
Communications in
Commun. Math. Phys. 116, 507-525 (1988) Mathematical

Physics
©Springer-Verlagl988

Solvable Lattice Models Related
to the Vector Representation
of Classical Simple Lie Algebras

Michio Jimbo, Tetsuji Miwa, and Masato Okado

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

Abstract. A series of solvable lattice models with face interaction are
introduced on the basis of the affϊne Lie algebra X^ = A^\ B{^\ C{^\ D™. The
local states taken on by the fluctuation variables are the dominant integral
weights of X(

n

l) of a fixed level. Adjacent local states are subject to a condition
related to the vector representation of Xn. The Boltzmann weights are
parametrized by elliptic theta functions and solve the star-triangle relation.

1. Introduction

Through the last decade of investigation the significance of the Yang-Baxter
equation (YBE) in integrable systems has been commonly acknowledged. A
number of two dimensional models have been solved in statistical mechanics and
in quantum field theory on this basis. Very recently there is also renewed interest
for the YBE because of its connection with other branches of mathematics, such as
the braid group, link invariants and operator algebras [1-4].

In the study of the YBE, the idea of Lie algebras and representation theory has
turned out to be particularly fruitful. Such a viewpoint has been developed in the
framework of the quantum inverse method. Motivated by the connection with
soliton theory, a quasi-classical version of the YBE was formulated (the classical
YBE). The classification of its solutions associated with simple Lie algebras was
accomplished by Belavin and Drinfeld [5]. Kulish et al. [6] initiated the
representation theoretical construction of quantum R matrices ( = solutions to the
YBE) corresponding to the classical ones. These works led several authors [7-11]
to the discovery of a novel algebraic structure underlying the problem, the
quantum group as formulated by Drinfeld [9].

In the statistical mechanics language, the works mentioned above are
concerned with the vertex model. Here the fluctuation variables are placed on the
edges of a two dimensional lattice, and each element of the R matrix provides the
statistical weight (the Boltzmann weight) for a configuration round a lattice site, or
a vertex. There is also a dual object, the face model, in which the variables live on
the sites, and the Boltzmann weight is attached to a configuration round a face.
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(This was introduced by Baxter [12] and was called the interaction-round-a-face
model. Here we prefer a simpler terminology, the face model.) The YBE is
formulated accordingly and is more often called the star-triangle relation (STR).

Baxter's solution of the hard hexagon model [13] showed that the face model
has interest of its own right. For face models one can apply Baxter's corner transfer
matrix method to evaluate the local state probability (LSP), the probability that
the variable at a site takes a particular state. Andrews et al. [14] presented a series
of face models generalizing the hard hexagon model, and obtained their LSPs in
terms of modular functions. Subsequently it was recognized [15] that their models
are naturally associated with the affine Lie algebra Aγ\ and that the modular
functions in the LSP result are the branching coefficients for the pair (Λ^QA^,
A{ι]). This sort of result was first obtained in the Έn Ising type models [16], and has
been further extended to other cases; those related to symmetric tensors of A[1}

[17, 18] or to the vector representation of A{

n

l) [19, 20] (in the sense to be described
below).

This paper is directly motivated by these latest works. Before giving a detailed
introduction of the theme let us mention our motivation in relation to the
conformal field theory. The enumeration of all the solvable conformal field
theories is a goal still far from our sight. Recently, the classification of the unitary
discrete series has been completed, in which the conformal anomaly satisfies
0 < c < l . Aiming at theories with c ^ l three different approaches are being
pursued. The first is to exploit larger symmetries than the Virasoro algebra such as
affine Lie algebras, super Virasoro algebras, parafermion algebras, Wn algebras
and so on. The second is to approach from the modular invariance. The third is to
work with solvable lattice models. One advantage in the third approach is that the
master equation is at hand; the YBE or the STR. Recent studies [21-30] have
revealed that the known solutions are just the tip of the iceberg. The aim of this
paper is to manifest its body by showing the role of affine Lie algebras in this game.

Consider an affine Lie algebra of type X{

n

1] (Xn = An, Bn, Cn or Dn) and an
irreducible representation (π, Vπ) of its classical part Xn. We put forward the
construction of solvable face models that have the following features: Firstly, the
local states, i.e. the values of the fluctuation variables, are taken to be the dominant
integral weights of X^ of a fixed level /. We choose / to be not too small so that
there exists the level / highest weight representation of X™ whose highest weight
vector generates an irreducible Xn module isomorphic to Vπ.

Secondly, we require that the states (a, b) of neighboring variables should be
admissible in the following sense. Let V(b) denote the irreducible Xn module
having the classical part b of b as the highest weight. We say that

(*) (a,b) is admissible if and only if V(σ{b)) appears in the
irreducible decomposition of F(σ(α))(x)Fπ for any Dynkin
diagram automorphism σ.

The condition (*) was introduced in [25, 26] to rule out the divergent restricted
weights, and was shown to fit the description of the LSP result in terms of the affine
Lie algebra characters [17, 18, 20]. It was also utilized by Wenzl [31] in his
construction of the irreducible representations of the Hecke algebra, and by
Tsuchiya and Kanie [32] in the fusion rule of vertex operators in the conformal
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field theory. Recently, Pasquier [33] touched upon the possibility of constructing
face models of this sort.

In general, the solution to the star-triangle relation satisfying these two
requirements is not unique (see Sect. 5). Therefore we need a further specification of
the model. In the A(

n

1] family [19] it was noticed that the factors Ga appearing in the
second inversion relation [see (2.13b)] are equal to the principally specialized
characters. We exploit this remarkable coincidence as the third Merkmal in
finding solutions of type X{

n

i].
The cases X{£) = A{£) and π = the vector representation [19, 20] or symmetric

tensors [26, 27] have been treated previously. Here we shall work out the solutions
in the case X(^) = B{^\ C{^\ D^ and π = the vector representation. In fact, as was
done by Andrews et al. [14] in the original 8VSOS model, we shall first construct
models such that the local states take generic complex weights in the dual space of
the Cartan subalgebra. The admissibility (*) is replaced by a weaker condition that
b — a is a weight appearing in Vπ. The solutions of the STR are parametrized by
degree 2 elliptic theta functions, in contrast to the degree 1 parametrization in the
A(

n

1} family. The resulting models (which we call unrestricted models) admit
infinitely many local states, differing mutually by integral weights. We then restrict
them to dominant integral weights of level / and show that the STR closes among
the finitely many Boltzmann weights thus obtained. These are the main results of
the present article.

Let us include one remark on the above formulation of the face model. The
representations (π, Vπ) of Xn dealt with in this paper are limited in that the weight
multiplicities are merely one. For general π we need presumably to introduce extra
fluctuation variables on edges corresponding to the weight multiplicities.

The text is organized as follows. In Sect. 2 we give the formulas for the
Boltzmann weights for the unrestricted models of type A{*\ Bt£\ C{

n

λ\ and D{^\
Proof of the STR is given in Sect. 3. Section 4 deals with the restriction process
described above. Discussions are included in Sect. 5.

2. Unrestricted Models

The models we consider will be built upon the afϊine Lie algebra X^\ where Xn

denotes one of the finite dimensional simple Lie algebras An, Bn, Cw, or Dn. Our
basic reference on the affine Lie algebras is Kac-Peterson [34]. We denote by Λj

Φikjύri) the fundamental weights, and set ρ = A0 + ... Λ-An, ί)c= Σ ^ For an
7 = 0

element α e ί)^, a signifies its calssical part. Following Bourbaki [35] we introduce
orthonormal vectors ε{ to express Ά } as in Table 1. We list also the set s4 of weights
that belong to the vector representation of Xn.

We write an element of sd as

1 , c

\ for An,

= ± ^ or 0 (μ= ±i,l^i^n, or μ = 0) for Bn,

— ± β/ (μ= i:iΛ=i =n) f°r Cn, Dn.
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Table 1

Y ε, .
n + l j = i J

Bn s/ = { ± ε 1 , . . . 9 ± ε n , 0 } ,

For α G t)ί we put

so that we have

n+ 1 n+1

i = l i=ί

n

i= 1

Consider now a two dimensional square lattice j£f. We shall introduce face
models on i f that have the following basic features:

(1) The fluctuation variable placed on each lattice site assumes its values in ί)J.
We call these values local states.

(2) Adjacent local states differ by an element in j / , i.e. by a weight in the vector
representation of Xn. More precisely, this means that the Boltzmann weights

W \ Ί I describing the interaction of four fluctuation variables round a face [12]
\d cj

satisfy the condition

w(a ) = 0 unless b~a,c-b,d-a,c-dejtf. (2.1)
\d cj

Because of (2.1) the local states appearing in a possible configuration on if are
actually confined to the set α° + £ Έμ, where a0 is a fixed element of ί)$.

W

μ

Under the setting above we have found a system of Boltzmann weights
a b
d c

u that depend on the spectral parameter ue(£ and solve the star-triangle
7
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relation (STR)

Σ w

511

/ g
e d

u)W
b c

g d
v)W

a b

a b
u\W

f
v\w

u + v

g c

e d u + v . (2.2)

The solutions are parametrized in terms of the elliptic theta function

(2.3)

where L Φ 0 is an arbitrary complex parameter. Explicitly they are given by the
following formulas. We shall write

a+μ α+μ+v

μ
[1] '

v

μ|_|v =
v

W [1]

(2.4a)

(2.4b)

(2.4c)

(2.5a)

(2.5b)

( μ φ ± v ) , (2.5c)

WGJ112 0̂  + v), (2.5d)

(μΦO),
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A = ίλ + u^la^l^V^u] _ Iύ]l2aμ+ί+λ-ύ]
A bj Iλ]l2a + ί+2λ] lλ][2a + ί+2λ] β"' K j

Here μ, v = l , . . . , n + l (for 4 υ ) , 0, ± 1 , . . . , ±n (for β<υ) or ± 1,..., ±n (for
£)^1}). In the above we used the following notations. The crossing parameter λ in
(2.5) is fixed to be

λ=-tg/2 (2.6)

with ί = (long root)2/2 and g = the dual Coxeter number of X(

n

1} (see Table 2). The
factor Gaμ is given by

G a = Π [α,-fly] for 4 υ , (2.8a)
1 ^ ί < j ^ « + 1

= ε ( α ) Π % ; ) Π [fli-αj [«« + «/] for W.CΪKD™. (2.8b)
i = 1 1 ̂  i < i ^ n

Here σ = — 1 for C|j1} and = 1 otherwise, and ε(α) is a sign factor such that
ε(α + μ)/ε(α) = σ. The function /ι(α) is given in Table 2. Up to a common factor
independent of α, the expression for ± Ga coincides with the denominator formula
of X{

n

i} evaluated at α + ρ, and hence with the principally specialized character for
the dual affine Lie algebra (see [34] for the definition of the dual affine Lie algebra).

Table 2

type

g
ί

h{a)

An

1
1

2n-ί
1

M

c ( 1 )

n + 1
2
[2α]

π(i)

2π-2
1
1

Proof of the STR (2.2) [including that of the equality of (2.5e) and (2.5f) for
will be given in Sect. 3. Besides the spectral parameter u, these weights

contain two arbitrary parameters L, p entering in (2.3). We call the models defined
by (2.1, 4-5) unrestricted X^ models (as opposed to restricted models to be
discussed in Sect. 4). These terminologies, unrestricted and restricted, go back to
Andrews-Baxter-Forrester [14].

We have verified that the following equivalences between the representations
of classical simple Lie algebras extend to those between the corresponding
unrestricted face models:
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(Bί, the vector representation)
~{AU the symmetric tensor representation of degree 2),

(D3, the vector representation)
~(A3, the skew-symmetric tensor representation of degree 2).

The symmetric tensor representations of the A{

n

ί} face model have been constructed
in [26, 27], We hope to discuss a similar construction for the skew-symmetric
tensors in a future publication (see [36] for the vertex models).

The Boltzmann weights enjoy the following properties.

Initial condition

Reflection symmetry

W
a b

d c
0)=δ bd

w
a b

d c
u =W

a d

b c

Dynkin diagram symmetry

W
σ(a) σ(b)

u) =W
a b

d c

(2.9)

(2.10)

(2.11)
κσ(d) σ(c)

where σ is any Dynkin diagram automorphism acting on f$ and the parameter L
is set to ί(/ + g) (/: the level of a).

Rotational symmetry (valid except for A(

n

W
d c GnG, c b

λ-u . (2.12)

The following inversion relations will play a role in the evaluation of the local state
probabilities, though we do not discuss it in this paper.

u \W
a b

.-..(a b

d g
λ-u

- fc d
+ u)= δacρ2(u).

(2.13a)

(2.13b)

Here we have set

W
d c

«,-,M.yve b

GbGd d c

**

ί tor
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In fact the first inversion relation (2.13a) is a direct consequence of the STR (2.2)
and the initial condition (2.9). For types other than A{

n

1} (see [20] for A{

n

1])9 the
second inversion relation (2.13b) follows from (2.12) and (2.13a).

3. Proof of the STR

This section is devoted to the proof of the STR (2.2). Since a proof in the case of A{

n

1}

was given in a more general situation [27], we only consider the remaining cases
B^\ C(

n

1}, and Dj,1}. Throughout this section L, τ are complex numbers satisfying
LΦO, I m τ > 0 [jp — e2πιτ in (2.3)]. We shall frequently use the quasi-periodicity
property of the symbol [u]

lu + L]=-[u], \u + Lτ]= -e-πiτ-2niu/Llύ]9 (3.1)

along with the following standard lemma (cf. [37]).

Lemma 1. // f(u) is entire, not identically zero and satisfies

then A2 is a non-negative integer, f(u) has A2 zeros modLZ + LZτ and
X zeros =L(Bτ + AJl-A^.

First we prove the inversion relation (2.13a). It is divided into the following
three types:

Proposition 2.

μ μ
(i) μ\J}μ μ^μ=ρ(u) (μφO),

μ μ

μ μ v μ
(ii) μ 0 v μ^ΰ\v + μ\V\μ v g v = ρ(ύ) (μ + ±v),

v v v μ

μ v v v
μ\V\v μ^μ + μ\V\μ v^μ =0 (μφ+v),

v v v μ

K v
(iii) Σ μ Q - K κ£u\-v

k —μ —K

where

In (iii) the sum is taken over K = ± 1,..., ± n, 0 for B{

n

1], and = ± 1,..., + n for C{^\
\

Before going to the proof we need to prepare two lemmas.



Solvable Lattice Models 515

Lemma 3. For any a, b, c, u, v, w, λ (u + v + w = λ), we have the identity

[2a —ύ] [a + b + λ-v'] [a + c + λ-w']

[2α][α~+fc][α + c]

[b + a + λ-u] [2b-υ] [b + c + λ-w~]

[c + a + λ - u] [c + b + λ - v] [2c - w]

e2πiθ(ω)

Here the summation £ is over the half periods ω = 0, L/2, Lτ/2, L(l +τ)/2, and

) = 0, L/2,

) = Lτ/2,L(l+τ)/2. ( 1 2 )

/! Regarding the right-hand side as a function of α, one can verify that it does
not have any pole. Next we apply Lemma 1, taking B = A2 = 0,Aί=(v + w)/L. •

Lemma 4. Set

_ 1 d [u]

C du ' M->o w

(3.4)

/ By the definition, the function φ(w) satisfies

φ(u + L) = φ(w), φ(w + Lτ) = φ{u) — 2πί/LC.

From this one can verify that (the left-hand side)-(the right-hand side) of (3.4) is
a doubly periodic odd function and has no poles. Hence it must be zero. •

Proof of Proposition 2. Equation (i) is trivial. Equation (ii) is easily checked by
using the addition formula,

[x + z] [ x - z ] [y + w] [ y - w ] - [ x +w] [ x - w ] [y + z] [j - z ]

- [ x + y] [x~y] [z + w] [z~w] .

Let us prove (iii) with μ, vφO. In this case we use the expression (2.5f). Set

F (z)= K + z + 1 + ^
μv j " K + z

From (2.6) and Table 2, one finds that Fμv(z) is a doubly periodic function. If μ φ v,
its poles are located at z = aκ (K Φ 0), -1/2 + ω (ω = 0, L/2, Lτ/2, L(l + τ)/2). If μ = v,
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it has an additional pole at z= — aμ — 1. The relation £ Res F ^ z ^ Ogives rise to

[aμ + aκ+\+λ-u][av + aκ+l+λ + u]

_ i y [flμ + l/2 + A n + ω][α v +l/2 + A + « + ω] 2πW(ω)

ω [α^ + l/2 + ω][αv + l/2 + ω]

[ !-«][ ! + «] [2αμ][2αμ + 2]

" "v [ ί H ^ M p G - = °• ( 1 5 )

Here θ(ω) is given in (3.2), and the summation £ is over ω = 0, L/2, Lτ/2, L(l + τ)/2.

(Note again that the sum £ includes /c = 0 for B^λ Combining (3.5) with Lemma 3

specialized as a = b = aμ+l/20 u= —v, w = /l, we obtain (iii) with μ, v + O.

Next let us prove (iii) in the case of μ = v = 0. Let f(u) be (the left-hand
side)-(the right-hand side) of (iii). In view of Lemma 1, it suffices to check /(0)
= / ( ± ^ ) = / ( ± l ) = 0. (Note that f(u) is an even function.) The only nontrivial
step is to show /(l) = 0. Pick any index μφO. Regarding /(I) as a function of aμ

we denote it by g(aμ\ namely

[λ] [2i]

m - l ] [ 2 A + l] [1]

V +

κ l / 2 + ;,]

2] 2[ακ + l/2]2

This is doubly periodic in aμ. Let us show that it is holomorphic everywhere. It is
easy to see that the apparent poles aμ = 0 or aμ = aκ(μ φ + K) are regular points, and
that the coefficient of (aμ-\-l/2)~2 at aμ= —1/2 vanishes. The vanishing of the
coefficient of (α^ + 1/2)"1 means

[1][A + 1 ] [ 2 A 1 ]
^ Γ ΛT 9 I-r* Λ -I I"

x \ 2 φ ( 2 λ ) - φ ( λ - l ) - φ ( λ + ) + φ ( / ) + X
\ κ(Φ±μ,0)

[ i ] 2 [21] K(^,o>

Consider a doubly periodic function

F[Z)=%

£ Res F(z) = 0 this time gives rise to

= 1 [21 + ω] ω )

aκ 2 ΐ [ω]

Σ j (3.7)
κ(Φ±μ,0)
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Furthermore, by specializing u= —λ= —v= — w, a-^0 in Lemma 3, we have

Σ
ω(ΦO)

σ2niθ(ω) _ (3.8

Thanks to (3.7-8) and Lemma 4, (3.6) is reduced to

ΪTΪIITΪTC2IΪ

This can be checked by a similar method as in the proof of Lemma 4.
Now we have proved that /(I) is independent of aμ(μ φ 0). Letting aμ = μ for all

μ and using the specialized values

[ 1 ] "κn9 aΌ

we find /(l) = 0. This completes the proof of (iii) with μ.= v = 0.
The remaining case is (iii) with μ = 0, v Φ 0. It reads as

0 = " • " β O
[flv

M]

K+l/2] V W[2αv+1] [λ][2α v

From Lemma 1, it suffices to check that the right-hand side vanishes at w = 0, ±λ.
The nontrivial case u — λ reduces to the identity

+2A] [22] [2αv (3.9)

This is obtained by specializing u = λ in (iii) with μ = v φ 0. Π

Remark. From (3.9) it follows also that (2.5e) is equal to (2.5f) in the case μΦO.

Now let us proceed to the proof of the STR. First put

X(a\κ, μ, v; α, β, y\u, v)

a+κ+μ
u)W

g a+ά+fi+y

xW

x W

where κ + μ + v =

u + v)-Σw(a

w
a + ά + β

a+K+μ+v

•y is assumed.
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a

β

γ
V V

Fig. 1. The type of the STR denoted by X(a\κ, μ, v; α, β, y|w, v)

Proposition 5. Set f(u) = X(a\κ, μ, v; α, /?, y|w, y). 77ιen /(w) /zαs zeros αr 0, —1?5 A — t?
and λ.

Proof. That f(0) = f( — v) = 0 is a direct consequence of the initial condition (2.9)
and the inversion relation (2.13a) proved in Proposition 2.

Thanks to the rotational symmetry (2.12), we also have

X(a\κ9 μ, v; cc, β9 γ\u9 v)

'G + G +* + Λ 1 / 2

a a. a κ_jL j χ{μ-\-ΰ\ — v.9 K, μ\ β, y, —v\υ, λ — u — v).

This shows f{λ -υ) = f(λ) = 0. •

From (3.1) the Boltzmann weights enjoy the following quasi-periodicity
property:

W
a b

d c

w\

u +

(a

κd

Lτ

b

c

I - a b

d c

where ξ = l, — aμ + av, 0, — aμ — av— 1, — 2αμ—1 for the weights (2.5a-e) respec-
tively. From these we have for f(u) = X(a\κ, μ, v; a, β, y\u, v),

= f(u)9

where ζ depends only on a f ( i=l , ...5w).
Now let us assume that ζ φ 0 moάLΈ + LΈτ. Then we can show that f(u) = 0 as

follows. We have found zeros at u = 0, —1;, λ — υ and 2. Lemma 1 states that /(w) has
exactly four zeros mod LZ + LZτ, and that

2λ-2υ = L\4-\2τ + mod LZ + LZτ.

This contradicts the assumption £ φ 0.
From the symmetry (2.10) and (2.12), the following are equivalent:

X(a\κ, μ, v; α, /?, y|u, v) = 09

X(a\cc, β, γ K, μ, V|M, ι;) = 0,

X{a\μ, v, — y; —κ9cc, β\u, v) = 0.
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Using this, we can reduce the proof of the STR to the case ζφOmodLZ+ LZτ
except for

(1) X(a\κ9 μ, v; v, μ, κ\u, v) = 0 (κ:φ ±μ, ± v, μΦ ± v),

(2) Z(α|0, 0, O O, 0, 0|w, ι?) = 0,

(3) X(a\μ, -μ, μ\ μ, - μ , μ\u9 v) = 0 (μφO),

(4) X(α|0,μ,Q;0,μ,0|tt,ϋ) = 0 (μφO).

We now prove these exceptional cases. Equations (1) and (2) follow straightfor-
wardly. Let us consider (3). It has the form S(a, μ) — S(a + μ, — μ) = 0, where

« . .Λ [ U ] [ H - A - M ] M [ 1 + A - P ] [ W ] [ 1 + A - W ] ^_in

[ I ] 3 [ I ] 3

i I ^"Λ + a ~ u "

+ Σ

Here w — λ — u — v.

Now consider a function

—M] [ — fl^ + z + A —υ][ —α^ + z + zl —w]

zz+ru.ΛVo) [z-αj '
This is doubly periodic. A similar calculation as before shows (A = 2aμ+ 1)

This vanishes by virtue of Lemma 4.
The proof of (4) reduces to the identity

H -H [ l] 2 C2A][2α μ +l]

where H α 0 is given in (2.5g). Without loss of generality we can assume that μ = n.
The function HaQ is doubly periodic in each variable au ...,«„. The poles in a{



520 M. Jimbo, T. Miwa, and M. Okado

within the period rectangle are at= ±1/2 and their residues are independent of
(α l5...,flπ). Therefore Ha0 — Ha+h0 is independent of (α l 5 . . . ,α n _ 1 ) . By setting a{

= i(i = l, . . . , n - l ) , (3.10),reduces to {A=an),

[A -1/2] [^ + l/2] 2 IA + 3/2]

[ 2 n - 2 ]

[i] V [

Σ (-)

It is easy to see that (the left-hand side)-(the right-hand side) is independent of A
Setting A = n we can check the difference is vanishing.

Thus we have completed the proof of the STR.

4. Restricted Models

Let Xn denote An (n^l), Bn (n^2), Cn (n^l) or Dn (n^3). In this section we
construct solvable face models whose local states are the dominant integral
weights of the affine Lie algebra X^ of a fixed level /. Our procedure is to restrict
the models discussed in the previous sections as follows. We set

where t is given in Table 2. By definition a local state a of level I is a level / dominant
integral weight of X(

n

l). It reads as follows:

α = (L-α 1 +α B + 1 -iμ 0 + Σ (^-^+
i= 1

n+ 1

where α̂  —α ; eZ, £ α ~ 0 , and L + αn + 1 > α t > α 2 > ...
/ i

i = 1

where either aieΈ(dλ\ i) or α, e Z + 1/2 (all f), and L > α ] -j-α2, flj >a2> ... > α n > 0 .

where ateZ and L/2>aι>a2> ...>an>0.

D{

n

1]: a = (L-aί-a2-l)Λ0+
nΣ (α ί-0 ι.+ 1-l)Λ /-

where either ateZ (all i) or at e Z +1/2 (all i), and L>aί + a2,aι>a2> ... > αΠ5 απ _



Solvable Lattice Models 521

Let a denote the classical part of a, and let V(ά) be the irreducible Xn module
with the highest weight a. A pair of weights (α, b) is called admissible if and only if
a,b are local states of level / and V(σ(b)) appears in the tensor module
V{σ{a))®V{Λλ) for any Dynkin diagram automorphism. (The representation
F(ZX) is called the vector representation of Xn) This condition is equivalent to
b-aestf (see Table 1) except for the case Xn = Bn with a = b and an = 1/2; in this
case (a,b) is non-admissible because V(a) is not contained in V(d)(S)V(Ai). Note
also that if (α, b) is admissible the multiplicity of V(b) in V(ά)® V{A^) is exactly one.

We define the restricted weight of a configuration ) round a face to be

u as given in (2.4) and (2.5) if (α, b\ (b, c), (a, d), (d, c) are admissible, and to

Ja c
be 0 otherwise.

Theorem 7, The restricted weights are finite and satisfy the STR among themselves.

Proof We consider the case X{

n

1} = Bf£\ C{

n

ι\ D{

n

1]. The A{

n

ί] case is similar. First we

show that W
a b

u in (2.5) is finite if a is a local state and not both (a, b) and
c

(a, d) are non-admissible. The factor Gaμ of (2.7) is finite because 0 < \aμ + av\ < L if
μ φ ± v and μ, v + 0. (Note also that 0 < \2aμ\ < L if Xn = CΛ.)

μ v
The weight of type / i [ ] v o r μ O μ with μ Φ ± v is finite if \_aμ — αv] =j= 0. So it is

v v
except for the case aμ = 1/2 and (μ, v) = (0, — ή), (— n, 0), in which both (α, b) and (α, d)

0
are non-admissible. The weight of type 0 Q 0 is finite because \aμ H-1/2] = 0 means

0
that μ = — n, an = 1 /2 and that both (α, fe) and (α, d) are non-admissible. The weight

v
of type μ Q] — v (μ Φ v) is finite because the factor \_aμ + αv + 1 ] is cancelled by the

same factor in ]/GaμGav. Finally the weight of type μ Q ] — μ (μφO) is finite
-μ

because we have two different expressions (2.5e) and (2.5f); the former is relevant if
[2αμ + l + 2 / l ] φ 0 and so is the latter if [ 2 α μ + l ] φ 0 . (Note that [αμ + ακ + l ]

±μ) in (2.5g) is cancelled by Gaκ.)
Next we prove that if (a, d), (d, c) are admissible and (a, b) is non-admissible then

the weight W
d c

u I is vanishing with the exceptions mentioned below. As for

J
the weight of type μ Q μ (μ φ ± v) this is because [αμ — αv — 1 ] = 0. As for the weight

v v
of type μ Q] — v(μΦv) this is because Gav = 0 unless Xπ = 5n, an = 1/2 and v = 0, — n.

- μ / h \
Since the original weights FM wj satisfy the STR, the proof of the

theorem is completed if it is shown that the contribution from the terms with non-



522 M. Jimbo, T. Miwa, and M. Okado

K

K

n

-n -n
Fig. 2. The cancellation of the two unwanted terms in the STR

admissible pairs is zero. With the above consideration the last step is to check the
cancellation of Fig. 2 in the case Xn = Bn and &„ = /„= 1/2. This is
straightforward. •

5. Discussion

In this paper we have presented further elliptic solutions to the STR. They give
solvable models with face interactions on a two dimensional square lattice S£. The
local states of the model belong to the dual space of the Cartan subalgebra of the
afϊϊne Lie algebra X{

n

1} = A{^\ B^\ C{

n

1} or D^\ Two local states a, b are admitted to
occupy adjacent sites of if, a being located at the left or the upper neighbor of b, if
and only if b — a is a weight of the vector representation of Xn. We propose to call
the model the X{

n

ί] face model (or the unrestricted face model of type X(

n

1}).
The naming comes from the fact that a hierarchy of restricted models is

obtained from the unrestricted one in such a way that the local states are the level /
dominant integral weights of X^\

We note that a solvable face model is not uniquely determined by the
specification of the local states and the selection rule of adjacent states. In fact, the
unrestricted models of type C[l) and D{

n

ι) are not distinguishable in this sense. There
are three different restricted models with the same local states and the selection
rule of Fig. 3; the Akutsu-Kuniba-Wadati model [24], the level 2 restricted model
of type B{

n

ί] with ^ e Z + 1 / 2 and the level 2 restricted model of type D(

2V+ ί with
α^eZ. From our unrestricted models the whole series of restricted ones are
produced simultaneously by restricting the local states a and the parameter L. We
think this fact justifies our naming.

Fig. 3. The incidence diagram common to three models, the Akutsu-Kuniba-Wadati model, the
B{

n

1] face model and the D(

2V+i face model (L = 2M + 1)
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It will be fully supported if the following programs can be executed:
(i) The construction of unrestricted models of type X^ (including E{£\ E{η\

E{$\ Gψ, and F{^}) corresponding to arbitrary irreducible representations of Xn,
and the restriction to level I. In general, the weight multiplicities of an irreducible
representation of Xn may exceed one. For such a case a modification of the STR
will be necessary.

(ii) The computation of the local state probabilities: The symmetric tensor of
the Aψ face model [17, 18] and the vector representation of the A(

n

1} face model
[20] have been treated. The results were mysteriously related to the irreducible
decomposition of the tensor product representations oϊA{

n

ι\ A key to this link was
the identification of the factors Ga (2.8) in the second inversion relation with the
specialized characters of A{

n

1}. It is tantalizing to note that the Ga of the X{

n

1] face
models coincide with the specialized characters of the dual affine Lie algebra of
X%\ i.e. Aψn_! for B{

n

ι) and D<2_> λ for C[l\ (D™ is self dual.) We hope to discuss on
this point in a future publication.

Before ending, a remark is in order about the relation with solvable vertex
models. In [19,20] we have found the A^ face models via the vertex-face
correspondence [38] starting from Belavin's elliptic solution [39]. Is there a
similar correspondence in the B^\ C^\ D^ cases? In [5] a classification scheme
was given of the solutions to the classical Yang-Baxter equation in terms of simple
Lie algebras. Belavin's solution mentioned above corresponds to the elliptic
solution of type An in their table. Under the non-degeneracy condition assumed by
Belavin-Drinfeld no other elliptic solutions exist. Therefore, if possibly the vertex-
face correspondence can be extended to the general cases the vertex counterpart
must not have the classical limit in Belavin-Drinfeld's sense. We also note that the
trigonometric limit of the vertex-face correspondence, between Belavin's vertex
model and the A{

n

λ) face model, becomes trivial and does not give a proper
correspondence between the models in the limit. For the moment we do not know
any internal link between the trigonometric vertex models of [39-41] and the
trigonometric limit of the face models given in this paper.

Acknowledgements. We would like to thank A. Tsuchiya, Y. Kanie, A. Kuniba, and T. Yajima for
useful discussions.
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