functions cluster exponentially with probability one.

An extension of our method should prove the following results for interfaces,
again at low temperatures and small disorder: for d ^ 4, the interface is essentially
flat (like in the deterministic model for d ^ 3) and for d = 3, the divergence is
bounded from above by L 2 / 3 ( = L ( 5 " d ) / 3 ) .

We do not, at present, completely prove the conjecture dx = 2, because we are
unable to prove that, in d = 2, an arbitrary small disorder destroys the phase
transition, as is suggested by the Imry-Ma argument. However, we have constructed,
and explicitly solved, a hierarchical random field model where our Renormalization
Group transformation becomes exact [21]. This model has the following properties:
for d ^ 3, the system is ordered while, in d = 2, there is no spontaneous magneti-
zation but the correlation functions have a power law decay (such a decay was
also found in d — 2 RFIM, at zero temperature [22]). However, we believe that
this power law decay is an artifact of the hierarchical model.
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Let us now discuss the main ideas of our proof (a sketch of which is in [23]
and is outlined in more technical terms in Sect. 3). It is based on the Imry-Ma
scaling argument combined with a Renormalization Group approach to first order
phase transitions due to [24].

Why should one use the Renormalization Group here, since we are in a
non-critical regime? The reason is that the randomness of the field induces, even
in an ordered phase, large regions with the reverse magnetization. Since these (rare)
events occur on all scales, a Renormalization Group analysis is natural.

Consider now what a Renormalization Group transformation (RGT) does: it
maps, by integrating out some degrees of freedom, a class of (generalized) Ising or
Φ* models into itself. One has then to see how the parameters of the model flow.
Hopefully, only few parameters are relevant or marginal. One has to keep track
of those precisely, while some gross information is sufficient for the many irrelevant
parameters.

Since we are studying low temperatures, it is convenient to use the representation
of the Ising model in terms of Peierls' contours. Thus, we map contour models
into contour models and we do that for every realization of the fields. This induces
a map on the random fields themselves so that the novel feature of our approach
is that we study two flows: a deterministic one, acting on contours, and one acting
on the probability distribution of the field. As we shall see, all the variables are
irrelevant (in particular, the temperature) but we have to deal with the fact that
the random field itself may be relevant from a deterministic point of view while it
is irrelevant in probability.

We now describe our RGT: write the Ising partition function as

\\ Σ (1.1)
{γ} \ J

where the sum is over (compatible) Ising contours, p(γ) = e~2^y\ Hx = — 2hx and
V~ is the region, determined by {y}, where σx = — 1. A more precise version of
(1.1) is derived in Sect. 3.

Since we want to prove long range order (an infrared problem) the RG strategy
consists in integrating out the short range fluctuations. These consist of the small
contours and of the small wiggles in the large ones. We "sum out," by means of
a convergent expansion, the small contours, (of diameter ^L,L being a fixed
number), thereby producing a new (effective) field. This is not completely local,
since it has exponentially decaying tails. The latter are irrelevant and will remain
approximately local under the RGT. The next step is the "blocking": we cover the
lattice with disjoint L-cubes and resum all the large contours that intersect a given
set of ίr-cubes (this eliminates the wiggles). The local part of the new effective field
will be given by

H'X = L~2 Σ Hy + nonlinear, local, (1.2)
yeLx

where Lx is the L-cube centered at x e Z 3 and the second term includes the local,
non-linear part of new field produced by the summation of the small contours. It
is so small that it will not affect the conclusion drawn from the linear analysis,
based on the first term.
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Now, we rescale everything on Z 3 and see how the parameters evolve:

with β' = L2 β since |y'| counts the number of L cubes in y' and contours scale like
surfaces (at least those that have an interior, after blocking. Some do not and scale
linearly; this forces us to introduce a new coupling, β which flows as β' = Lβ). The
scaling of β explains the L~2 factor in (1.2). From the linear part of (1.2), we see
that \H'\ may be as large as L\H\ (in which case it is relevant). However,
probabilistically, it is irrelevant, having a variance έ2 = L~ιε2.

Moreover, since we have only local contributions in (1.2), the new random
fields will remain almost independent of each other.

The conclusion is that, upon iteration, the system flows to the zero temperature,
zero field fixed point. The main problem, as with all RG analysis, is the rigorous
treatment of the (rare) large fields, which may appear on all scales.

The main observation, which allows us to handle the latter, is that a field may
create contours around itself (if it points in the direction opposite to the
magnetization) but only up to a length scale, depending on its strength. Moreover,
the larger the field, the more unprobable it is. Thus, with large probability, a large
field becomes small (in the sense that it does not anymore create contours) after
a few iterations. However, we do not have convergent expansions inside the large
field regions, which is another way of saying that Griffiths' singularities [25] may
be present. This fact can create small denominator problems, which we avoid by
carrying inductively suitable lower bounds on the part of the partition function
localized at and nearby the large fields.

In Sect. 2 we state our results. In Sect. 3, after introducing our contour
representation, we give an outline of the proof. The latter is divided into three
parts: Sects. 4,5 and 6 are deterministic i.e., we apply a sequence of RGT to the
partition function for every field configuration. Section 7 contains the probabilistic
estimates and in Sect. 8 we use and slightly extend the previous work to control
the correlation functions and finish the proofs.

2. Results

We consider the model given by the Hamiltonian

where σx= ± 1, xeZd and hx are independent, Gaussian, random variables.
For every realization of the fields {hx}9 the infinite volume limit of the Gibbs

states with + and — boundary conditions exist, by FKG inequalities. We denote
by <( ) + , <( ) ~ the expectation with respect to these infinite volume Gibbs states.
Unless otherwise stated, we write P for the probability distribution on the hx:

xezd X

 x/ΐπε

and / for the average of/ with respect to (2.2). We shall write Pr to denote, when
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needed, the probability corresponding to a Gibbs state (for a given realization of

{hx\xeZd}).

2.1 Theorem. For d^3,β large and ε small enough,

<σo>+^l-exp(-O03)), (2.3)

with probability at least 1 — exp( —0(ε~2)). Therefore,

exp(-O(ε- 2)). (2.4)

And, by ergodicity (of P)

K-> oo xeV

Moreover, the correlation functions decay exponentially.

K σ Λ σ β ) + ~~ <\σyi) + (σβ} + I = C{K Ml> |5|)exp( — md(A,B)), (2.6)

w/z^re m = 0(β) and c(h,\A\,\B\) < oo with probability one.

2.2 Remarks.

1. Our results extend, with no changes in the proofs, to any distribution of
independent ft's which is even and satisfies:

exp thx ^ exp(0(ε2)ί2), teR.

Moreover, the interaction need not be nearest-neighbor. All we need is the contour
representation and the symmetry between the -f and the — phases at h = 0.

2. The free energy and the correlation functions are C00 in β and (one-sided)
C00 in a uniform field h, at h = 0. (This also follows from (2.6).) Analyticity is not
expected to hold, because of Griffiths' singularities [25].

3. Main Ideas of the Proof

Here we set up some of our notation, define our contours and outline the rest of
the proof.

3.1 Notations and Contour Representation. To define contours, start with the Ising
partition function:

Z+(F) = Σ e x p ( - / O f » ) (3.1)
σ

in a volume V with + boundary conditions (which are implicit in J>f+ ). The sum
is over all configurations equal to + 1 in Vc. It is well known that there
is in a one-to-one correspondence between configurations σ and families of
non-overlapping contours. For later purposes, we shall define contours in a slightly
more general way, (which will be extended again later): A contour γ = (y9σ(γ))
consists of its (connected) support y and σ(y), a configuration (on Z 3 ) of signs which
is constant on connected components of Z3\y. A set is connected if the graph
obtained by joining points x,y with d(x,y)~^\ is connected. Our metric is
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I x I = max; xf. In the usual Ising contours σ(y) differs from one connected component
to the other, but we shall use contours where σ(y) may be constant everywhere.

Each y partitions Z 3 into the regions of + and — spins, i.e., according to the
sign of σ(y), into subsets V+{y\ V~{y).

A family Γ = {y} of contours is compatible if the supports are pairwise disjoint
and if the signs match, in which case V+(Γ\ V~(Γ) are unambiguously defined.

Before rewriting Z+(V) in terms of contours, we shall include, mostly for
convenience, the region where the random fields are large into the contours, so
we first define the latter. Let Hx = — 2hx. A field is small iί \Hx\<δ, where δ is a
number which we shall choose small later. The small field is

Hx = Hxχ(\Hx\ίδ) (3.2)

(this is defined everywhere, being zero if the field is large). For the large fields we
introduce a discretization:

nx= £(n+l)*( | i f je]«,n+l]<5), (3.3)
n= 1

so that

\Hx\Snxδ. (3.4)

Later we shall introduce N variables which, in the first stage, coincide with n:

Nx = nx. (3.5)

The large field region is:

D = {x\Nx = nxΦ0} = {x\\Hx\>δ}. (3.6)

We write

Z+(V) = exp(-β(H,V)/2)Z, (3.7)

Z = Σ ρ(Γ)exp(β(H,V-(Γ))), (3.8)
ΓZDD

where

(f,V)=Σfχ> ( 3 9 )
xeV

and, in (3.7), we pulled out the energy of the (ε = 0) ground state but only outside
D. The constraint Γ ZD D means that the supports of the contours in Γ must contain
D. For example, σx = + 1 everywhere corresponds to Γ = D,

= exp(β(h,D))9 (3.10)

and the contours are the connected components of D. In general,

Π
yeΓ

where (3.12)

if y corresponds to usual Ising contour, i.e. if y is a connected set made of Ising
contours and (parts of) Z), and σ(y) is as in the Ising model; p(y) = 0 otherwise. In
later stages, p(y) will not vanish for more general y's.
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We shall only use the fact that p(y) are random variables such that

i) p(y) depends on {hx\xeγ}, (3.13)

ii) p(y)(h) = p(~ y)( - h), w h e r e - γ = ( γ 9 - σ(y))9 (3.14)

iii) 0ύp(y)ύexp(-β\dV-(γ)\-β\γ\ + β(N,D))9 (3.15)

where

dV={(xy)\xeV,yeVc}. (3.16)

(Note that dV~ =dV + )

β = β 1 1 2 , (3.17)

| Z | = # s i t e s i n y . (3.18)

i) and ii) are easy to check. We write the rather cumbersome bound (iii) because
β and β will flow differently under the RGT.

On the other hand, iϊy = a connected component of D, σ(y) = constant, one has
the lower bound

p(y)^exp(-β(N,γ)). (3.19)

3.2 Outline of the Proof. In Sect. 4, we do the first RGT. We start by summing
out the small contours, defined by having a small diameter and by not touching
or enclosing a large field. This, by means of a straightforward expansion, produces
new fields, which we separate into local and non-local parts.

We decompose again the local part into small and large fields. Next, we block
the fields and the large contours on a coarser lattice LZ 3 so that everything can
be rescaled back to Z 3 and the transformation can be iterated. At this point we
face a problem: we want that the weights of the new, blocked, contours remain
local in the sense that they depend, as random variables, on the fields near their
support (like in (3.13)). Otherwise, the new effective fields obtained by summing
out the small contours on the next scale would become uncontrollably non-local.
And our probabilistic estimates depend very much on the fact that the new fields,
given by (1.2), are local and thus remain almost independent.

Unfortunately, the locality is lost by summing out small contours because this
generates interactions between the remaining large contours. Of course, one may,
as we do, Mayer-expand these interactions and define new "contours" by putting
together previous ones and Mayer graphs joining them. This restores locality (the
Mayer graphs are just chains of polymers coming from previous steps) but, in
general, may destroy the positivity of the contour weights. We need this positivity
because, later, we shall use lower bounds on the partition functions near the large
fields. The solution we adopt is, since the interactions are uniformly bounded, to
add and subtract their minimal value, and therefore, deal only with positive Mayer
graphs.

Another point to stress is that we want our new field to be random variables
defined for every (original) field configuration. This is used in the probabilistic
estimates, because then we may estimate the size of the new field by means
of the original field distribution, which is simple (independent random variables).
Otherwise, one would have to condition on events that would make the new fields
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well defined. However, this goal is achieved simply by defining the new fields to
be zero whenever the previous large fields might make them ill-defined.

In Sect. 5, we show that the partition function produced in Sect. 4 is stable
under the RGT. The weights of the contours remain local and satisfy (3.15) with
β, β flowing as:

βk = L(2-Φβ9 βk = L{1-a)kβ, (3.20)

because βk multiplies, in (3.15), \dV~(γ)\, which scales like a surface while βk

multiplies |y| which may be one-dimensional (some contours have σ(y) = const,
hence dV~ = 0). L~α is included because we do not have exact scaling i.e., we shall
have to absorb some geometrical constants. Thus α can be taken as small one
wants, provided L is large enough.

The scaling of βk explains the scaling dimension of//, which is as in (1.2), with
ji-a r e p i a c i n g j} because we always control the field inside a small contour by
β\dV~ (y)\ and we want the same β in front of both competing terms (if a contour
has dV~(y) = 0, there is no field to control).

The main new point in Sect. 5 is the absorption, into the small fields, of the
large ones that have become small. This is done when the fields, under the iteration
of (1.2), are of order LΓkε2. Then, L~kε2 βk« βk, and we can control these (previously
large) fields with βk alone (we need that, because not all contours have a dV~(y)).
This scale reflects the one on which a large field cannot create a contour anymore.
This means that, if a contour becomes small on the kth step, then, on the original
scale, I y | ^ U. If the kth step field inside this contour is small, then the total original
field inside γ9 \h\ ̂  L(2~0C)kL~kε2, (by (1.2) the field decreases by L~2 + α at each step).
Therefore | h | was much less than | y | to start with, and the contour was unlikely
to be created by the field. The reason why this works is because a large field, equal,
say, to lί on the first scale, will become small on a scale U° with k0 ~ 0(k) but has
probability exp( — L2k/ε2). Therefore the typical distance between such events
( = exp 0(L2k/ε2)) is very large compared to the scale L0(k) at which they "disappear."

The absorption of the large field is realized by pulling out of the partition
function their contribution (provided that they are sufficiently far from the
remaining large field). This would create serious small denominator problems if
we did not have good lower bounds (like (3.19)) on these large fields contributions.
These, and the upper bound (3.15) on the contour weights p(y) needed to iterate
the RGT., are proven in Sect. 6. The proof is a tedious but straightforward
consequence of our inductive definitions (and, for the lower bound, of the positivity
of the contour weights). We also provide, in Sect. 6.3 some details on the convergence
of our small contour expansions.

In Sect. 7 we prove our main probabilistic estimate: for any fixed site, the
probability that there is a large field, on any scale, at that site, is small. This involves
two arguments, because a "large field" can occur for two reasons: either because
the new field is too large or by blocking the previous large fields. The probability
distribution of the new field satisfies a Gaussian bound with a running variance

εk

2 = U1-η)kε~2 (3.21)

because, see (1.2), the sum of the fields in a volume L3 scales like L3/2 (and we
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divide by L~2 + α). We should take η = 2α, but we lose a little bit in our estimates
and any η > 3α will do (for L large).

Finally, we summarize the relations between the various constants appearing
in the proof: fix α small, η > 3α, take L large so that L~a,L~η control various
constants and let δ satisfy δl? « 1 (so that the small fields inside the small contours
are controlled by \dV~(y)\). Then we need β and ε~2 to be so large that the first
small contour expansion converges (β » L2 will do) and δ2ε~2 » 1 so that, in Sect.
7, various probabilities are small. Moreover, we shall always proceed as if ε2 is
not too small, e.g., we write e~cβ ̂ ε 2 or βε2 ^ 1. From (3.20), (3.21) we see that
these relations hold on all scales if they hold on the first one. And there we can
simply replace, in our bounds, if necessary, the true ε2 by some larger one (which
is still sufficiently small).

4. The Renormalization Group in the Contour Representation

The RGT consists of two steps. In the first one, which we call "coarse graining,"
we integrate out the small scale fluctuations of the system. The second one, the
"blocking," scales the distances so that the sum in the new partition function
contains again contours on all scales. We discuss first the coarse graining operation.

4.1 Coarse Graining. We start with the Ising partition function (3.8),

Z = X p ( Γ ) e m > v {1]\ (4.1)
Γ D D

with Γ = {y) a compatible set of contours y = (y,σ(y)) as explained before.
Equation (4.1) is taken in a volume VN= V and we produce from it a "renormalized"
one, Z', in the volume VN-ί = V. The idea is to fix in (4.1) "large" contours of size
> L and "sum out" all small contours, of size ^ L, compatible with the large ones.
Since the small ones can effectively be summed only when the field enclosed by
them is not too big, we will call a contour y small if

d(y)^L and V(y)nD = 0, (4.2)

where d(y) is the diameter of the set y(V(y) = y u Int y, where Int y is the set enclosed
by y) — y is large otherwise. Divide (4.1) into a sum ]ΓZ over large contours and Yf
over the small ones. Then we may write

Z= L p(Γ)eβ{H'v~}Zl(V + \Γ)Z~(V~\Γ) (4.3)

with V1 = V±{Γ) and for any A a Ό\

Z±(A) = Σsp(Γ)e±mvT{Γ)) (4.4)
r

are the small contour partition functions. To get (4.3), just write in (4.1) Γ = ΓsuΓι

and

Equation (4.4) may be analyzed by a standard convergent polymer expansion since
it involves only contours of small diameter with small field within. We get (see
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Sect. 6.3)

l-\ogZ+-{Λ)= Σ δh£^(δh\Λ), (4.5)
P Ccyl

where we extended our notation (3.9) to function on subsets of Z 3 . δhc = 0
unless C is connected, and δhc a r e random variables satisfying

(i) δh% depends on h\C, (4.6)

(ii) δh£(h) = δhc(-hl (4.7)

(iii) \δh^\^e~~m/\ β = β1/2. (4.8)

To have (5/ι± everywhere defined, we set

δh£=O for CnD^φ or CnVcΦ0. (4.9)

δh^ are non-local contributions to the effective random field obtained after coarse
graining. Inserting (4.5) into (4.3), we have

Z= Σι p(Γ)exv(β(H,V-) + β(δh\V + \Γ) + β(δh-,V-\r)). (4.10)

We will finish the coarse graining by pulling out of Z the + state contribution
[remember (4.9)]:

(4.11)

Z' = Σl p(Γ)ewLβ(H + χc

ΓδH,V-)-β(Xrδh\V)l (4.12)

where

δH = δh~~δh+ (4.13)

and, since δh1 in (4.10) are only on Γ\ we introduced the functions

with χc

Γ= 1 — χΓ. Finally, put δH everywhere on V~:

Z'= Σl p(neβ(H + δH v^xp[-β(χΓδh + ,V)-β(χrδH,V-)l (4.14')

This is the result of the coarse graining. It produced small non-local contributions
to H and a weak interaction between the contours (the last two terms).

4.2 Blocking. Equation (4.14') involves only large contours (and possibly small
ones in D), but they may have small scale fluctuations in their shape. The blocking
consists of a grouping of the contours and other terms in Z' into sets defined on
a coarser lattice LZ 3 followed by an appropriate rescaling back to the unit lattice
Z 3 . Thus, given a yeZ 3 , we may write y = Lx + z with xeZ3 and \zμ\<L/2,
μ = 1,2,3 (remember that L is odd). We define

[_L~1y-] = x. (4.15)
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If no confusion arises, we denote the block of/s satisfying (4.15) by Lx. Also, for
a set C, [C/L] = {[y/L]\yeC] and LC = {Lx\xeC}. We start by blocking the field
H. The local part of the blocked field is defined to be

H'x = L~2+«Σ(H + δH)c/n(C) (4.16)

with the constraint C c Lx, or CnLx Φ 0, d(C) ̂  L/4. This involves an average of
( # + δif)^ in Lx together with C's reaching out to Ly with |y — x\ < 2 in the new
lattice. n(C) = \ {x \ C n Lx φ 0} |. The nonlocal part of //' is

H'σ = L-2 + a £ δi/ c | C ' | ^ 2 (4.17)
iL~λn=c'

with d(C) > L/4 in the sum. These definitions give e.g.,

β(H + δίf, F) = ^(H' ? [ L - : F]) (4.18)

(use (4.9) again), with

β' = L2-«β. (4.19)

Clearly we have

(i) H'c

(ϋ) H'x

(ϋi) \H'}

\H{

where (4.23) follows

. depends on h\LC. and is odd as

and H'y are independent for | x -

e | g L 1 + β δ + O(e-?),

from

C\>~\[L-ίCl if d(C)

2L function of h,

>L/4

(4.20)

(4.21)

(4.22)

(4.23)

(4.23')

by taking a > 0 and L large. Equation (4.22) shows that, upon blocking, H' may
increase. Iterating the RGT, it would eventually be large enough to prevent us
from doing the coarse graining. Thus we will introduce a new large field region D\
adding to the previous one regions where H' is large. Let

n'x = χ{\H'x\>δ') (4.24)

(we will let δ decrease during the iteration, see Sects. 5 and 7, so that δ' < δ) and put

D' = [L-1D]vR (4.25)

with R = {x\n'x φ 0}, and D is defined by (3.6). We may now block the contours. Let

f ^ (4.25;)

and decompose Γ' — uf into connected components f. (We put a tilde on Γ,y
because they are not yet our new contours.) How do we block the signs σ(Γ)Ί We
define σ(f) by the Majority rule: We just put σx{f) = 1 (— 1) if X y e L x σ y (Γ) > 0( < 0)
(remember that L is odd), and f = (f, σ(γ')). We denote also Γ' = (f). With this
definition, Γ' is again compatible, since σ(f) is constant on connected components
of fc. However, σ(f) are rather arbitrary on y; unlike Ising contours, σ need not
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change sign any more! Let us now proceed with the blocking of (4.14). We define
the small field H' by

H'x = f ' ( H x ) 9 H'C = H'C9 | C | > 1 (4.26)

with f'(z) = zχ(\z\ rg δ'\ and write

Z ' = £ eβ'iHy~{r))ΣrJp(neβSiΓ\ (4.27)
Γ'=>D' Γ^D

with, collecting terms,

(4.28)

The ^ f ' just means that we sum large contours with the constraint [LΓx /"] u
R = Γ'. The reader should realize that, if we did not have S(Γ) in (4.27), we would
already have the representation (4.1) for Z, with p'(y') given by ΣγrP(Γ)> The
rest of this section consists in finding corrections to this formula, due to S(Γ).

Consider (4.28): it is a linear combination of δhc and Hx. The first two
terms involve δhc such that C n Γ Φ 0 i.e.,

CnLΓ'Φ0. (4.29)

As for the last two terms, they cancel outside LΓ' except for some δHc in the
definition of H'( = H' in (LΓ')C) for which C satisfies (4.29). Hence S(Γ) contains
δh^ obeying (4.29) and Hx with xeLΓ'. So it represents interactions and
self-interactions of the y's. We write

s(π = Σuc(Π+Σ E(f IΓ) ( 4 3°)
C y'sΓ'

The self-interaction £(y|Γ) has all terms with Cc\Lfφ§ and d{C) < L/4. Note
that such C's, will not join two Lf since they are at least a distance L apart. Of
course, £(f | .Γ) depends only on the part Γ of Γ with Γ1 cz f. UC(Γ) collects the
/̂ẑ  with d(C) > L/4 [and, of course, satisfying (4.29)]. The form of this linear

combination of δhc depends only on the part of Γ contained within LΓ'CCΛC,
where

Γc = {γΈΓ\CnLfΦ0}. (4.31)

Since δhc a n d H'c are random variables defined for all C a V, we see from (4.28)
that UC(Γ) is a random variable defined for arbitrary C (being zero if the above
constraints do not hold) and any Γ, Γ' with [LΓ ^ J c Γ (we use this notation here
and below to mean [ L ^ Γ J c f and σ(T') = σ([LΓιΓ~\). Inserting (4.30) into
(4.27) we have

Z ' = Σ eβ'{H'y (f/)) Σ f / ' ' p ( Γ ) e β { Σ c U c { Π + Σ " ' m ' ι n \ (4.32)
r' ^ D' Γ^D

The sum over Uc is the only term in (4.32) not factorizing over fεΓ'. We thus
have to Mayer-expand it, in order to get the new activities p'. It will be important
later (in the proof of (6.2)) to preserve the positivity of/?'. Uc can have an arbitrary
sign as can exp(βUc) — 1. Note however that, by (4.8),

(4.33)
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(independently of Γ). So we may define

WC(Γ) = min UC(Γ) (4.34)
r

with the minimum taken over all Γ such that [L" 1/^] cz Γ'. W is a well defined
random variable satisfying (4.33), and depends on Γ' only through Γ'c, defined in
(4.31). So we write

υc{Γ)=Wc{Γ') + lc{Γ\ (4.35)

whence

0 ^ IC{Γ) ̂  2e~~mι\ (4.36)

Inserting (4.35) into (4.32) we get

Σ r ' Σ Σ (4.3?)

where W(f') is the blocked W:

Wc.(Γ') = L-2 + " Σ WC(Γ). (4.38)

Then, we Mayer expand /:

exp βΣlc = Y\ieβ'c - 1 + 1) = Σ Π (expire) ~^) = Σ<^)> (4 3 9)

which has positive terms due to (4.36). Inserting into (4.37), we have

Σn = Σn P(nΦ(V) (4.40)

with

J Σ \ (4.41)

The last step now is to block ΓuΉ, decompose the result into connected
components and associate new activities to the later. Let

[LΓ1 (Γ u <g)~] u R = Γ = u / . (4.42)

Note, that Γ' a Γ" [see (4.25')]. Since W depends only on Γ' we will slightly
generalize our notion of a contour. We take γ' = (γ',σ(Γ')), where Γ' cz/, and
rewrite (4.37) with (4.40) in terms of such / :

z= Σ p>(Γ>)/tf>v(n»mnv)9 ( 4 4 3 )

with Γ = {Γ\σ{Γ')) and Γ' constrained by Γ' ZD D'(V(Γ') = V~{Γ')). The
activities are

p'(j') = Σr lpinΦ^) (4.44)

withΓ uDnLY,[L^ΓJu^n/) = Γ and [ L " ι ( Γ u ^ ) ] u ( i ί n / ) = /;p'(/) = 0
if the sum is empty. Equation (4.43) is the result of the first RGT. In the next
section we show that this form is in fact stable under the RGT.
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5. Flow of the RGT

5.1 The Result. Let us assume that after k steps of iteration of the RGT we have
a partition function of the form (4.43), which was produced by the first step (we
drop k below and denote k + 1 by prime):

Z = Xp(Γ)exp[j8(H,K-(Γ)) + i8W(Γ)]. (5.1)
r

Γ is a compatible set of contours determined by Γ and another set Γ such that
Γ = (Γ, σ(Γ)). Equation (5.1) is constrained by Γ => D. The variables are as follows:

p(γ) are random variables with

(i) p(γ) is independent of hx, if d(γ, [L"kx]) ^ 2, (5.2)

(ii) p(γ)(h) = p(- γ ) ( - h) w i t h - γ = ( y 9 - σ(γ))9 (5.3)

(iii) O^p(y)^expl-$\y\D\-β\dV-{y)\ + β(N9y)l (5.4)

where D = {x\d(x9D) ^ 1}. The reason why we have D in (5.4) and not simply D
will become clear in Sect. 6 when we iterate (5.4).

[For k = 1 (i) can readily be seen and for (ii), use (4.7) to show that S(Γ)(h) =

(X-r$H{ -hlV'(-Γ))- (χ-ΓδH( - h\ V). The last term combines with the first
in (4.28)]. β and β will be given by

βk = lS2-**β9 βk = &-**$, (5.5)

where α can be chosen as small as one wishes, provided L is large enough. (The
only constraint being that Lα is larger than some geometrical constants.)

H = {Hc} satisfies

(i) As in (5.2), with y replaced by C,

(ii) Hc(-h)=-Hc(h\ (5.6)

(iii) | f f c | ^ ^ | c | , | H x | ^ ^ = (fc+l)- 25. (5.7)

Moreover, Hx and Hy are independent for | x — y \ ^ 2. Finally,

with WC(Γ) = 0 unless CnΓ / 0 and C is connected. WC(Γ) depends on h as in
(5.2) (with y_ replaced by C) and on Γ only through Γc. We have Wc(Γ)(h) =
Wc(-Γ)(-h) and

\Wc(Γ)\^e'~βlQ. (5.8)

The purpose of this section is to reproduce (5.1) algebraically for k + 1. In Sect. 6
we iterate the bound (5.4). The steps of the RGT are almost the same as in Sect. 4.
The only novelty is that we want to forget about some of the region D, as explained
in Sect. 3. This is done by means of the variables N in (5.4) which keep track of
the large fields created in previous JR-regions and/or brought together by blocking.
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Thus, as before (see (3.6)), given {Nx}xeV,D is defined by

D = {x\Nx*0}. (5.9)

We decompose D into L1 / 2 connected components, i.e., they correspond to the
connected components of the graph on D obtained by joining points which are at
a distance ^ L1/2. A L1 / 2 connected component Dh of D, is small if

d(Dt)^L/4, (5.11)

and
X Ny<LL~k£2. (5.12)

yeDt

A connected component is large otherwise. The region of D that we absorb in the
small field is 3) = (J f D f , where the union is over all small components. The reasons
for this rather complicated definition of Q) will become clear later.

Since Όi are L1/2 connected components, we have trivially

(5.12')

One fact about Q) that we shall use is: Let C be a connected set with d(C) ^ L1/2,
then

(5.13)

(for L large enough). Equation (5.13) is obvious, because C is connected in the
usual sense, the components Dt are at a distance L1 / 2 from one another and each
of them contains at most L~α/2L1/2 points. Another fact where we use the definition
of 3) appears in Lemma 1 of Sect. 7.

Now we repeat the coarse graining and blocking operations of Sect. 4.

5.2 Coarse Graining. Call γ small if

^L and

and large otherwise. Decompose 7" into small and large contours and sum the
former

Z = £ ' p{Γ)em>v-{n) + βW{Γ)Zs(V\Γ\Γ\ (5.14)

where

Z5(7\Γ|Γ) = ΣV(ΓJexpi8[(H,7-(Γ;))-(iί,7+(ΓΓ))+m^Λ)], (5.15)

with Γs summed over V\Γ ZD ΓS ID (@\Γ\ and we split Γs = Γ^ u Γ~ with
Γ^ c V±(Γ). Also, we wrote

W(ΓuΓs) = W(Γ)+ W{Γ,ΓS). (5.16)

Thus W(Γ, Γs) = Σc WC{Γ u Γ J - P^C(Γ) with CnΓsΦ0.
Next we exponentiate (5.15). This has two aspects. The //-part is bounded by

β\dV±(Γs)\ and this is dominated by the β\dV~{γ)\ terms in (5.4) since the yeΓs

are small, as defined above.
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The second aspect is that (5.15) has no Γs Φ0 term if @\Γ is not empty. So
we need to extract from Zs the p(y)'s that have no damping, i.e., those in 3) (see
(5.4)) with σ(γ) constant. Thus write O) = vj§i in terms of ordinary connected
components and define for any set ^ t such that 3)i ZD ̂  ^

(5.17)

with yeΓ having y c f f and σ(y) constant ( + ). Now we write

where ${ = (V\Γ)n^i and the products run over 3>t c V±(Γ)\Γ. (Note that such
Q)i may touch Γ unlike J^; the point being, that the contours in Zs cannot touch Γ)

Zs may be Mayer expanded as in Sect. 4, the only difference being the presence
of W(Γ,ΓS) which can be expanded, due to (5.8), and the division by the JΓ±9s.
For the latter, we use the lower bound in (6.2). The result is

ZS(V\Γ\Γ) = expβ[(δh+, V+\Γ) 4- (<5/Γ, V~\Γ) + δW(Γ)~] (5.18)

with the bounds

d(C)<L/4 / r i m

'*<i' ' w ' ' s ί «£-7ιc M
Equations (5.19) are obvious if we show that the expansion converges [which, itself
follows easily from (5.13)]. See Sect. 6.3 for more details. Combine next δhr with

@i)δcβi. (5.20)

This satisfies, due to (5.12), the fact that § ; c Q) and the bounds (6.1) and (6.2),

\δh±\^cε2L~k+\ d{C)<L/4 (5.21)

(since exp(-^/2)«ε 2L"" ; c + 1 ), and (5.19) for d(C)>L/4. Insert (5.17), (5.18) and
(5.20) into (5.14) and pull out the + state contribution as in Sect. 4 to get

δW(Γ))exp[-β(χΓδh\V)-β(χΓδH,V-)l (5.22)

where the sum is over sets of large contours with Γ ^> D\@), and

^)Πrl)' (5 2 2 )

where the products run over ® ; c V±(Γ)\Γ. Note that these latter ratios are 1
unless Q){ is connected to Γ.

53 Blocking. This will be almost identical to Sect. 4. H' is defined by (4.16), (4.17)
with H + δH replacing δH in (4.17) and (4.26). Properties i), ii) (see (5.6)) and the
first inequality in (5.7) hold with primes. The independence (4.21) is still true and,
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due to (5.21), (4.22) is replaced by

\H'X\ < L1+«δ + O(ε2L-k); (5.23)

ή is given by (4.24). Next, we block

f'^L^JΠuK (5.24)

with the majority rule included in [ ]. So, as in (4.27),

Z'= Σ exp(β>(H\V-(f')))Σr>ιβ(Γ)e^Γ\ (5.25)

where now Γ = (Γ, σ(Γ)) satisfies the constraints (5.24) and Γ ZD D\@. Notice that,
because of the additional factors in (5.22'), β{Γ) does not necessarily factorize over
yeΓ (different y's may be connected to the same ^ f ) . However, β(Γ) certainly
factorizes over connected components of Γ'. Indeed, the latter are at a distance
at least L from each other (before blocking) and it is clear that contours cannot
be connected by Θ over such a distance. S(Γ) equals

S(Γ) = W(Γ) + δW(Γ) - {χΓδh\ V) - (χΓδH, V~ (Γ))

+ (H + δH, V~(Γ)) - L2~a{H\ V-(Γ')). (5.26)

It may be expanded as in (4.30), with UC(Γ) bounded now by

(5.27)

due to (5.19). Proceeding now exactly as in Sect. 4, we obtain (4.43), i.e., (5.1) with
primes; (4.44), (4.41) and (4.39) define the new activities, with p replaced by β.

Let us finish with a note on N'. We define

N'X = IΓ2 + * Σ Ny + rix. (5.28)
yeLx\&

Then, clearly, D' = {x\N'x ^0} (where D' = [IT ι(Z)\^)]uJR, by definition).

6. Inductive Bounds

The goal of this section is to prove (5.4) for p, inductively in k:

0 ^ p(y) ̂  e-
h-χ5ι~βιδv~iy)l+β{N'i (6.1)

where D = {x\d(x,D) :§ 1), and a lower bound

^±{^i)^e"mβi) (6.2)

for the partition functions (5.17). Let us recall here the formula for p' [see (4.44)]:

~Γ'J (6.3)

with / = (y>(f')), [ Γ 1 Γ ] υ i ? = Γ', [ Γ 1 ( Γ u ί f ) ] u R = / and Γ =>D\9> (R,D,
etc., are restricted to γ' here and below). Here

(6.4)
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and

β I ^ l ) . (6.5)

6.1 The Upper Bound. The idea of the proof is easy; forget D for a moment. Then
the scaling of β,β was explained in Sect. 3 and, for β, is justified by Lemma 1, b.
Note that the # part of (6.3) carries e~K The iteration of N, (5.28) absorbs the
previous JV's as well as rix9 in the ^-region. Controlling the "entropy," i.e., the sum
in (6.3) is easy, because each cube in Ly' gives at most a factor expcL3 which can
be absorbed, in β, β. Coming to D, we have to absorb the part of (JV, y) which is
in 2, But that is controlled by \y\D\ since, for x in 2,βNx«β and y is large. The
reason why we iterate (6.1) with D instead of D is explained in the proof of (6.16)
below.

Equation (6.5) is bounded, using (5.27) and (4.35), (4.36), by

(6.6)

We recall that E(f\Γ) collects the Wc(Γ),δWc{Γ),δh£ and Hx in S(Γ) of (5.26)
satisfying [see the discussion after (4.30)]

CnLf^ψ, d(C)<j or xeLf. (6.7)

By (5.8), (5.19) and (5.21), the contributions of the first four terms in (5.26) are
bounded by

^ (6.8)

where here and below c(L) is a constant depending only on L. To control the last
two terms, we use the fundamental result of our Majority rule.

Lemma 1. Lei [ L " 1 ^ = Γ'. Then,

(a) ivHLn^im^cmidV'ini
(b) \dV-(Γ)\^cL2\dV-(Γ')\. (6.9)

(a) says the intuitively obvious fact that the blocked signs may differ from the
unblocked ones only proportionally to the region where the latter are not constant
and (b), that such regions are essentially two-dimensional. For a proof of (b), see
[16]. So, (H + δH,V~ (Γ)) differs from LΓ 2+a(H\ V~(Γ')) on a region proportional
to LRκjdV~{Γ\ and thus, altogether, p' of (6.3) is bounded by

•exp -^\-β\Γ\D\-β\dV-(Γ) + β(N,Γ)\ (6.10)

where the last exponential comes from (6.6) and the induction and we write Θ for
simplicity to denote the components of 3) connected to Γ. Moreover, the |^ |-term
in (6.10) also controls the upper and lower bound on &±{&i\ ^±(β^) occurring
in p (see (5.227)). For the upper bound, we have, from (6.1) exp(/?(N,^)) for each
term in (5.17) and exp(c(L)|^|) for the number of terms in the sum (5.17). From
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(6.2) we have an upper bound exp(β{N9@)) on (%±y1. Now, (N,2) ^cL~kε2\Q)\
follows from (5.12). Moreover, c(L)\S)\ «βkL~kε2\@\ because of the definition of
βk, (5.5). We proceed in steps to bound the exponents in (6.10). First, for c(L)δ < 1,
we get

Σn'x- (6.H)

Then, since [ Γ 1 Γ ] u Λ = Γ , (6.9) gives \dV~(Γ)\ > cL2\dV~(Γ% and since

σ(γ) = σ(Γ') gives dV~(Γ') = dV~(γf), we have

β(l-c(L)δ)\dV~(Γ)\^cL2β(l-c{L)δ)\dV-(γ')\. (6.12)

So the exponent in (6.10) is bounded from above by

- β\8V'(y')\ + β(N, Γ) + β(ri,Y) + c(L)βε2L~k\@\

+ e-oΓβ)\Y\ - β\%\/6 - β\Γ\D\, (6.13)

where

β = cL2β(l-c(L)δ). (6.13')

By (5.28) and (5.12),

} 2 k \ . (6.14)
The last term can be absorbed into the Θ term in (6.13). The only slightly subtle
steps in the proof deal with the structure of <&, entering into the bound,

|Γ\D| Z c{\Γ\{D\9)\ + \9nΓ\\ (6.15)

and the bar in D, entering in

c(β\V\+β\Γ\(D\@)\)^c>Lβ\y\D'\. (6.16)

Assuming these for a moment, we may finish the proof. Namely, (6.13) is now
bounded by

; e-^\y\9 (6.17)

since we may absorb the |^|-term into (6.15). This works, because ε2βL~k «β (see
(5.5)).

We also have to control the sum in (6.10). This is at most exp(c(L)|/|), because
Γ, <£, are subsets of Lγ'. The choices of the different subsets Γ a Γ \s obviously
included in that upper bound.

So, finally, we have as upper bound on (6.10), (6.17) with c{L)\y'\ replacing the
last term. Now bound

\f\^W\D'\ + c\D'\. (6.18)

The first term in (6.18) can be combined with the third one in (6.17), lowering c'.
For the second term in (6.18) we absorb it in the second one in (6.17) as follows:
we shall show in Sect. 7 (see (7.21)) that,

(N,D)^ckL-3k/2ε2\D\ (6.19)

for c = 27. (The same inequality holds for any ordinary connected component of
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D.) Now let

β' = β(L2-« + 0(L-(1 - 2 α ) f c / 2 )). (6.19')

Then,

Inserting (6.18) and the last inequality into (6.17), we have [see (6.13')] β> β' and
(6.17) is bounded from above by

{y')\ + β'{N',Y)-P'W\D'\, (6.20)

where we use L~(X'mβ' = Lι~aβto absorb the constant in (6.17). The redefinition,
(6.19'), of β' [compare with (5.5)] is harmless since

and does not affect any of the arguments where we use the approximation (5.5).
Combining (6.10) and (6.20), (6.1) with primes follows.
We still have to prove (6.15) and (6.16). For (6.15), it is enough to show that,

for any yeΓ,
\y\D\^c\yn§\. (6.21)

Assume first that y n (D\<@) = 0, in which case (6.21) reduces to |y\<2)| ^ c\y n ζ/)\

(recall that, by (5.12'), D\3) =D\2). Now, remember that y is large. If d(y)>L9

(6.21) follows from (5.13), since y is connected. Now, if V(y)n(D\<@) φ~0, but

yr\S) φ 0 (otherwise (6.21) is trivial) then, since y is connected, d(y) ̂  L1/2 because

~d{D\299) ^ L1/2 (5.12') and (6.21) follows again~from (5.13).

Now, in general, yn{D\@) Φ 0, so let y\(D\9)) = u f X i 5 where the X-s are the
connected components. Again because D\@ and Q) are at least a distance L1/2

apart, d(Xt) ̂  cL1/2 if X{r\§ Φ 0, and we may apply (5.13).
Turning to the proof of (6.16), the reason for putting the bar in D is that, if we

write Γ\(D\@) = [JiXi, where Xt are the connected components, then small X?s
[to which one could not apply (4.23')] are automatically in LD\ i.e., we claim that,
if d(Xi) ̂  L/4 then Xi c LD'. To see this, let Xt a y for some yeΓ. Since y is large
we get that V(y)n{D\@)Φ0 (otherwise, γn(D\@) = 09 but then y^Xt and
d{Xi) ^ L/4 contradicts the fact that y is large). Now it is geometrically obvious
that if d(Xi) ^ L/4, Xt c y, V(γ)n(D\@) φ 0, then Xt c LD' (using LD' ID D\@).

The rest is easy: the left-hand side of (6.16) is larger than

cβ[Σ\c\+ Σ \
\Ce% </(*,) ̂  L/4

which, since d(C) ̂  L/4 too (Ic in (4.35) collected precisely such C's), is larger than

C'βL\iL-H^^([jdix^L/4Xiy]\

by (4.23'). And, by the preceding discussion, this is bigger (since R c D1) than
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6.2 The Lower Bound. The lower bound (6.2) is much easier. By positivity of the
p's, it is enough to prove that for an arbitrary component Dt of D:

^e-β{N>Dι\ (6.22)

where Df = {Dh ± 1). Let us show it inductively. In the first step, we have (see
(3.10), (3.19))

satisfying (6.22). Inductively, use (6.3) and note that all terms are positive. So
consider the term # = 0, Γ = (D\@>)nLD'h σ(Γ) = constant. We get

p>(D'i
±)ϊ:p(Γ)exp(βE(D'ί

±\Γ)).

First we claim that, for the Γ we have chosen, p(Γ) = p(Γ) (see (5.22')). Indeed,

Q) is not connected to D\*2) because of the distance between Q) and D\Q> (see

(5.12')). Next, we use (6.8) to bound

E(D'i
±\Γ)^-e-°rβ)\D>

i\-c(L)βδ\RnDf

i\, (6.23)

where the second term comes from the last two terms in (5.26) (here dV~(Γ) = 0),
and the first term in (6.8) is absent because Γn<2> = 0.

Now we use the induction on p(Γ\ (6.11) and (6.14) (where the last term is
again absent). And we use the redefinition of /?, (6.19), to absorb the |D | term in
(6.23). These two steps yield (6.22) with primes.

6.3 Contour Expansions. Let us now discuss the small contour expansion yielding
(5.18) and (5.19) (the one used in Sect. 4 is a special case). We Mayer-expand the
W(Γ,Γ8) in (5.15):

eβw(r,rs) = £ j-j (eβ(wcir,rs)- wdn) _ 1 } = Σψ(<g)9 (6.24)

where only CnΓsΦ0 appear. Next, for a yeΓσ

s(σ = ± ) , let yσ = yκjV~σ(y\ divide
the set

ίu/UU** (6.25)
yeΓs / a

into connected components Ya and write

ZS(V\Γ\Γ)=ΣY\A(YΛ (6.26)
TO

The constraint on {Ya} is, that u 7α => @\Γ9 and 7 a n(^\77) is a (possibly empty)
union of connected components of Q).

The activities A(Y0) are

A(Y) = Σs p(Γs)eβί{H'v{Γ^{H'v+{Γ^φ(^) (6.27)
rs,v

with obvious constraints. To bound (6.27), note, that since both the contours and
the fields are small, the //-part is bounded by β\dV~(y)\ in (5.4) (δ\V\ ^ \δV\ if
d(V) < L and δ is small). Using (5.8) to bound ψ(<g) and the inequality β\dV~σ(y)\ »
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β\ V~σ(y)\ (which holds because of the relation between β and β), we get

\A{Y)\ ^ e x p [ - aβ\ Y\S8\ + cε2βL~k\ Yn0g\~], (6.28)

where J* = u J ( , and a<\. The last term in (6.28) comes from the 3){cD) part of
the upper bound, (6.1), on p(Γs). Then we use (5.12).

Since ε2βkL~k«βk we can improve (6.28): if Y\38 φ 0 the second term may be
absorbed into the first one and, for Y c 38 h

A(Y) = p(Yη + Θ(e~a~βl (6.29)

where, in the first term, # = 0 and Yσ = (7, σ) if 38 { cz Vσ(Γ).
Now we may discuss Zs given by (5.17'). We decompose u ^ u l ^ u l ^ into

connected components and regroup

ZS(V\Γ\Γ)= I Π W - (6.30)

Now, for Xa\& Φ 0, we have (by lowering a)

^e-alιx*W, (6.31)

and, using p(Yσ) g exp(G{ε2)βkL~k)9

\B(Λt) - Sσ{βd\ ύ exp [ - αjS]. (6.32)

Using the lower bound (6.2) and (5.12) we see that £?±(^i)~1 g exp Θ(ε2)βL~\ and
thus

5 ( ^ i ) ^ r σ ( ^ i ) ~ 1 = 1 + Θ(e~a~β) (6.33)

and B(Xa)Y\i^
±(^i)~\ with the product running over ^ c z X α , satisfies (6.31).

The JΓα in (6.30) are constrained to include ^ i if intersected by it. Equation (6.33)
shows that we may write for Zs an expansion without this constraint and polymers
bounded by (6.31) or by e~aβ. In this new expansion the weight of 381 is simply

The bound (5.19) for small C is now immediate. For d(C) ^ L/4 we have damping
only outside Q). But using (5.13), the desired bound is obtained.

7. Flow of the Effective Random Field

7.1 The Result. In this section we establish properties of the effective random
field—the H and the N—needed in the discussion of the /ι-averages. Basically our
analysis shows that the effective field behaves like a Gaussian of covariance
L~(1~η)ks2 ΞΞεj2, although very small JV's have modified behavior, (η may be
chosen = 4α, i.e., is as small as desired for L large.)

Let us recall first the recursive definitions of H and N. We had, for H

Hk

x = Hk

xX(\Hk

x\<δk), (7.1)

HX = L~2 + °Σ Hk

y-
ι+ qk

x, (7.2)
ysLx

with the initial condition

H°x=-2hxf (7.3)
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and δk = (k+ \)~2δ. qk is a shorthand for the non-linear contribution to (4.16)
[defined by (4.13), (5.20)], and,

(i) qk is odd in h, i.e., qk(h) = - qk{-h\
(ii) IflJl ^c(L)ίΓ*ε2,

(iii) qx, q
k

y are independent if \x — y\ ^ 2.

In particular (iii) implies, that
(iv) Hk

x and Hk are independent for | x — y | ^ 2 .

The solution of the recursion relation (7.1), (7.2) will be:

Proposition 1 The generating functional of Hk satisfies

(etH")Se2th2k for \t\ g δε^2 = δL^-^ε'2, (7.4)

where < >, in this section, will denote the h-aυerage.

Equation (7.4) will allow us to study the probability of Hk

x given by (7.2) to be
larger than δk.

For N we had [see (3.3), (3.5)]

(7.5)

and the recursion [see (5.28)]

Nk

x = L~2 + ° Σ t _ 1

J v ί " 1 + « * ( 7 6 )

with

nk=χ{\Hk\>δk)9 (7.7)

Dk = {x\NkΦ 0} and 3f is defined after (5.10). Note, again, that

(v) Nx and Nk are independent for \x — y\ ^ 2.

The main result of our analysis is

Proposition 2. T/zβre is a constant c such that for all x,

( c\
P(Nk Φ 0 for some k) ̂  exp - ^ . (7.8)

V ε J
Here P is in the /z-ensemble. More detailed knowledge of Nx for fixed k will be
derived below.

7.2 The Small Fields. Why are we interested in the distribution of H, since it is
small anyway? The reason is that we want to prove the unlikeliness of nx = 1, the
basic input to N. Thus, assuming Proposition 1, let us first show that

(7.9)

Equation (7.9) is of course a trivial consequence of the Gaussian bound (7.4) (we
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drop fc):
P(nx = 1) ̂  2P(HX > δ) (H is odd)

which implies (7.9) since (52/ε2 is large. To prove (7.4) we proceed inductively. For
k = 0, Hx = — 2hx and (7.4) is an equality. Thus assuming it for k — 1, we use
Schwartz inequality first to get (drop k — 1 and replace k by prime)

< e ^ > S < e x p ί [ L - 2 + « X Hy + q^ys<cxp2tL-2 + ̂ Hyy
i2<e2">y2. (7.10)

yeLx

For the first factor we use the independence (iv) of the H's. If the L3HyS were
totally independent, we would of course get the bound 4 ί 2 L 3 ί Γ 4 + 2 α ε 2 _ 1 allowing
us to shrink ε.

However Hx and Hy are independent only for |x — y\ ^ 2. Thus divide Lx into
m subsets Uι such that in Ut the points have distance ^ 2 between each other (in
fact m = 27). By Schwartz, we get

\ 1/2 m / 1

X exp2tL~2+«Hy ) ^ Π ( Π
\yeLx I i=l \yeUi

^ e x p 2 " m " 1 L 3 2(2m + 1 ί L " 2 + α ) 2 ε 2 ^ e x p ί 2 ε / 2 . (7.11)

The second inequality holds, by induction, as long as 2m + 1tL~2 + a ^δε~2, i.e., for
L large, it holds iϊt^δ'{ε')~2. Moreover, the last inequality holds if L" 1 + 2 α 2 m + 2 ^
L~1 + η. Then take η>2a and L big. For the second factor in (7.10), note that (ii)
implies \t\q« 1 for | ί | ^ δL^-^ε'2, and therefore

< ^ > ^ l + 3ί 2 <^ 2 >, (7.12)

since (q) = 0 by (i). But ί2^2 « ί 2 ε 2 , and thus (7.12) is a small correction to (7.11).
W e g o t (etff*y S e2t2ε'2. N o w w e m a y finish b y : ( w r i t e χ = χ{\H'\< δ'\χc = I - χ)

by Jensen's inequality.

7.3 The Large Fields. Now we discuss the probability distribution of Nx, solution
of (7.5) and (7.6) and prove Proposition 2. Since H° is Gaussian we have

(7.14)
8ε2

and the nx has a similar bound (7.9), so we expect a Gaussian bound for N, which
is essentially (7.19) for N ^ 1.

To understand Lemma 2 for N^ 1, let n°x = 1, on the first scale, and let all
other nk's be equal to zero. Then (letting, for simplicity, α = η = 0) JV* = L~ 2k and
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x "falls" into ζΰ when L~ko ~ ε2. The probability of nx = 1 is exp( — cδ2jε2\ which
is indeed exp( — c'^fΐSfl/εfX with ε\ = L~kε2. As mentioned in Sect. 3, the scale (ε~2

here) at which Nk disappears (i.e., x belongs to 2)) is much smaller than the inverse
probability of nx = 1, which sets the distance scale over which such events occur.
In other words, the assumption made above that all nk

x but one are zero (up to
the scale where the original large field becomes small) was quite probable.

A small problem occurs because, if the exponent in (7.19), (7.20) is not large,
then one cannot iterate these bounds. This occurs if ^JN ~εl = L(~1+η)kε2, i.e.,
N ~ L('2 + 2η)k. A priori, we obtain from (7.6) that NkeL(~2+a)kN, which may indeed
be too small. (Remember that η > 2α in (7.11); actually, later we shall need η > 3α.)
However, the whole point about the introduction of Q) was to remove [see the
sum in (7.6)] such small ΛPs. So, we would like to show that, if N becomes too
small, it jumps to zero. This is unfortunately impossible: think of a very long
component of D which intersects Ux at only one point for all k (this may happen
for some x's). Then Nx ~ L{~2 + α)fc, but the component does not necessarily fall into
Q)k. However, as this example indicates, if Nk φO,Nk cannot be small for all'/s
adjacent to x. This motivates the introduction of the following, Nx variables and
is the intuitive reason behind Lemma 1:

jV2= Σ N°, (7.15)
\y-x\<2

Nk

x = L~2 + a X Σ ^k

z~
ljrnk

x if xeDk, (7.16)
| y-x |<2 zeLy\9k~λ

Nk

x = 0 otherwise. (7.17)

Obviously Nk

x^Nx. In fact, we have

Lemma 1. IfNk

x^0, then

Nx^L~3k/2ε2. (7.18)

Lemma 2. There exists a constant A, such that, for all k and x,

/εl) N>V (7.20)

Note that JV* may only take values in L'^'^N and is 0 or ^ L'3kl2ε2.
Moreover, for any connected set D <= D,

Σ_Nk

x^<*Σβl ( 7 2 1 )
xeD xeD

where c is a geometrical constant (c~1 = #{y\y — x\ < 2} = 27) independent of L.
This last inequality is easy to check inductively and implies the bound (6.19).

We prove Lemma 1 inductively in k. k = 0 is clear. Assume it for k — 1, and
let Nk

xΦ0. Thus, from (7.6) we get that there is zeLx\Θk~ι such that Nk~ι # 0 ,
or nx^0. The latter case immediately yields Nx > L~3k/2ε2, so assume nk

x = 0.
Considering the definition of Of [starting with (5.10)], we see that Nk~ι Φ§,
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zeLx\@k~ί imply that there is a large component Di9 of Dk~\ intersecting Lx, i.e.,

a) d(Di) > L/4, or
b) d(Di) < L/4 but \D{\> L(1 " α ) / 2 , or
c) d(Dt) < L/4 but ΣyeDίNy > LL~ks2.

Consider a). Since Dt is L1 / 2 connected, d(Di)>L/4 and DtnLxΦ0 imply
\Dtr\Lx\ ^cL 1 / 2 . By the inductive assumption, JVjΓ1 ^L~ 3 ( / £ ~ 1 ) / 2 ε 2 for all yeD{

and
^ ( 2 ) 3 ( f c - 1 ) / 2 ε 2 ^ L - 3 / c / 2 ε 2 (7.22)

for Lα large. In case (b) we have, Dt a Lx, and we argue as in a). For (c), again
Dt cz Lx and

Proof of Lemma 2. The proof is again inductive in k. k = 0 is clear, so assume it
for k — 1. (Drop fc — 1 and denote fe by prime.) Write

where ]ΓZ denotes the double sum in (7.16) and the second term is zero if N — 1 < 0.
Consider first the n'x = 0 term. It is bounded by

P{L~2 + aYjNz = ΛΓ) = £ P(NZ = Nz,\fzeLx) (7.24)
(Nz)

with sum over Nz such that L~2 + aYjNz = N. We again use the independence of

not-too-near JV's: Nz and Nz>, are independent if \z — z'\ ̂  4. Thus, let Lx = (Jj"! x Ut

with points in [/f at least of distance four from each other. Again by Schwartz,

P(Nz = Nz9VzeLx)^ f ] P(NZ = Nz)
2~m>

1(Σ>N2+Σ<^M)\ (7 25)
\zeLx zeLx / J

with Σ > ( Σ < ) for Nz > l(;g 1). We shall shortly prove that for arbitrary positive
numbers Nz with L~2+afjNz = N,

Assuming this

(7.24)^ X e x p Γ - 2 - m ' ^ ^ L 1 - 3 4 i V ' 11. (7.27)

Since

(Nz)
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(remember that NzeLi~2 + ac)(k~1)N and is less than L2~aN) we may bound (7.27) by

ϊ^exp(7.27)^exp| -4Aδ^ίι

N J (7.28)

with 3α<?/, L large (as long as y/Nε 2 is large enough, which is given by
Lemma 1). Equation (7.28) bounds the ήx = 0 term of (7.23). Consider then the
rix = 1 term. It is bounded by

mm{P{L-2+aYjNz = N - I), P(n'x = 1))

z = N- l ) , e x p [ - Θ(l)δf2/ε'2~]) (7.29)

by (7.9). For N ̂  3, the second term in (7.29) is bounded by (7.28) (if 36,4 < 0(1)).
For N ̂  3, {N - 1)2>^N2, so apply (7.28) to the first term of (7.29) to bound it

b y e-(4.f3)A(δ'*fε'2)N>m τ h u s t h e s u m (7 23) of n'x = 0 and rix = 1 terms satisfies (7.19) and

(7.20). We are thus left with the proof of (7.26). Let N ̂  1. Since N2 ^ ^ftΓz, if

Nz ^ 1 it suffices to show

ZGLX

which follows from Σzyft^ ^ y/Σ*Nz a n d Σ N * = L2~αΛΓ. Let N ̂  1. By Schwartz

Σ > N2 ^ -^ T (X > iVz)
2, (7.30)

since YΛ < cL3. Also

since iVz ̂  1, and thus (l/cL3)^<ΛΓz ^ 1. Combining (7.30) and (7.31),

for L big.
Given Lemmas 1 and 2, the proof of Proposition 2 is easy. Write first

P(Nk

x Φ 0, some k) ̂  f P(Nj ^ 0). (7.32)
Jc = O

By Lemma 1,

P{Nk

x Φ 0) g P(iV^ ̂  L~3 f e / 2ε2), (7.33)

and, by Lemma 2,

^ ̂  L " 3 k / 2 ε 2 ) ^ L ( 2 -

OO

^ U2-*)kexpl-AN2δiεϊ2l (7.34)
N = l
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where the first term bounds N ^ 1 and L(2~α)fc is an upper bound on the number
of possible values of Λ^eίΓ ( 2 - α ) / c N. Now

for k> c log ε~* = k0 and η small. So

while, for k < fc0, we note that

but L3ko < ε"c, and the proof is finished.

8. Proof of the Main Results

Here we prove the claims of Sect. 2, starting with a direct proof of the phase
transition obtained by applying our induction to <(σJC)±. Then we prove the Peierls'
bound, which, of course, yields another proof of the phase transition but gives also
via an argument of [27], the exponential decay of the correlation functions.

8.1 The Phase Transition. We will now prove

(σx)± = + 1 + Θ(e~c/ε2 + e~cβ) (8.1)

uniformly in V. To show (8.1), we rerun our iteration with a σ-insertion. Thus
consider (take e.g. + b.c.)

and perform the coarse graining for Z σ as for Z in Sect. 4. We need to worry
separately about contours surrounding x. Suppose first that xφΓι (the large
contours; remember that D a Γt). Consider the component V^ c F ± , where x
lies and the small contour sum

r

which we may immediately write, due to the convergence of the small contour
expansion, as

f :1+ Σ sc\ (8.4)

where
\SΪ\ύe~~mι\ (8.5)

and the C's contain x and are connected. If xeΓh the contour γ3x obviously has
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the same upper bound as before. Now block as before, also the C's of Sc, to get

p'ΛY) = Pf(yΊ if [ L - 1 * ] * / , (8.6)

W'σC=W'c if IL-'x^φC. (8.7)

By convention, we put [LΓ1x]eΓt and for the contours xf =([L~ 1 x], ± 1)
whose support is reduced to that one point, we have

p ; ( x ί ) = ± l + 0(*Λ (8.8)

if iV'[L-ix-j = 0. Otherwise, p'ti, W'σ have the same upper bounds as p', W.
Iteration goes exactly as before, only keeping track of contours touching [L~kx].

Consider first the event

A = {Nk

ίL-^ = 0 Vfc}. (8.9)

Then (8.6), (8.7) hold for all fc, with the old bounds except that for pk

σ{y\ we have
only the upper bound if [L~fcx]ey. Equation (8.8) flows as

pS(xfc

±) = P*" 1(^±-i) + ^ " H

i.e., we have, uniformly in fc,

pk

σ{xΐ)=±l + Θ{e-~β).

Thus, after N steps (with V = LN), V is contracted to a point, {0} and we have

where in the first term 0 + =(0,1) and, in the second term, 0~ =(0,σ)σo = — 1,
σx = 1, x φ 0 (i.e., outside V), so

| p ? ( 0 - ) | ^ - ' * . (8.10)

Since Z is given by 1 +p J V(0 + ) + e " ^ H > J V ( 0 " ) with pN(0~) satisfying (8.10) and
pN(0+)<Le~βN, we have

m=l-Θ(e~fo).

The event (8.9) has probability
P(A)^l-e-φ2

by our probability estimates (Prop. 2 of Sect. 7). Thus (8.1) follows, since \m\ ̂  1
for all h. (On the first scale, β was chosen equal to β1/2, but that can obviously be
replaced by β/c(L).)

8.2 The Peierls Bound. One has Peierls' estimate for the usual Ising contours,
with, say, + spins outside y:

Pr(y) S e~2mZ-(lnt y)/Z+ (Int y).

The Peierls' bound holds if
Pr(y) ̂  £Γ°W

Let Ay be the event corresponding to the Peierls bound i.e., for h in Ay,

Z-(Int7)/Z + (Inty) g eβδlγ-[ δ small. (8.11)
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In this section we show, that Ay, for all y surrounding a fixed site, is likely:

P{3y with oeV(y) and Ay violated) ^ e~cδ2/ε2 (8.12)

(with P = /z-ensemble). This yields the Peierls bound for all contours surrounding
the origin.

The proof of (8.11)—(8.12) consists in running our iteration for the partition
function in arbitrary volume V = Int y and studying the resulting free energy. We
write Z±{lnty) = Zy

t and perform the RGT as in Sect. 4. Denoting [LΓ1y\ by / ,
we get as in (4.11),

l o g Z y 7 Z y

+ = j s ( Σ H*+ Σ $K - Me ) ) + log Z'y/Z'yΐ. (8.13)
\xelnty Cdntγ /

Note, that Z'yί are not equal to Zf±(lnty'). The former has different activities p'{y'a)
for y'a touching y' since contours yβ c Inty are blocked to get y'a, whereas in the
latter only yβ c Lint y' enter. However, this fact will only produce boundary terms
(i.e., of order \y\) in later stages of our induction.

We will write the first term in (8.13) in terms of blocked variables and a boundary
correction. Let

W ) = Σ H'c (8-14)
Cclnty'

be the resulting small field term and

R'(y')= Σ B'xn'x= Σ r'x (8.15)
xeV(γ') xeV{y')

the large field term (see (4.26)). Then

logZ y7Z y

+ = β'(H'(y') + R'(γ')) + F'(γ') + log Z'yΓ/Z'/, (8.16)

where the error F' has two sources. First, we have the H not contributing to H'
or R'. This is less than

\. (8.17)Σ _
xeLγ

Secondly, we have the δhc with Cny Φty that are either overcounted, or absent

in (8.14). These are bounded by e~^/2\y\, so

\F'(y')\^βO(δ)\y\. (8.18)

We will now iterate (8.16). At each step we get a sum of δhΫ - δhn

c~, with C a Int γn

9

to be added to the previous contributions. We want to distribute them so that a
formula like (8.16) iterates.

Since it will be crucial for our argument that we apply probabilistic estimates
to γ-independent random variables, we first define the "infinite volume" free energies
to which we will derive y-dependent corrections. We denote these variables by
boldface, HM and N", to distinguish them from the slightly different Hn and Nn.

We define inductively (drop n again)

H x = L - 2 + « £ H y + Σ ry + qx, (8.19)
yeLx yeLxn9
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where qx is as in (7.2). The difference between H and H is that in the latter we
reinsert the "small large fields" in §) (but they are equal on the first scale), r is
defined inductively by

r; = L~2 + α X ry + H X , (8.20)
yeLx\Φ

and, analogously to Sect. 5,

U'x = Uxχ(\Hx\<δ'), n;=l-χ(|H x |<δ'). (8.21)

Finally, N is defined in terms of n as before, and Φ) in terms of N. Let us assume,
inductively, that

log Z;/Z y

+ - βn(W(yn) + Rn(yn)) + Fn + log Z;r/Z'/, (8.22)

where

H"(y")= X Wc (8.23)
Cdntγ"

R"(r")= Σ rΞ(r)> ( 8 - 2 4 )
xeV(γn)

and Fn is bounded by (8.18).
The recursion for τ'x(γ) is as in (8.20), with the crucial difference that

ye(Lx\Φ)nV(y). Now note that r"(y) = r" if xelnt/ 1. Moreover | r " | ^ N " , and
therefore the same is true for r"(y):

| r ; (y) |^N;. (8.24')

With these definitions we get

β(H(y) + R(y))+ X (δh£-δhϊ) = P(H'(y') + R'(y')) + 6F. (8.25)

In (8.25) we used the fact L I n t / + 1 czlnty", so that only rn

x (and not τn

x(y)) enter
in the Hn+1 on the right-hand side of (8.25). δF contains terms coming from H(y),
not included in H', and bounded by

βn\dlntnθ{δn)^O{δn)β\γ\, (8.26)

a δHς term, which includes the y-dependent contours discussed after Eq. (8.13)

and the term

Σyβn\yn\ (8.27)
yeΔ

with Δ = (LV(y')\V(y))n@. We used (8.24') and (5.12) here. Since \y\^(L/2)n\yn\
as long as \yn\ > c(L), (8.27) may be absorbed in (8.26). Thus Fn stays bounded by
(8.18) throughout the iteration because £ , A < c$- The main point of the proof is
that H and R are defined in terms of the ^-independent information (q). The
y-dependent terms are always controlled by \y\. We stop the iteration once yn = {0}.
Then

; = /?"R" + logZ"yn

+/Zn

γn- + O(δ)β\γ\, (8.28)
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and

| R " | g C N S , (8.29)

\\ogZn+/Zn~ I ̂  CβnN
n

0 + 0(e-β»). (8.30)

Note that the extra term r in the iteration (8.21), will not affect the analysis of the
probability distribution of N: they have the same bounds as JV's. Thus, the event
{N£ = 0 - Nn

0 for all n} has the probability 1 - e x p [ - 0(<52/ε2)], and thus (8.28)-
(8.30) yield (8.12) (note that it is crucial that N was defined in a y-independent way).

8.3 Exponential Decay of Correlations. To get a short proof, we shall use FKG
inequalities (which hold for any realization of the field) following an idea of [27].
A longer, but more robust, proof should be obtained by applying our induction
and our proof of the Peierls' bound to a duplicated system.

First of all, by a result of [26], the decay of all correlation functions is dominated
by the decay of the two-point function, so we only discuss the latter. By expressing
the derivatives in terms of truncated correlation functions, one also obtains that
the free energy and the correlation functions are C00 in β and (one-sided) C00 in
h, see [26].

Next, we introduce the FKG increasing variables px = (1 + σx)/2 = 0 or 1. All
we need to prove is

m\x-y\), (8.31)

where c(h) < oo a.e. The first inequality is FKG. An upper bound on (pxpy)v is
<Pjc)κi<Py)κ2' where xεVl9yeV2 and Vu V2 are obtained by putting a "wall" of
-h spins through V9 halfway between x and y. Thus we condition on an increasing
event, and this gives an upper bound, by FKG. Therefore (8.31) holds if we prove
that < P O ) F attains its thermodynamic limit exponentially fast:

0S<Po>v-<Po>v'^ c(A)exp(-md(0, VC)) (8.32)

for O e F c V. The first inequality is again FKG. Now let E be the event: there is
no contour in V which contains, in its interior, 0 and some point of dV. Now, it
follows from FKG and a simple geometrical observation (see [27]) that

<Po>κ (8-33)

because conditioning on E means that we may find a region V czV, with xeV, on
the boundary of which the spins are + 1 . Equation (8.33) follows then from the
monotonicity in the volume. Thus, to get (8.31), we have to bound Pr(£c) by the
right-hand side of (8.31). It is clear that, if the Peierls' bound holds for all contours
enclosing x,

Pr(£c) ^ £ Pr(y) ^ exp( - mdφ, Vc)\ (8.34)

where the sum is over γ with Oelnt y, intγndV Φ 0 with m = 0(β). However, it is
also clear that, for (8.34) to hold we only need the Peierls' bound for "long" contours
(d(γ) ̂  d(0, Vc)). Going back to Sect. 8.2, we see that this holds provided Nk

x = 0
(and N^ = 0) all |x| < L and all / o ( l o g L ) " 1 logφc, Vc) (this is the scale where
contours contributing to (8.34) become small).
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So, we may write
Pr(£c) S c(h) exp( - md(x, Vc))

with c(fc) = expmL* and k = k(h) = max {fc|3x,|x| ^UNk

x or N * ^ 0 } . Using the
results of Sect. 7.3 one sees that c(h) < oo with probability one.
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