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Abstract. We establish existence of a dense set of non-linear eigenvalues, £, and
exponentially localized eigenfunctions, uE, for some non-linear Schrόdinger
equations of the form

EuE(x) = [ ( - J + V(X))UE] (X) + λuE(xf,

bifurcating off solutions of the linear equation with λ = 0. The points x range
over a lattice, Έd, d = 1,2,3,..., A is the finite difference Laplacian, and V(x) is a
random potential. Such equations arise in localization theory and plasma
physics. Our analysis is complicated by the circumstance that the linear
operator — A + V(x) has dense point spectrum near the edges of its spectrum
which leads to small divisor problems. We solve these problems by develop-
ing some novel bifurcation techniques. Our methods extend to non-linear wave
equations with random coefficients.

0. Introduction. Motivation, Results, and Basic Ideas

The purpose of this paper is to construct infinitely many time-periodic solutions to
some non-linear, partial difference equations which can be viewed as the equations
of motion of Hamiltonian systems with infinitely many degrees of freedom.
Physically, these systems describe infinite arrays of coupled anharmonic oscil-
lators with the property that when the anharmonic (non-quadratic) terms in the
Hamilton function are neglected the frequencies of the oscillators are non-
resonant, in a suitably strong sense to be made precise later on. We propose to
show that from infinitely many periodic solutions of the unperturbed system of
harmonic oscillators periodic solutions of the perturbed system of coupled
anharmonic oscillators bifurcate.

The main difficulty encountered in such an attempt is that the spectrum of
frequencies of the unperturbed system is dense in some interval 7£R. This makes
standard bifurcation techniques inapplicable and has motivated us to develop
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some novel techniques. The basic fact about the unperturbed system that enables
us to carry out our construction successfully is that two or more different harmonic
motions corresponding to nearly degenerate frequencies involve degrees of free-
dom in nearly disjoint regions of phase space.

We proceed to discuss some examples of non-linear equations that we are able
to analyze. The first example is a non-linear Schrόdinger equation:

i-γ-{x,t) = (-Δ + V{x))ψ(x, t)+W{\ψ\){x9 t)ψ(x, t). (0.1)

Here x denotes a point in the simple, (hyper-) cubic lattice Z v, v = 1,2, 3,...; ί, the
time variable, is real; Δ is the finite-difference Laplacian, i.e.

{ΔΨ)(x)= Σ ψ(y). (0.2)
v : |y-χ | = l

V( ) is a random potential, more precisely {V(x)}xeZv are independent, identically
distributed (i.i.d.) random variables. The distribution, dρ(V\ of V= V(x) is given e.g.
by

dρ(V) = ]/-e-v2KdV (0.3)

or by

1

etc., where ζ is a measure for the disorder in the system. Finally,

w(\Ψ\)(χ)= Σ w(\χ-y\)\ψ(y)\\ (0.4)

where W is a positive, non-zero, exponentially decreasing function, i.e. :

for a certain mw > 0.
The linear Schrodinger equation

i^(x,t) = {H°ψ){x9t) (0.5)

with

was introduced by Anderson [1] to model the dynamics of a quantum mechanical
particle, the electron, moving in a disordered (random) background. This model is
important in the theory of electrical conductivity in disordered metals. The long-
time behaviour of the wave function of the electron may be characterized by its
spread

r2(ί)= Σ x2\{e-itH\){xf. (0.6)

Anderson argued [1] that if the disorder, ζ, in the distribution of the potential V is
large enough, or if the energy of ψ is close to the edges of the spectrum of//0, and if
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ψ(x) is rapidly decreasing, then

r 2 ( ί ) ^ const < oo (0.7)

for all time. In one dimension (v = 1), (0.7) is known to hold for arbitrary disorder
ζ > 0 and all energies [2]. In higher dimensions (v ̂  2), (0.7) was proven in [3], for ζ
large, or for energy ranges close to the edges of the spectrum of//0. In fact, much
more is known: For v = l, the spectrum, σ(H°\ of H° is simple, dense and pure-
point for arbitrary C>0, [2]. For v^2,

σ(H°)n[(- oo, - £ , ( 0 ) υ ( £ , ( 0 , oo)] (0.8)

consists of simple, dense and pure-point spectrum [4, 5]. Here O^E^(ζ)< GO, and
if ζ is large enough, the entire spectrum of H° is simple, dense and pure-point.

The eigenfunctions of H° associated with eigenvalues in the set (0.8) are
decaying exponentially fast in \x\.

These properties can be used to prove (0.7). They are interpreted, physically as
localization: If one prepares an electron with sufficiently small energy in some
bounded region of a disordered background it will stay inside roughly the same
region for all time.

The problem with Anderson's model is that it completely ignores the
interactions between different electrons. Suppose \ψz.(x)} are eigenfunctions of H°
localized near points z; e Z v , where {zj is an infinite array of points of positive
density, ρ°. (That such a family of eigenfunctions of H° exists, for almost every
random potential V, is one of the basic results of [4].)

We recall that electrons are particles with spin \ obeying Pauli's exclusion
principle. Thus, given a density, ρ < 2ρ°, of electrons, we can fill every eigenfunction
("orbital") ψZι of H° with zero, one or two electrons, as long as electron-electron
interactions are neglected. Suppose now that some orbital ψZo is filled with two
electrons with anti-parallel spins. We now gradually turn on all electron-electron
interactions and ask whether the electrons, initially in state ψZo, remain localized
near z0. It is clear, intuitively, and has been verified in special situations in an
approximate treatment [6], that the electrons in other orbitals ψZι, z'ΦO, enhance
the localization of the two electrons in ψZQ. However, the repulsion between the two
electrons initially in ψZo tends to delocalίze them. The electron-electron repulsion is
described by a Coulomb potential. However, in a solid the Coulomb potential
tends to be screened, and we therefore describe the electron-electron repulsion by a
potential, W, of exponential decay. In order to study the delocalizing effect of the
electron-electron repulsion on the electrons initially in ψZo, we consider a Hartree
approximation [7]. The state of the two electrons, after the electron-electron
repulsion has been turned on, is described by a symmetric wave function,
u(x1)u(x2)-> where u(x) solves the non-linear eigenvalue problem corresponding to
(0.1),

(-Δ + V(x) + λ W(u) (x))u(x) = Eu(x) (0.9)

and u can be chosen to be real, with

!l«lli= Σ («M)2 = i . (o.io)
xeΈv

λ is proportional to the square of the electric charge of the electron.
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One purpose of this paper is to construct solutions, uλ, of (0.9) corresponding to
some non-linear eigenvalues Eλ and obeying (0.10), with the property that

\un\\uλ-ψzo\\z = 0 (0.11)

and

l i m £ ; = £ 0 , (0.12)
αo

where Eo is the eigenvalue of H° corresponding to the eigenfunction ψzo. This
result is interpreted, physically, as supporting the idea that Anderson localization,
as described by (0.7) and (0.8), is stable under turning on electron-electron
repulsion.

Another physical motivation for the study of a non-linear Schrόdinger
equation similar to (0.1), but with λ<0, is found in plasma physics. If ψ is replaced
by the electric field E, and W has finite range, e.g. W(x — y) = δxy, then (0.1) is a
limiting case of the Zakharov equations describing the propagation of the electric
field through a plasma, in the presence of a disordered background [8]. Our
methods can be used to construct an infinity of stationary (standing wave)
solutions for that system.

The interpretation of (0.1) as a Hamiltonian mechanical system and further
physical applications of the non-linear Schrόdinger equation, e.g. to classical spin
wave theory, have been discussed, for example, in [9].

We proceed to discussing a second example. Consider a non-linear wave
equation

^ = 0, (0.13)

where u is now a real function on Zv, A is still given by (0.2), Ω2, = ΩQ(X) is a
multiplication operator such that {Ωl(x)}xeΈv are i.i.d. random variables, and
Ωl = M -f- 2v has distribution

dρ{M) = NΘ{M)e~mce/ζdM, α ^ l , (0.14)

where N is chosen such that j dρ(M) = 1 or a distribution similar to the one in (0.3ι).
[Here 0(M) = O, for M<0, 0(M) = 1, for M ^ 0 .

= ΣW{\x-y\)u(y)2

9 (0.15)
y

where W(\x\) decays exponentially in |x|.]
Clearly, (0.13) are the equations of motion for an infinite array of coupled,

anharmonic oscillators. Our purpose is to construct time-periodic solutions to
(0.13), using the following ansatz:

u(x,ή = (\df\-ll2v){x,ωή, (0.16)

where ω > 0 and v belongs to L2(ZV x [ — π,π]), i.e.

J dt( Σ v(x,t)2)=\. (0.17)
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Moreover, v is required to be odd and periodic in t, with period 2π, i.e.

v(x, ~ t) = - v(x, t), v(x, - π) = v(x, π) = 0. (0.18)

Finally, d2 is the Laplacian with periodic boundary conditions on the space
L2([ —π,π]). Its odd eigenfunctions are given by sin(nί), n = l,2,3,..., correspond-
ing to the eigenvalues n2.

Our ansatz (0.16) will provide us with a periodic solution, u(x, t), of (0.13) with

period — if the function v satisfies the equation
ω

τ[ - A + Ωl + λW(τv)]τv = ω2v, (0.19)

for an arbitrary λ > 0, where

τ = | δ ί

2 | " 1 / 2 . (0.20)

Solutions of (0.19) satisfying (0.17) and (0.18) give rise to solutions of (0.13) of

period — which are odd in t and localized in space, i.e. square-summable over Έv.
CO

[We note that by rescaling v in (0.19) we can fix the value of λ at 1 at the price of
varying

ϊ dt( Σ v(x,t)2).

But we prefer to vary λ and impose (0.17).]
Our ansatz (0.16)-(0.18) has converted the original problem of constructing

time-periodic solutions to (0.13) into a non-linear eigenvalue problem (0.19)
analogous to (0.9). We propose to cope with this problem as well as with (0.9) by
using some novel bifurcation techniques. The main goal of this paper is to expose
those techniques.

Next, we summarize our main results in the form of several theorems. We begin
by recalling the main results for the linear eigenvalue problems

(-Δ + V)u = Eu9 (0.21)

{-Λ+Ω2

0)u = ω2u, (0.22)

underlying (0.9) and (0.19), respectively.

Theorem L [4,5]. Let dρ be as in (0.3), (0.14), respectively. Then for every dimension
v = l,2,3,... and arbitrary C>0, there are constants E^(v,ζ) and ω%(v,ζ) such that

and

σ(~Δ+Ω2)n{ω:ω2>ωl{v,ζ)}

are simple, dense pure-point spectra, with probability 1 (w.p.l) with respect to F, Ω\,
respectively.

If v = 1, or if ζ is large enough, then the spectra of —A + V and — A + Ωl are
simple, dense pure-point on [ — 2v, 2v] + supprfρ, [0,4v]+suppdρ, respectively,
w.p.l.
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Remark. If dρ is as in (0,3x) Theorem L remains true for ζ large enough, and for
arbitrary ζ when v = l .

For proofs and background material see [3-5]. (The simplicity of the pure-
point spectrum of — A -f V and of — A + Q% has been proven in the second paper
quoted in [5].)

It is expected, though not rigorously established, that, for v ^ 3, the portions of
the spectra of —Δ + V and — A + Ω% in the intervals ( — £0(v, ζ), E0(v, ζ)),
[0, COQ(V, 0), respectively, are absolutely continuous with 0<Eo(v, QrgE^v, ς).
0<ω o(v,ί) = ω*(v>ζ), for ζ sufficiently small.

The purpose of this paper is to prove the following non-linear versions of
Theorem L.

Theorem NL1. // W(|x|) decays exponentially in \x\, then there exists some constant
Eι(v, ζ)^E^(v, ζ) such that for almost every V, for every (simple) eigenvalue, Eo, of
— A + V, with \E0\ > E^v, ζ), corresponding to an eigenfunction uo(x), there are a set
ΛcΊR. containing 0 as an accumulation point and a family (uλ, E?)λeA of solutions of
the non-linear Schrδdinger equation (0.9), with | |w ; j | 2 -l, far all λeA, such that

lim | | M A - M 0 I I 2 = 0 . (0.23)
λ-+0
λsΛ

The set $ = {Eλ}λeΛ is a Cantor set with the property that

2εk-l{£n(E0-εk9E0 + εk))

tends to 0faster than any power of εk,ask~^oo, for some sequence εk which lends to 0,
as /c—>oo. Here I denotes Lebesgue measure.

Remark. The minimal and maximal elements of A and the Lebesgue measure of A
are not controlled explicitly, because A is obtained in a not fully constructive way
(see Sect. 2).

We have, however, an alternative fully constructive result on the existence of
solutions of the non-linear eigenvalue problem (0.9), (0.10) summarized in the
following theorem.

Theorem NL2. Consider the distribution (0.3), and suppose that W(\x\) is of finite
range. Then there exists a constant E\(v, ζ) ̂  E^.(v, ζ) such thai for every λ > 0 there is
a set, Ω(λ), of potentials, V, of full measure with the property that for VeΩ(λ), the
non-linear Schrodinger equation (0.9), (0.10) has infinitely many solutions, and the
corresponding eigenvalues form a dense subset of

{E:\E\>E\(v,ζ)}.

Remarks. (1) Our methods presumably enable us to show that the density of states
of solutions to (0.9) and (0.10) is strictly positive on {E: |£ | > E\(v, ()}, but we have
not checked all the details.

(2) While Theorem 1 shows that from every solution (u0, Eo) of (0.21) with | £ 0 |
> Et(ζ), a solution of (0.9) bifurcates, Theorem 2 shows that when one starts from
certain solutions of (0.21) one can construct solutions of (0.9) for arbitrarily large
values of λ.

Analogues of Theorem 1 and 2 can be proven for the non-linear eigenvalue
problem (0.19), (0.17), with proofs very similar to those of Theorems 1, 2.
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Theorem NL 3. // W(\x\) decays exponentially in \x\, then there exists a constant
ω i ( v

5 ζ) ̂  ω*( v? 0 such that, for almost every ΩQ, for every eigenvalue ω§ > ω2(v, ζ) of
— A + Ωl with the property that

n O)Q is not an eigenvalue of —Δ + Ωl, (0.24)

for every n = 2,3,..., there are a set Λ c R containing 0 as an accumulation point and
a family (vλ,ω?)λeΛ of solutions to (0.19), (0.17) such that

lim l l ^ - ί ^ o I I 2 = 0 , (0.25)
λ->0
λeΛ

where

vo(x, t) = uo(x)τ ~1 sin t, (0.26)

andu0 solves(022)-or, equivalently v0 solves(0.19),(0.17), for Λ = 0- wiίhω2 = CUQ.
The set & = {ω}}λeΛ is a Cantor set, and there exists a sequence (εk) tending to 0,

as k-+ co, such that 2εk — /($n[ojo — ̂ , ω o + ε j) tends to 0 faster than any power of

Theorem 3 is the exact analogue of Theorem 1. Similar to Theorem 2 there
corresponds a result, Theorem 4, for the non-linear eigenvalue problem (0.19),
(0.17) which holds for all λ>0 and whose proof is completely constructive; see
Part III.

Remarks. (1) Results analogous to Theorems 3 and 4 can also be proven for
wave equations of the form

dί2 J

where W is as in (0.13), and

(ΔjU)(x) = ΣJyMy)-Φ)), (0.27)
y

where the Jyx are positive, symmetric independent random variables, with Jyx — 0 if
y — x\ > l0, for some finite l0. For A3 a result similar to Theorem L is available, and

the methods of the present paper can be used to analyze (0.131).
The construction of a perturbation theory for periodic solutions of continuum

equations of the form

^ 4 (*> 0 - A Φ% 0 + λu3(*> 0 = 0, (0.28)

where x e [ — π, πj, presents problems due to the density of the spectrum of the
d'Alambertian which looks similar to ours. However, it appears that this problem
requires an improvement of our methods, because after the transformation (0.16)
the eigenvalues of the linear part are all of infinite multiplicity.
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(2) We think it would be very interesting to generalize these results to quasi-
periodic solutions. In fact, KAM methods tend to work only for finite dimensional
hamiltonian systems and the radius of analyticity in the coupling constant of the
perturbed tori tends very rapidly to zero as the dimension tends to infinity. On the
basis of this work, our guess is that for some class of infinite dimensional
Hamiltonian systems it may happen that though the radius of analyticity in the
coupling is zero, nonetheless there is a "substantial" set of (real) coupling constants
for which the tori still exist. In other words it may be that as we vary the coupling,
tori cease to exist and are born again intermittently, an infinity of times. The
problems involving quasi-periodic solutions are certainly harder than those
analyzed in this paper, though not hopelessly, difficult. Some rather conventional
steps in this direction have already made in [9,10].

(3) The last open problem we would like to mention, would be to establish non-
linear localization for an equation like the non-linear Schrόdinger equation (0.1).
The goal would be to show that, for ζ large enough, solutions ψ(x,t) of (0.1) with
initial conditions of compact support have the property that

r2(f)= Σ M2M*,f)l2

x e Z v

grows less than linearly in ί, as |ί| -> oo, corresponding to subdiffusive behaviour, or
is bounded by D(ζ)|ί|, as |ί|->oo, with D(ζ)->Ό rapidly, as ζ—>co. See also [9] for
some discussion of this problem, and [11] for a result in one dimension.

Our work is organized as follows:

Part I. Proof of Theorem NL1.

Section ί. Strategy for the proof of Theorem NL1.

Section 2. The gap set.

Section 3. Bounds on the pole-subtracted Green function.

Section 4. Proof of Theorem NL1.

Part II. Proof of Theorem NL2.

Part III. Anharmonic oscillators with random masses.

In the present publication only Part I is contained. The second and third parts
will appear elsewhere.

Part I. Proof of Theorem 1

1. Strategy for the Proof of Theorem 1

Let (UQ,E0) be a solution of the linear eigenvalue problem (0.21), as specified in
Theorem 1 [i.e. with |E0 |>£j(v,C)]. We propose to prove that, for all ε o > 0 , there
exist a subset A of the real line containing 0 as an accumulation point and a family
(w;, E})λeΛ of solutions of the non-linear eigenvalue problem (n.l.e.v.p.) (0.9), (0.10)
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such that S — {Eλ}λeΛ is a Cantor set with the properties specified in Theorem 1,
and

| | u λ - M 0 | | 2 < 6 0 , VλeΛ. (1.1)

This is the contents of Theorem 1.
The formal proof of this result is begun in Sect. 2. Here we sketch the main

ideas. Given w0> we choose the origin 0 e TD in such a way that u0 is localized near 0,
in the following sense.

We shall analyze the behaviour of u0, and of uλ, inside cubes Ά p A-p defined by

Άj={x:\x\£dj}9 Λj={x:\x\^4dj}, (1.2)

where \x\ = max |xα|, and

d~exp(β(lY), 7 = 1,2,3,..., (1.3)

where /?>0 some constant to be fixed later; see also [4]. We define annuli A} by

Aj = Aj+1\Ar (1.4)

Let G%z] x, y) be the Green function of the operator H°A which is the restriction

of — A-\- V to 12(A), A a subset of Z v, with 0 Dirichlet data at the boundary dA of A.
It is shown in Sect. 3 of [4] that, for j>k, where k is a finite random integer

depending on (E0 = E0(V), V\ and for x and y in Ap with |x — y\^ ~ - \

\G°Aj(Eo;x,y)\Sexpl-m>(Eo)\x-ytt, (1.5)

for some m'(£ 0 )>0; [m / (E 0 )^ln |£ 0 | , for | £ 0 | large]. Inequality (1.5) - which is a
rather deep fact about the operator H° = — A + V - has two important
consequences:

(i) The eigenfunction u0 has uniform exponential decay outside Ah

\uo(x)\ = e x p [ - m(E0) |x|] , x φA-ki (1.6)

where m(E0) = cm'(E0), for some purely geometrical constant c>0.
(ii) Eigenvalues oϊH° corresponding to eigenfunctions localized outside A% do

not resonate with Eo, in the following sense: If (£, u) are such a pair of eigenvalues
and eigenfunctions of H° and if \E — E0\^e~vd\ j>K then w is localized in an
annulus Aί separated from Λι by a distance ^dj — 4dli = dj, for Ŝ large enough.

The dense set of eigenvalues of H° in an open interval around Eo can thus be
grouped in two subsets: Eigenvalues corresponding to eigenfunctions of H°
localized inside Ah and eigenvalues corresponding to eigenfunctions localized
outside Afc The first subset, Eu ...,Enik} is finite, and there is a gap A^ such that

for ; = 1 , . . . , , # ) . (1.7)

The second subset is infinite, but its elements do not resonate with EOi in the
sense made precise in (ii), above.

In order to construct a solution of the n.l.e.v.p. (0.9), (0.10), we shall use a
deformation technique in the parameter /, yielding n.l. eigenvalues Eλ, EUλ,
i= 1, ...,n(fe), corresponding to £ 0 , £ l 5 ...,Eni-k) respectively, and we shall keep |Λ.| so
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small that ReEf ; does not cross Re£ ;, for all L The eigenvalues in the second
subset are dense around Eo, but, thanks to property (ii) above, they do not collide
with Eλ, if λ is permitted to make excursions into the complex plane, as we shall
describe. By taking Imλ to 0 at suitable values of Re λ (values constituting the set A
introduced in Theorem 1), we shall obtain solutions of the n.l.e.v.p. (0.9), (0.10).

We now make these ideas somewhat more precise: We shall construct a
connected, open set

(see Fig. 1), and a family (Eλ^u)δ) of solutions of the following n.l.e.v.p. which
depend smoothly on (?hδ)eP(E0, V):

(1.9)

We shall further constrain the solutions uλb of (1.9) to belong to a subset % of

ZV) defined as follows:

%= \u\max\u(x) — uo{x)\^c0, \u(y)\ g<
xeΛk

where M = min

(1.10)

I 2 ' 2
, with mw the decay rate of W(|x — y\).

In Fig. 1, δ^e~χd\
We intend to construct solutions to (1.9) along any path 7iU72u>'3C P(En, V)

with the property that its image, Eλtδ,(λ,δ) 7iuy2u73, has piecewise con-
stant real and imaginary parts, respectively. The important property will be
that lim Eλ δ = E must be contained in a certain Cantor set $, which we call ugap

<5-»0
(λ,δ)eγ3

set" and which depends on (Eo, V). Energies in $ will obey certain non-resonance
conditions; see Sect. 2. The set £ is the one described in Theorem 1. It will be
shown that y3 = {{λ(δ\δ)}δeI, where J is a closed interval on the positive δ-axis
containing 0, can be chosen such that RQEλ{δ)δ = E, Vδel, lim ?,(δ) = λ e R exists,

b I 0

limlmEλ{δ)tδ = 0, uλ

b I 0

δ i o
λ { δ ) t δ

^/h Vδel, and limuλ{δ)tδ = u-λ exists.
δ i o

Finally, (uhE) is a real solution of (0.9), (0.10).

Fig.l
IReE
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Our construction of P(E0, V) will guarantee that, for all (λ, δ) e P(E0, V), Eλδ is
a simple and isolated eigenvalue of the linear operator

-A + V+(λ + iδ)W(\uλJ). (1.11)

In order to construct P{E0, V) we shall integrate certain differential equations
(deformation equations) for (uλό, Eλtδ) which will guarantee that (1.11) is valid. We
now describe, how these differential equations are obtained. We suppose that
P{E0, F)φ0. Let U be a sufficiently small open neighborhood of a point (Aθ9 <50),
with U C P(E0, V). The pair (uλi δ, Eλt δ) then solves the n.l.e.v.p. (1.9), for all (/, δ)eU
if and only if uλ δ is a fixed point of the following non-linear map:

(1.12)

Here ^ is a small circle in the complex plane which encloses precisely one
eigenvalue Eλδ{u) of the linear operator

(λ + iδ)W(\u\), (1.13)

for every (λ, δ)eU and every ue iV, where N is a sufficiently small neighborhood of

W;.o,do i n t h e s P h e r e

S={u: |!w||2 = l } . (1.14)

The existence of the neighborhoods U and N and the circle ^ follows from
property (1.11), by means of analytic perturbation theory [12]. Furthermore
c(u;λ,δ) is a normalization constant chosen such that Tλ'δ maps S into itself.

The important point is now that <€ is independent of (λ, δ) if U and N are chosen
small enough. Therefore, the fixed point equation

Tλ'\u) = u (1.15)

does not contain the n.l. eigenvalue Eλtδ explicitly anymore, in contrast to (1.9).
There are different ways of trying to construct a solution of (1.15); (various fixed

point theorems, implicit function theorems). We analyze (1.15) explicitly with the
help of a differential equation. Differentiating (1.15) on a solution u = uλδ with
respect to δ yields

iQKλΛEλJW(\uλJ)uλ,δ

iδ)QKλ \EλJDW{\uλJ) [%^]«;.,,, (1-16)

where

with

P°uv = (u,v)u, P°uv = {v,u)u
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and

(u,υ)= X u(x)v(x).
xeZv

The operator Q arises from the differentiation of the normalization constant
c(uλδ;λ,δ)in δ.

Moreover,

-{z-EλJ~'PUλό. (1.18)

This operator can be analytically continued to z = Eλtδ, for U,N small enough,
thanks to property (1.11).

The operator Kλ'δ(z) is called the "(pole-)subtracted Green's function."
Finally, DW denotes the (R-linear!) derivative

^ ^ (1.19)

and DT is defined analogously.
All these objects are defined in detail in the Appendix, where the reader also

finds a derivation of (1.16).
Suppose now that, for (λ, δ) e P{E0, V\ the condition

\\QKλ-\Eλtδ)DW\v\\\<\λ + iδ\-1 (1.20)

holds, for υluλδ with ||ι;||2 = 1, where || || is the operator norm of operators acting
on 12{T£V)' Let K = Kλf δ(E2 δ). Then we may rewrite the differential equation (1.16) in
normal form

d^ J)uλ^. (1.21)

We remark that the operator which is inverted on the right-hand side is only

R-linear, and not (C-linear. A similar equation can be derived for -
ό λ

The basic problem in proving the bound (1.20) and thus deriving (1.21) is to find
suitable bounds on the subtracted Green's function Kλ'δ(Eλδ). Such bounds will
also be used to prove that Eλδ is a simple, isolated eigenvalue of

i.e. to derive condition (1.11). In Sect. 3, we shall establish a bound on the integral
kernel, Kλiδ(x,y), of the operator Kλ'δ(Eλδ) for functions ueU^ and for
small enough. Our bounds will hold, provided

e ( £ o - i β - ι / a ί τ , £ o + i e - 1 " ' Γ - τ ) , (1.22)

where dj has been defined in (1.3), and

either
1 23)

or ReEλ,δeg{k,V)J
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where @(k, V) is a gap set to be defined more precisely in Sect. 2. Approximately,
the gap set ^(k,V) is a Cantor set contained in {E:\E\>Eί(\\ζ)}9 obtained by
deleting from {E:\E\>E1(v,ζ)} an interval of length e~dj ' around every
eigenvalue of — A + V corresponding to an eigenfunction localized in the annulus
Ap for all ^fc. The constant y satisfies 0<y ^ and will be defined in Sect. 2. The
integer k is chosen such that Eo e G(k, V).

Our construction of solutions uλδ to the n.l.e.v.p. (1.9) will proceed by

integrating the differential equation (1.21) and a similar equation for-——- along a
ok

suitable path in the (k, <5)-plane which is obtained imposing conditions on ReE λ s δ,
or on lmEλ δ (see Fig. 1), respectively. Thereby we shall obtain the set P(E0, V)
mentioned in (1.8). The equations along the first curve y1 = (k(δ\δ) are:

( 1 2 4 )

The initial conditions for (1.24) are:

2(0) = 0 and uo,o = uo. (1.25)

By the choice of /c, and since ReEλ(δ)tδ = E0 [by (1.30)], condition (1.23) is satisfied
along the curve yx = {k(δ), δ). This will enable us to prove bounds on the solution
uλ(δ),δ using estimates on \Kλ{δ)>δ(x,y)\ established in Sect. 3, provided uλ{δ)δ

remains in the subset % introduced in (1.10). For such values of δ, the first
alternative in (1.23) holds. This enables us to proceed in deforming uλ δ by varying
k and adjusting δ in such a way that lmEλ(δ)d remains constant; see Fig. 1. As we
vary k and δ in this fashion, RQEX δ turns out to sweep over an interval:

( £ 0 - ε , £ 0 + ε), with ε^e~cl/d^1 (1.26)
for some c>\.

Defining $ as the intersection of ^(fc, V) with the interval ( £ 0 —ε, £ 0 + ε), we
pick a point (k, δ) such that R e £ ; ό e <&(k, V). At this point, we may deform uλd by
decreasing δ towards δ = 0 and adjusting k = k(δ) in such a way that R e £ ; δ remains
constant.

A remark should be added on the initial condition (1.25): Although the right-
hand side of Eq. (1.24) makes sense even at k = δ = 0, the proof of it may, a priori,
fail, because Eo is not isolated. However, if we have a solution of (1.24) with initial
conditions (1.25), then uλ{δ)tδ has to be an eigenfunction of (1.9). In fact, iϊδ>0 Eλ δ

turns out to be an isolated eigenvalue of the linear operator (1.11) and the

d i f f e r e n C e u -Tλ^δ(u ) (121)
uλ(δ),δ 1 \uλ{δ),δ) yi ^n

does not depend on δ. By a limiting argument involving imposing Dirichlet
boundary conditions on a box and letting the box | ^ v , one can easily see that (1.27)
has to vanish, because u0 is an eigenfunction for <5 = 0.
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This concludes our outline of the strategy of the proof of Theorem 1. if the
reader finds it somewhat complicated, he or she may find that the mist will lift in
the following three sections.

2. The Gap Set <S{k, V)

In this section we construct the gap set <&(k,V) introduced after (123). Our
construction relies on the notions and results of [3,4].

Following [3] we define a decreasing family of singular sets

So(£, V)2S,(E,V)2S2{E, V)2 , (2.1)

where

So(£, K) = { x e Z ^ | 7 ( x ) - R e £ | ^ 2 v + 2ro'(E)}, (2.2)

where m'(£) is a positive function, with m\E) ~ In |£|, as |E| -»oc. Simple probability
estimates show that if ζ is large, or ReE is large, S0(E, V) is a subset of 7D of very
small density, and S0(E, V) does not contain an infinite connected cluster.

Let A be an arbitrary subset of Z v with the property that AnS0(E, 7) = 0, and
let G°Λ(z\x,y) be the Green function oϊH°Λ. Then simple perturbation theory in ΔΛ

shows that

f - - j ; | ) (2.3)

for all x and y in A.
The singular sets Sk(E, V\ with k^ 1, are defined inductively. Given So,..., Sk5

we define Sk+1 as follows:

S k + 1 ( £ , t 0 = S t (£,K)\UCί, (2.4)
α

where {C }̂ is a maximal family of disjoint subsets of Sk(E, V) satisfying Condition k

(a) diam(Q^4, (2.5)

(b) dist(Q, Sk\Q) ^ 2dfc

5/4 = 2dfc + ! , (2.6)

(c) dist(σ(i/^),Re£)^β~ v ^, (2.7)

where "diam" denotes the diameter of a lattice set,

-b\, dk = exp[jg(|)k] ,

with /J > 0, and C£ is a lattice set such that

Ϊ (2.8)

Let ^m be the collection of lattice cubes with sides parallel to the lattice axes and of
length 2m which are centered at the sites of 2m~γΈ\ We require that

Q e C n ( k ) , for a l ia , (2.9)

for some n(k) determined by

( k ) 0 d f c ^ 2 w ( k ) " 1 . (2.10)
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If we must work in a finite region B we may similarly define the sets Sk(E, K B),
fc = 0,1,2,.... See [4] for further details.

Definition. A set ΛcZv is called (fc,Inadmissible iff

dAnq^φ (2.11)

for all7 = 0,1, ...,k, and for all α.

We recall from [3]

Lemma 2.1. If β is sufficiently large then, given arbitrary subsets D1 and D2 of Z v ,
with D2CDX and dist(D1,dD2)^30dk, there exists a (k,E)~admissible set R with

D1CRCD2. (2.12)

We will need the following probabilistic estimate proven in [4] (Lemma 3.3):
For a given set ΛcΈv and a finite interval /, with / n [ — E%(ζ), £*(£)] = 0, we define

and Vce^dist(σ(H c

0

n 4,£)

^exp[ — dfc-J, for some Eel}. (2.13)

Lemma 2.2, For ye(0,^] sufficiently small and | / | ^ 1 ,

\dζv'1. (2.14)

Definition 23. The gap set, Ĉ (fc, F), of order k is defined as the following set of
energies, E

&{k, V) = {E eR: |£ | > £^(0, Me e <#,

and V/^fcdist(σ(//c°nyi j),£)^2β- ί i-1}. (2.15)

The constant y > 0 is the one introduced in (2.13).
We then have

Lemma 2o4. For almost every V there is a finite integer k1=k1(V) such that if
Re£e^(/ci, V) then

S f c_ ι(£,K4 f c_ 1) = 0 (2.16)

for every k^tk^V). (Here Aj = ΛJ+1\Λp j = ί,2,3,... are the annular regions
introduced in (1.4).,)

Proof If (2.16) was incorrect, for some V and some £, with Re£ e ^(fc, F), then by
(2.13) Ve£$k(Ak_uI), for some / containing Re£. By Lemma 2.2, the probability
for this event is

Since

Σ
it follows from the first Borel-Cantelli lemma that, for almost every V, there exists
some finite integer kx(V) such that

for all k^k^V) if Re£e^(fe l 5 F).
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Lemma 2.5. For almost every V, for every Eo in the pure-point spectrum ofH°, with
\E0\ > EJX), there is a finite integer k2 = k2(EQ, V) such that

d i s t ( £ 0 , σ ( H c

ϋ

n y l j ) ) ^ 4 ^ d ' - (2.17)

for allj^k2{E0,V) and all ce%.

Proof We know from Sect. 3 of [4] that w.p.l there is a finite k2{E0, V) such that,
for all j'Ξ>/c2(£0, V) we have

dist(σ(Jί c

o

n Λ i ),£ o )< β - d ' - 1 (2.18)

for some ceΉ (this follows directly from Lemma 2.2, and Lemma 3,2 of [4]) and

° (H°nA))^5e-d>->, (2.19)

for all c, d and an interval I centered at Eo, with |/| ^ 1. This is shown in (3.10) of [4].
Lemma 2.5 follows from (2.18) and (2.19).

From these lemmas we obtain the following Corollary:

Corollary 2.6. For almost every V and every eigenvalue Eo of H° with \E0\ > EJ^ζ)
there is a finite integer k2 = k2(E0, V) such that

E 0 e^(fc 2 ,F). (2.20)

Lemma 2.7. Under the same hypothesis, we have that

for some constant independent of j , for arbitrary] ^k^k2. (Here I denotes Lebesgue
measure.)

Proof By definition, the gap set ^(/c, V) is obtained by excising an interval of length
Ae^d^~ι symmetrically around every eigenvalue of H°cnA , for arbitrary c e ^ , with
c J Ap and all 7 ̂  k see (2.15). Givenj, the measure of the union of all those intervals
is clearly bounded by

) ' - ^ £ \c\Ae'd^^U]\xe~d"-^. (2.21)
c .cnAj + Φ c:cnAj + 0

t^Aj c^Aj

By Lemma 2.5 we know that

J - - (2.22)

for all m^/c2. Now, let Ee{E0-e~dv>,E0 + e~% for some j^fc 2 , but

E φ <g(k, V), for some k ̂  k2. (2.23)

Then there is some n ̂  k such that

for some ce^, c$An. Hence

d

By (2.22) it follows that
(2.24)
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By (2.21) and (2.24), the Lebesgue measure of all E e (£ 0 - e ~ d\ E0 + e~dyή which do
not belong to (̂fc, V) is thus bounded by

X Ul\λe~άl- ^constd2

+3e'd'^\ (2.25)
n> max(j+ 1 ,fc— 1)

for ^fc.
This completes the proof of Lemma 2.7.

Lemma 2.8. For almost every V, for every eigenvalue E0of ~A + V, with \E0\ §: £*((),
there is an integer k>2 and a sequence RncΊL of (k — 2-f n)-admissible sets such that:

(i) R,pΛ-^2 + n (2.26)

and

H . 2 + B ^di s t (5R f l ,δ^ . 2 + n ) ^ | 3 f c _ 2 ^ , (2.27)

(li) # { £ : £ e σ ( H ° J , d i s t ( £ , £ 0 ) < e - ] / ί ^ v - } = 1, (2.28)

(in) dist (Eo, σ(H°Rn)) ^ e ~ ̂ . (2.29)

Proof A sequence Rκ of (n — 2)-admissible sets satisfying (2.26) and (2.2) exists,
thanks to the Lemma in Appendix D of [3]. Moreover, for k large enough and for
every π^O, the interval

{E:\E-E0\<e-v/iiir-~»} (2.30)

contains at least one eigenvalue of H°Rn and (2.29) holds. This can be shown by
noting that due to the exponential decay of u0 we have

\\\JrlRn~ ^Jθ)ϊRn

Uθ\\ — II ̂  lRn

UθW =e an-

On the other hand, by using the spectral theorem we find

\\(Ho

Rn~Eo)ίRuo\\2= Σ Qtt)(λ-E0)
2

λeσ(Hnn)

with ρ(λ) ^ 0 and £ q{λ) = 1. Thus we have
λ

d i s t ( E , σ ( H ° R n ) ) 2 £ \ \ ( H ° R n - E o ) \ R u 0 \ \ 2 ^ e ' 2 m ™ d » d v

n .

it now suffices to show that there is no subsequence Rn{j)JeN, such that the
cardinality of the set in (2.28) is ^ 2 for every Rn{jy In fact, suppose that the contrary
is true. Then there would exist two sequences (unU)), {vn{j)) of eigenfunctions of
H0(Rnij)) with eigenvalues in the interval (2.30). By Lemmas 2.4 and 2.5 and the
results of [4], un(j) and vn{j) have uniform exponential decay outside
Jϊ-k_2; (1.15)-(1.18) in [4]. From this it follows easily that

I2- l im un{j) = u, I2- l im vn{j) = v

exist and are non-zero, and (u,v) = 0. But u and v are eigenfunctions of
H° = — A + V with eigenvalue Eo, i.e. Eo is not simple. This contradicts the
simplicity of the point spectrum of H°.

The results proven so far all hold for a set Ω' of potentials, K of full measure, no
matter how we choose the origin 0eZv; (countable union of sets of measure zero
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have measure zero!). This permits us to choose, for each Ve Ωf and each eigenvalue
Eo oϊ —A + V, with \E0\>E^(ζ\ an origin OeZ v in such a way that

k(£0, V) is minimal. (2.31)

Finally, we note that the results discussed so far can be extended to linear
operators of the form

) , (2.32)

where ue°l/h and <?4 is the set introduced in (1.10), i.e.

%= {w:max|u(x)-wo(x)|^εo, \u(y)\^e~M^ for all yφAk\

with k as in (2.30), for a given eigenfunction u0 of — A + V with eigenvalue Eo.
For the operator (2.32), we introduce sinuglar sets S£><5'%E, F), S£δ'u(E, K B) as

above for — A + V, with only one modification: Condition (2.7) is replaced by

distWHg. + fΛ + i δ J M l M β l c ^ R e E ) ^ ^ - ^ " . (2.33)

Since, for every ι ι e % I4^(|M|)(X) decays exponentially fast in |x|, we can prove the
following lemma:

Lemma 2.9. //

e-Vdk'-"ι

^TΓTTT^, (2-34)

where \\W\\= sup \\W(\v\)\\,and \\A\\ is the norm of the operator A onl2{ΊLv), and
v. | | ι ? | | 2 ^ l

if the constant β in definition (1.3) of the distance scales d } is chosen large enough,
then, for all j^£(E0,V),

S^iE^A^φ, (2.35)

for all E, with Re£e^(fc, V) or lmE^e'vd\ and every u e % .

Remark. This lemma permits us to extend Lemma 2.8 to the operator —A + V
+ iδ)W(\u\lwith

ue%, μ + i δ | ^ ( | | | | )

provided we consider a simple eigenvalue E of — A + V+(λ + iδ)W(\u\) with

| R e £ - £ 0 | ^ - ] / ^ τ and ReEe^(fc,F)

or ίm£^β""1 / ί i s. This observation is the contents of the following lemma:

Lemma 2.10. Let w e % and let E be a simple eigenvalue of — A + V+(λ + iδ)W(\u\)
such that either Re£e^(fe, F), or I m E ^ e " ^ Lei HκΞ//^ + μ + ^)Py(|tί|)lκ.

T/ien ί/iβre exists a sequence of (k — 2 + n)-admissible sets, {Rn)n = o,i,2,... s u c n

that
(i) RnDΛn+l-2, and
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(ii) # {E':E'εσ{HRt), dist{E\E)^e'ydk Ί+ή = 1,

(iii) ~^dn

The proof of Lemma 2.10 is a straightforward variant of the proof of
Lemma 2.8, using Lemma 2.9. It is therefore left to the reader. (Some familiarity
with [3,4] is understood, of course.)

3, Bounds on the Pole-Subtracted Green Functions

In this section we fix a pair (u0, Eo) solving

{-Δ + V)uo = EouQ (3.1)

with VEΩ' and \E0\>E1(ζ,v). We choose some real λ and some δ>0 such that

Γ \ (3.2)

with k as in (230); see (2.34).
We now suppose to have a solution (E, u) of the n.l.e.p. (1.9) with u e %, where

% is defined in (1.10). Our purpose in this section is to prove an upper bound on
the absolute value of the pole-subtracted Green function, \Kλfδ(x,y)\, where
Kλiδ(x,y) is the kernel of the operator

Kλ<δ(z) = lz~(~A + V+(λ + iδ)W(\u\))Yι-(z~EyιPu, (3.3)

(Pu is the spectral projection onto u) at z = £; see (1.19).
Next5 we introduce our notations. Let Rn (n = 0,1,2,...) be the sequence of

boxes constructed in Lemma 2.10. Let

HRn= -ΔRn+V\Rn + (λ + iδ)W(\u\)\Rn, (3.4)

where ΔRn is the finite difference Laplacian with zero Dirichlet data on dRn. We
define ΓdRn by the equation

Δ = ΔRn®Δ^Rn + ΓdRn. (3.5)

If ERn is the eigenvalue of the operator in (3.4) which is closest to E, let

δEn = E-ERn (3.6)

and

Γn = ΓδRn + όEn\Rn,

By Lemma 2.10 we have

m

\δEn\^e~~ΐCk~2^\ (3.8)

Finally, let us define

Q =HR —δEf (3.9)
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and

Gn{z) = {z-HRyι, (3.10)

Kn(z) = Gk(z)-(z-EyιPkn, (3.11)

where u is the eigenvector of (3.4) which corresponds to E. The motivation for the
introduction of these modified objects is that in the following it will be convenient
to work with Green functions GRn which have a fixed pole at z = E.

Lemma 3.1. We assume that the complex eigenvalue E satisfies the following
conditions:

(1) E is a simple eigenvalue of —Λ + V+(λ + iδ)W(\u\) with

and

(2) either

or

(3.12)

(3.13)

(3.14)

then, for sufficiently large β, for every kΏ.k + 1, and for arbitrary x and y in Z v , we
have

if

if

e2] dk

{e-m{E)\x-y\ ?

for some m(£)>(l/4)m(£ 0 )>0.

Proof Without loss of generality we may suppose that |x |^ |y | . Let us define

An = Rn+1~Rn, Λ^ΞER0 (3.16)

and assume that yεAn, while xeAm with me{—1,0,...,n}.
The proof makes use of the following resolvent identities for the Green

functions in (3.10):

G(z) = Gn®G,Rβ) + (Gu®G^Rn)ΓnG(z). (3-17)

In order to derive an expansion for the pole subtracted Green functions K(x, y; E)
from (3.17), we use the following integral formula for the constant term of a
Laurent series:

(3.18)
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where ^ is a circle which encloses E and no other point of the spectrum of
H + (λ + iδ)W(\u\). Iterating (3.17) we find

lnι « , , i k i l z — t

..., (3.19)

where we used the freedom of deforming the integration path from 'ϊά to the circles

<€n^={zB<€:\z-E\ = ev"»"""• ] . (3.20)

We remark that thanks to Lemma 2.10 we have

sup \Gn + k{z)\S2e^":':. (3.21)

Let us begin by bounding the terms of (3.19) with fe^2. Inserting the definition
(3.7) of Γn

n+£+1 and Γ?+£_ ι into the feth term, we get the sum of three terms: the
first ends with

δEn + k1Rn^Gn,kΓdR^kG» + k + \ (3.22)

the second with

C +

+ ^ , G n + t ( ( 5 £ n + t . l κ _ k ) G π + t + 1 , (3.23)

and the third one with

ΓdRrnK-fin + kΓdRn+rfin + k + l (3-24)

Equations (3.22) and (3.23) are small, thanks to (3.21) and the fact that, due to (3.8)
we have

\SEn + k..i\ie-!'""-> , (3 2 5 )

and

dH+k-2 = {dπ+k)
W5)1>]/dn'+'k- (3-26)

Moreover, (3.24) is small. This can be seen by noticing the following resolvent
identities:

and

G|i4-k = G M f / i - 2 © G K n + k ^ K n ^ k _ 2 + G w 4 k ^ f c

f c _ 2 ( G M i . k _ 2 © G K j i _ k ^ R n _ J f . , ) .
(3.28)
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If z e ^ H H l 5 vedRn + k-x and wedRn + k, we have

+ k . Λ n r f c _ 2 / ; ^ (3.29)

This term is exponentially small thanks to (3.21) and to the exponential decay
of GKn k ^ R n k 2(z). This last fact is a consequence of Lemma 2.9 and of
Theorem 1.2 in [3].

Thus, the sum over all terms with /c^2 appearing in the right-hand side of
(3.19) can be uniformly bounded by

for a suitably defined m. Moreover, for the term with fc = 1 we have

| / ^ 2 δ n + 2 ( ^ ) H ( ^

Hence it is sufficient to control the first term of the expansion (3.19). Now, the
first two inequalities in (3.15) are readily proven on the basis of the bound (3.21) on
the norm of Gn + x(z) for z e ^ k + 1 . Moreover, the third inequality in (3.15) can be
verified by using the resolvent identity (3.29) with k = 0 and, again, the exponential
decay estimates contained in [3].

4. Proof of Theorem 1

In this section we present our proof of Theorem 1, using the technical estimates
collected in Sects. 2 and 3. Our strategy is the one explained in Sect. 1. Thus we
start from the differential equations

d 1 / dλ \

dδ ( ) \ dd J λ)'

ad

see (1.30). Our initial conditions are

2(0) = 0, MO,O = WO- (4.3)

with E00 = E0, where (w0, £0) is a solution of the linear eigenvalue problem

(_. A _|_ yyt =E u . (4.4)

Eo belongs to the gap set ^(/c, V) (see Sect. 2), and u0 has uniform exponential decay
outside a finite box Λh as described in (1.6). According to (1.23), we must integrate
the system (4.1), (4.2) with initial conditions (4.3) up to values of δ such that

n.^""4- (4-5)
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From that point on, we shall treat λ as the independent variable and integrate

equations for -j-,uλδ{λ)y with — I m £ , = 0 , up to values of λ such that
uλ ' dλ

ReJEA<<5(λ)e^(k, V). At that point, δ will be treated as the independent variable
again and will approach 0, with RQEλ{δ)δ kept fixed; see Fig. 1, Sect. 1.

We now describe the first of these three steps in detail. The other two steps are
completed by very similar arguments. We start by expanding the right-hand side of
(4.1) in a geometric series. Dropping subscripts λ and δ, we get

x Yj{(λ-^iδ)QKDWl'\u)rQKWu\u\. (4.6)

In order to prove convergence of the series on the right-hand side of (4.6). we bound
the operator norm of the operator QKDW [ ]u acting on 12(ZV). We assume that

°U^ = <j u: max |w(x) — uo(x)\ ^ cθ J

2 |J?I for all v Φ -

see (1.10). Clearly

||βKDWT ]w|l= sup \\QKDW[v~]u\\2, (4.7)
I M | 2 = i

and

\\QKDW[υ]u\\2 ^2\\KDW[v]u\\2

= 2\\DW[υ\\\l Σ \K(x,y)K(x,y')u(y)u(y')\

( 4 8 )

Let us write and estimate the sum in the brackets as follows:

Σ + Σ Σ Σ + Σ e 2 kΣ )\K(x,y)\
xeΛk ki=k xeAk\ΛkJ \ 3 ; e ^ k k2 = k yeAkJ

_M_ M ,

^ M | | ^ 2 ' / * " M | Σ ~2 H i " 2 " "

^ Ŷ  -f[\χ\-d-k)

Σ Σ e

k

+ Σ Σ e^\Aki\\Al
kι=k k2=ki,ki± 1

+ Σ Σ ^^ΊΛJIΛ^^'^^^c.W (4.9)
k f c fc fc± 1 j / 2
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Let us remark that C^ϊήπd^e21^-'<ev1^. Hence we got the bound

(4.10)

where

\\DW\\^f sup HDW^MIloo- (4.H)

Similarly, we can show that for

WQKWuhSWWWC^k), (4.12)

where

I = sup IIM^IIoo. (4.13)

Next we wish to bound the vector (QK Wu) (x) pointwise. By the definition of Q,

2. (4.19)

First, if xeΛjt and ueύHh we get from (4.18) and (4.19),

- - d

\(QKWu)(x)\g Σ \\W\\\K(x,y)\+ Σ e ~2 k\Ak\\\W\\
yeλh k = k

x max \K(x,y)\ + \\W\\Cι(k)d=\\W\\C2(k).
Λ

ι(k)=\\W\\C2(
xeΛk

yeAk\Λk

Second, i f |d k ^|x |^fd k + 1 , with k^fc, ue%, we get from our bounds on
proven in Sect. 3,

\QKWu(x)\S Σ elv

yeAk

- - I -

+ Σ "2

where

Similarly, using (4.10) one can get a bound of the following form:

iδ)QKDW

<{\\DW\\C±{k) if xeΛn

= I/- (h w\ "~τ | x | otherwise

for every λ, δ such that

u(x)

(4.21)
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Finally, let us bound —. In Appendix 1 we show that the second equation in
do

(1.24) can be written in the following way:

,. = 2δ(u, W(u)u) Im —, u )+ 2δ Im —, W(u)u
dδ |_ \oo J \oo

+ λ(u, D W Γ ^ l M J 1 \(u, W(u)u) - 2δ(u, W(u)u)

~,W(u)u)+λ[u,DW\~^u)] \ (4.22)

One can readapt the estimates which led to the inequalities above, to find

du

(4.23)

(M0,

and we replace (4.21) by the stronger condition

we get

where C6(k)« d%l xe
2Vdi ~' <̂  eVdk. Thus if we change our definition of λ, δ and W by

a constant factor so that:

(4.24)

), (4.25)

(4.26)

that as far as

(4.27)

We have thus proven the following lemma:

Lemma 4.L There is a constant C7(/c,
uλ(δ).δεk and solves Eq. (1.24), w

2v
I -τ-eVdί<~1

duλ(δ),δ t

dδ

CΊ

otherwise.

/» particular, Eq. (1.24) admits a_solution (λ(δ),umδ) with u?m>& parametrized by
<5ε[0,ε 0 C 7 ~'] . F i ΛΓ

we

For what concerns the proof of the last statement, it follows from (4.24), (4.25)
and the following calculation:

~ ImEMδy δ = (H, W(u)u) + 2δ Re fe

+2δ[u,DW\~
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This completes our analysis. In particular, Theorem NL 1 is now proven. The
proofs of Theorems NL 2 through NL 4 will appear in a forthcoming article.

Appendix

In this appendix, we derive the deformation equations (1.16) and (4.22). We refer to
[13] for a general discussion of deformation equations in an abstract setting.

As explained in Sect. 1, our aim is to find solutions of the following fixed point
equation:

^λlδ(uλtδ) = uλtδ (Al)

on S = {u: || w|| 2 = 1}. If uλδ is a solution, we can define the map J7~λ>δ(u) for u near

where uQ is a vector not orthogonal to uλδ and c(u,?^δ;u0) is a vector not
orthogonal to uλδ and c(u,λ,δ;u0) is a normalization constant. Note that the
operator ^λ'b is not analytic in u. Hence it has derivatives only in the real sense, i.e.
in the decomplexified space /2(Z; (£)κ. The (R-linear!) operator D of differentiation
can be defined as in (1.19). Having to work on the decomplexified space 12(Z; (C)R,
let us remark that the imaginary unit i is no more a number in the field of our vector
space, but has to be interpreted as the matrix

. -.0
acting on / 2 ( Z , ( C ) R = / 2 ( Z ; R ) ® Ϊ 7 2 ( Z ; R ) .

To derive (1.16) we have to differentiate &~λ'δ(uλtδ) with respect to δ. We remark
that the integrand in (A 2) is still analytic with respect to z, and so are its derivatives
with respect to δ and u.

We have

A

Λuλj

The two partial derivatives appearing here can be computed in the same way;
hence we shall compute only the second one. If v is a vector we have

1

z + A-V-ϊλ + iδ)W^Ji) "°
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One can now make the choice uo = uλδ, so that c = ί, and

(Z + A - V- (λ + iδ) W(\uλ J) ~ι «0 = (z - Eλ>0.

By using the residue theorem, we can calculate the second integral and obtain

g2

Finally, it is easy to calculate the derivative of c{u, δ,λ,δ) at u = u-, δ. We set

Dc(u, λ, δ) M = D[(Re,rλ δ(u), Re,T?"\uj) + (lm-f>'\u), \m,Tλ'\u)j\ ~1/2

and, at u = uλδ, we have

This proves (1.16).
Let us now prove that the second equation in (1.24) can be written in the form

(4.22). We have

d^fλ~ Δ + V+λW{\u,J)\uλ,)j

+ 2 Re I -±±, [- A + V+ λW(\u?J)uλ,,

O m i t t i n g t h e s u b s c r i p t s a n d u s i n g t h e e i g e n v a l u e e q u a t i o n fulfilled b y uλδ a s well
as t h e e q u a t i o n s
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we get

-25(u,Wu)lJfλ,u)+λU,DW l"
+ 2δIm(~,Wu) ~2δ{u,Wu)Im[~,u

\oό ) \όo

+ Λ U W | ~ | Λ Q.E.D.
V \Pb\ 1
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