Block Spin Approach to the Singularity Properties of the Continued Fractions

Kumiko Hattori¹, Tetsuya Hattori² and Hiroshi Watanabe³

1 Department of Mathematics, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

² Department of Physics, Faculty of Science, Gakushuuin University, Toshima-ku, Tokyo 171, Japan ³ Department of Mathematics, Faculty of Science, Tokyo Metropolitan University, Setagaya-ku, Tokyo 158, Japan

Abstract. The massless singularity of a ferromagnetic Gaussian measure on

 \mathbb{Z}_+ is studied by means of the coarse graining renormalization group method. The result gives information about a singularity behavior of a continued fraction and a time decay rate of a diffusion (random walk) on \mathbb{Z}_+ .

1. Introduction: Problem and Results

We regard $\mathbb{R}^{\mathbb{Z}_+}$ as a measurable space with the σ -algebra generated by the cylinder subsets of $\mathbb{R}^{\mathbb{Z}_+}$. Let us introduce the notion of ferromagnetic Gaussian measures on $\mathbb{R}^{\mathbb{Z}_+}$. For bounded positive sequences $J = (J_n)_{n \in \mathbb{Z}_+}$ and $g = (g_n)_{n \in \mathbb{Z}_+}$ satisfying

$$\inf_{n \ge 0} g_n > 0, \tag{1.1}$$

the pair (J,g) is called a *ferromagnetic pair*. We define, for a ferromagnetic pair (J,g), matrices H(J) and D(g) by putting, for $n, m \in \mathbb{Z}_+$,

$$H_{nm}(J) = 0, \quad |n - m| > 2,$$

= $J_{n \wedge m}, \quad |n - m| = 1,$
= $-J_{n-1} - J_n, \quad n = m,$ (1.2)

and

$$D_{nm}(g) = \delta_{nm} g_n, \tag{1.3}$$

where $n \wedge m = \min(n, m)$ and $J_{-1} = 0$. The matrix D(g) - H(J) induces a bounded linear operator on $l^{\infty}(\mathbb{Z}_+) = \{(\phi_n)_{n \in \mathbb{Z}_+} | \sup_{n \in \mathbb{Z}_+} | \phi_n | < \infty\}$ and it has a symmetric positive definite inverse (see Lemma 2.1 and 2.2). Then there exists a unique Gaussian probability measure μ_{Jg} on $\mathbb{R}^{\mathbb{Z}_+}$ with mean 0 and covariance $(D(g) - H(J))^{-1}$. We refer to the probability measure μ_{Jg} as the *ferromagnetic Gaussian* measure characterized by (J, g) and write

$$\langle F(\phi) \rangle (J,g) = \int F(\phi) \mu_{Jg}(d\phi)$$

K. Hattori, T. Hattori and H. Watanabe

for any integrable function $F(\phi)$ on $\mathbb{R}^{\mathbb{Z}_+}$. In particular,

$$\langle \phi_n \phi_m \rangle (J,g) = (D(g) - H(J))_{nm}^{-1}, \quad n, m \in \mathbb{Z}_+,$$
 (1.4)

holds. Our concern in this paper is the quantity:

$$f(J,g) = \langle \phi_0^2 \rangle (J,g)$$

Ferromagnetic Gaussian measures appear in the statistical mechanical theory of spin systems under the name "Gaussian model" or "free field" (for example, see [1]). In such a literature, J_{nm} is called a ferromagnetic (nearest-neighbor) interaction, and g_n corresponds to the square of mass. As is shown in Corollary 2.12, the function f(J, tg) diverges as $t \downarrow 0$, where $(tg)_n = tg_n, n \in \mathbb{Z}_+$. The aim of this paper is to study the "massless singularity" of f(J, tg) as $t \downarrow 0$. We show the following:

Theorem 1.1. If a ferromagnetic pair (J, g) satisfies

$$C_1 n^{-\gamma} \leq J_n \leq C_2 n^{-\gamma}, \quad n > 0, \tag{1.5}$$

for some constants $C_1, C_2 > 0$ and $\gamma \ge 0$, then it holds that

$$\lim_{t\downarrow 0} \frac{\log f(J, tg)}{\log t} = -\frac{\gamma+1}{\gamma+2}.$$

The theorem is restated in several ways. First we note that f(J, tg) has an expression in the form of the continued fraction (see Appendix):

$$f(J,tg) = \frac{1}{tg_0} + \frac{1}{J_0^{-1}} + \frac{1}{tg_1} + \frac{1}{J_1^{-1}} + \cdots$$
(1.6)

Then we have:

Corollary 1.2. Let $(a_n)_{n \in \mathbb{Z}_+}$ and $(b_n)_{n \in \mathbb{Z}_+}$ be positive sequences such that

$$C_3 < a_n < C_4, \quad n \ge 1,$$

$$C_3 n^{\gamma} < b_n < C_4 n^{\gamma}, \quad n \ge 1,$$

for some constants $C_3, C_4 > 0$ and $\gamma \ge 0$. Then, the continued fraction

$$L(t) = \frac{1}{ta_0} + \frac{1}{b_0} + \frac{1}{ta_1} + \frac{1}{b_1} + \cdots, \quad t > 0,$$
(1.7)

satisfies

$$\lim_{t \downarrow 0} \frac{\log L(t)}{\log t} = -\frac{\gamma + 1}{\gamma + 2}.$$
(1.8)

Secondly a ferromagnetic Gaussian measure can be related to the diffusion (random walk) problem on \mathbb{Z}_+ . Consider the diffusion equation:

$$\frac{d}{d\tau}u(\tau) = H(J)u(\tau), \quad \tau > 0, \tag{1.9}$$

$$u_n(0) = \delta_{0n}, \quad n \in \mathbb{Z}_+. \tag{1.10}$$

It is easily seen that the Laplace transform of $u_n(\tau)$ is given by the correlation

function of a ferromagnetic Gaussian measure:

$$\int_{0}^{\infty} u_{n}(\tau) e^{-\tau t} d\tau = \langle \phi_{0} \phi_{n} \rangle (J, t\mathbf{1}), \quad n \in \mathbb{Z}_{+},$$

where $\mathbf{1} = (1, 1, ...) \in l^{\infty}(\mathbb{Z}_+)$. Then, employing the Abelian theorem, we obtain the following corollary.

Corollary 1.3. Assume that the condition of the theorem is satisfied and that the solution of (1.9), (1.10) has the estimate

$$C_5 \tau^{-D/2} < u_0(\tau) < C_6 \tau^{-D/2}, \quad \tau > 1,$$
 (1.11)

for some $C_5, C_6 > 0$ and $\tilde{D} > 0$. Then the exponent \tilde{D} is given by

$$\tilde{D} = \frac{2}{\gamma + 2}.\tag{1.12}$$

The exponent \tilde{D} is called the spectral dimension [3] (see also Definition of $\tilde{d}(J,g)$ in Chap. 2.2).

The one dimensional diffusion problem has been extensively investigated by several authors in a general situation [4]. In particular, the fact stated in Theorem 1.1 may be obtained as a special case of the results of [5], where Krein's theory was used. We shall show the theorem by a quite different method, i.e. the coarse-graining renormalization group (*block spin*) method. Our analysis is an application of the renormalization group method for free fields on fractals studied in [6].

Our program is as follows. In Chap. 2, we shall show the well-definedness of the ferromagnetic Gaussian measure and prove some basic estimates. In Chap. 3, the coarse-graining renormalization for the Gaussian measure will be introduced. This plays the central role in Chap. 4 which is devoted to the proof of the main theorem.

Related problems are considered in [7,8].

2. Ferromagnetic Gaussian Measure

In this chapter we show the well-definedness of the ferromagnetic Gaussian measure on one dimensional chain introduced in Chap. 1 and list basic properties that we use in the proof of Theorem 1.1.

2.1. Well-Definedness of μ_{Jq} .

Let **M** be the set of all real matrices $A = (A_{nm})_{nm\in\mathbb{Z}_+}$ satisfying

$$\|A\| = \sup_{n \in \mathbb{Z}_+} \sum_{m \in \mathbb{Z}_+} |A_{nm}| < \infty.$$
(2.1)

Then $(\mathbf{M}, \| \|)$ turns out to be a Banach algebra with the identity *I* and acts on $l^{\infty}(\mathbb{Z}_+)$ in the canonical sense.

Lemma 2.1. For a ferromagnetic pair (J,g), we define H(J) and D(g) by (1.2) and (1.3), respectively. Then H(J) and D(g) are in **M** and there exists a symmetric matrix

 $R(J,g) \in \mathbf{M}$ such that

$$(D(g) - H(J))R(J,g) = I,$$
 (2.2)

$$R(J,g)(D(g) - H(J)) = I$$
(2.3)

with the estimate

$$\|R(J,g)\| \leq \left(\sup_{n \in \mathbb{Z}_+} g_n\right)^{-1}.$$
(2.4)

Proof. It is easily seen that $H(J), D(g) \in \mathbf{M}$. Let us show the existence of R(J, g). Put

$$\mu_n = g_n + J_{n-1} + J_n, \quad n \in \mathbb{Z}_+.$$

We decompose D(g) - H(J) as a sum of its diagonal part $D(\mu)$ and off-diagonal part E(J):

$$D(g) - H(J) = D(\mu) - E(J),$$

where

$$\begin{split} D(\mu)_{nm} &= 0, \quad n \neq m, \\ &= \mu_n = g_n + J_{n-1} + J_n, \quad n = m, \\ E(J)_{nm} &= 0, \quad |n - m| \neq 1, \\ &= J_{n \wedge m}, \quad |n - m| = 1. \end{split}$$

Then the Neumann series $\sum_{N=0}^{\infty} (D(\mu)^{-1} E(J))^N$ converges in **M**, and hence $D(g) - H(J) = D(\mu)(I - D(\mu)^{-1} E(J))$ has the inverse R(J,g):

$$R(J,g) = \sum_{N=0}^{\infty} (D(\mu)^{-1} E(J))^N D(\mu)^{-1}.$$
 (2.5)

The symmetry of R(J,g) is trivial. In order to show (2.4), we rewrite (2.3) as

$$R(J,g)D(g) = I + R(J,g)H(J).$$

Put $\mathbf{1} = {}^{t}(1, 1, ...) \in l^{\infty}(\mathbb{Z}_{+})$. If we note that $H(J)\mathbf{1} = 0$, we have

$$R(J,g)D(g)\mathbf{1} = \mathbf{1}.$$
 (2.6)

This implies (2.4). \Box

We now need a positive definiteness of R(J, g).

Lemma 2.2. For $\xi \in l^{\infty}(\mathbb{Z}_+)$ such that $\xi \neq 0$ and $\xi_n \neq 0$ only for finite n's, it holds that

$$\langle \xi, R(J,g)\xi \rangle > 0.$$
 (2.7)

Proof. Put $\eta = R(J,g)\xi$. Then:

$$\sum_{n\in\mathbb{Z}_+}\eta_n^2<\infty, \quad \langle\xi, R(J,g)\xi\rangle = \langle (D(g)-H(J))\eta,\eta\rangle.$$

If we note that

$$\langle (D(g)-H(J))\eta,\eta\rangle = \sum_{n\in\mathbb{Z}_+} [g_n\eta_n^2 + J_n(\eta_n-\eta_{n+1})^2],$$

we have the lemma. \Box

By the help of the above lemmas, the standard method of the probability theory ensures the existence of the ferromagnetic Gaussian measure μ_{Jg} with mean 0 and covariance R(J,g).

We now pick up some convenient formulas from the above argument. Let us prepare some notations. For $i, j \in \mathbb{Z}_+$, we say that a sequence $w = (w_0, w_1, \ldots, w_N) \subset \mathbb{Z}_+$ is a walk from *i* to *j* if $w_0 = i, w_N = j$ and $|w_k - w_{k+1}| = 1$, $0 \le k \le N - 1$. The set of all walks from *i* to *j* is denoted by W(i, j). For a walk $w = (w_0, w_1, \ldots, w_N) \in W(i, j)$ and a ferromagnetic pair (J, g), we put

$$J_{w} = \prod_{k=0}^{N-1} J_{w_{k} \wedge w_{k+1}},$$

$$\mu_{n} = g_{n} + J_{n} + J_{n-1},$$

$$\mu_{w} = \prod_{k=0}^{N} \mu_{w_{k}}.$$

Proposition 2.3. The correlation function of a ferromagnetic Gaussian measure satisfies the following equalities:

$$\langle \phi_i \phi_j \rangle (J,g) = \sum_{w \in W(i,j)} J_w / \mu_w,$$
 (2.8)

$$\sum_{j \in \mathbb{Z}_+} \langle \phi_i \phi_j \rangle (J, g) g_j = 1$$
(2.9)

$$\langle \phi_i \phi_j \rangle (cJ, cg) = c^{-1} \langle \phi_i \phi_j \rangle (J, g),$$
 (2.10)

where $i, j \in \mathbb{Z}_+$ and c > 0.

Proof. The "random walk representation" (2.8) is equivalent to (2.5) and the formula (2.9) is nothing but (2.6). The last equality is trivial. \Box

2.2. Basic Properties.

In the following, unless otherwise stated, (J,g) and (J',g') are arbitrary ferromagnetic pairs.

Definition. Consider the quantity $f(J,g) = \langle \phi_0^2 \rangle \langle J,g \rangle$. If the limit

$$\lim_{t\downarrow 0} \frac{\log f(J, tg)}{\log t}$$

exists, we say that the ferromagnetic pair (J, g) has the spectral dimension, and we define $\tilde{d}(J, g)$, the spectral dimension of (J, g), by,

$$\widetilde{d}(J,g)/2 - 1 = \lim_{t\downarrow 0} \frac{\log f(J,tg)}{\log t}.$$

In the remainder of this chapter, we shall study the behavior of f(J,g) and $\tilde{d}(J,g)$ under the change of the parameters J and g.

K. Hattori, T. Hattori and H. Watanabe

Lemma 2.4. For a ferromagnetic pair (J, g),

$$0 < \langle \phi_0 \phi_n \rangle (J,g) \le \frac{1}{(n+1) \inf_{m \in \mathbb{Z}_+} g_m}, \quad n \in \mathbb{Z}_+.$$
(2.11)

Proof. The positivity of $\langle \phi_0 \phi_n \rangle (J,g)$ is trivial from the random walk representation (2.8):

$$\langle \phi_0 \phi_n \rangle (J,g) = \sum_{w \in W(0,n)} \frac{J_w}{\mu_w}$$

Since each term of the random walk representation is positive, we can make resummations and throw away terms to obtain lower bounds. We follow the method of stopping time arguments:

$$\langle \phi_{0} \phi_{n} \rangle (J,g) = \sum_{w \in W(0,n)} \frac{J_{w}}{\mu_{w}} = \sum_{w'} \frac{J_{w'}}{\mu_{w'}} \mu_{n+1} \sum_{w'' \in W(n+1,0)} \frac{J_{w''}}{\mu_{w''}} + \sum_{w''} \frac{J_{w}}{\mu_{w}}$$
$$> \frac{J_{n}}{\mu_{n}} \sum_{w'' \in W(n+1,0)} \frac{J_{w''}}{\mu_{w''}} > \sum_{w'' \in W(n+1,0)} \frac{J_{w''}}{\mu_{w''}}$$
$$= \langle \phi_{0} \phi_{n+1} \rangle (J,g).$$
(2.12)

Here the summation \sum' is over all walks w' = (n, n + 1) or $(n, j_1, j_2, ..., j_m, n + 1)$ (m = 1, 2, ...) starting from *n* and ending at n + 1 with the property that $j_k \neq n + 1$ for all $k \in \{1, 2, ..., m\}$, and the summation \sum'' is over all walks $w = (n, j_1, j_2, ..., j_m, 0)$ (or (n, 0) if n = 1) starting from *n* and ending at 0 with the property that $j_k \neq n + 1$ for all $k \in \{1, 2, ..., m\}$. In the calculation, we have also used the fact that

$$\mu_n = g_n + J_n + J_{n-1} > J_n$$

Combining (2.12) with (2.9), we have

$$1 = \sum_{m=0}^{\infty} g_m \langle \phi_0 \phi_m \rangle (J,g) \rangle \left(\inf_{m \in \mathbb{Z}_+} g_m \right) \sum_{m=0}^n \langle \phi_0 \phi_m \rangle (J,g)$$
$$> \left(\inf_{m \in \mathbb{Z}_+} g_m \right) (n+1) \langle \phi_0 \phi_n \rangle (J,g). \quad \Box$$

Lemma 2.5. Let (J,g) and (J,g') be two ferromagnetic pairs. Define $g(s) = (g(s)_n)_{n \in \mathbb{Z}_+}$, $(0 \le s \le 1)$ by,

$$g(s)_n = g_n s + g'_n (1 - s).$$
(2.13)

Then,

$$\frac{d}{ds}f(J,g(s)) = -\sum_{n} (g_{n} - g'_{n}) \langle \phi_{0}\phi_{n} \rangle (J,g(s))^{2}.$$
(2.14)

Proof. From (2.2) and (2.3), we have, for s, s' > 0;

$$\sum_{k \in \mathbb{Z}_{+}} (D(g(s)) - H(J))_{nk} \langle \phi_k \phi_0 \rangle (J, g(s)) = \delta_{n,0}, \qquad (2.15)$$

and

$$\sum_{n,k\in\mathbb{Z}_+} \langle \phi_m \phi_n \rangle (J,g(s')) (D(g(s')) - H(J))_{nk} \langle \phi_k \phi_0 \rangle (J,g(s))$$

= $\langle \phi_m \phi_0 \rangle (J,g(s)).$ (2.16)

Multiply (2.15) by $\langle \phi_m \phi_n \rangle (J, g(s'))$, sum over $n \in \mathbb{Z}_+$, and subtract (2.16) to obtain,

$$\langle \phi_m \phi_0 \rangle \langle J, g(s') \rangle - \langle \phi_m \phi_0 \rangle \langle J, g(s) \rangle$$

$$= \sum_{n \in \mathbb{Z}_+} (g(s) - g(s'))_n \langle \phi_m \phi_n \rangle \langle J, g(s') \rangle \langle \phi_n \phi_0 \rangle \langle J, g(s) \rangle$$

$$= \sum_{n \in \mathbb{Z}_+} (g_n - g'_n)(s - s') \langle \phi_m \phi_n \rangle \langle J, g(s') \rangle \langle \phi_n \phi_0 \rangle \langle J, g(s) \rangle.$$

$$(2.17)$$

From (2.17), we have the continuity of $\langle \phi_m \phi_0 \rangle (J, g(s))$ with respect to s. If we put m = 0 in (2.17), divide by (s' - s), and use the continuity of $\langle \phi_m \phi_0 \rangle (J, g(s))$, we obtain the desired result. \Box

Corollary 2.6. (i) If

 $g_n \leq g'_n, \quad n \in \mathbb{Z}_+,$

then

$$f(J,g') \le f(J,g). \tag{2.18}$$

(ii) If

$$g_n \leq g'_n, \quad n \in \mathbb{Z}_+,$$

then

$$\left|\log f(J,g) - \log f(J,g')\right| \leq \left(\inf_{n} g_{n}\right)^{-2} f(J,g')^{-1} \sum_{n \in \mathbb{Z}_{+}} (n+1)^{-2} (g'_{n} - g_{n}).$$
(2.19)

Proof. (i). From the assumption and Lemma 2.5, the statement follows directly. (ii). From Lemma 2.5, Lemma 2.4, and the assumption, we have,

$$\left|\frac{d}{ds}f(J,g(s))\right| \leq \sum_{n} (g'_{n}-g_{n})(n+1)^{-2} \left(\inf_{n} g(s)_{n}\right)^{-2}.$$

Therefore, using the assumption and (i),

$$|\log f(J,g) - \log f(J,g')| = \left| \int_{0}^{1} \frac{d}{ds} \log f(J,g(s)) ds \right|$$

$$\leq \int_{0}^{1} \frac{1}{f(J,g(s))} \sum_{n} (g'_{n} - g_{n})(n+1)^{-2} \left(\inf_{n} g(s)_{n} \right)^{-2} ds$$

$$\leq \left(\inf_{n} g_{n} \right)^{-2} f(J,g')^{-1} \sum_{n \in \mathbb{Z}_{+}} (n+1)^{-2} (g'_{n} - g_{n}). \quad \Box$$

Corollory 2.7. If $\tilde{d}(J,g)$ exists, then $\tilde{d}(J,g')$ also exists, and $\tilde{d}(J,g) = \tilde{d}(J,g')$.

(1.1), there exist positive constants M and M' such that

$$Mg_n < g'_n < M'g_n$$
, for all $n \in \mathbb{Z}_+$.

From (2.18),

$$f(J, tM'g) \leq f(J, tg') \leq f(J, tMg), \text{ for } t > 0.$$

Therefore if 0 < t < 1,

$$\frac{\log f(J, tM'g)}{\log t} \ge \frac{\log f(J, tg')}{\log t} \ge \frac{\log f(J, tMg)}{\log t}.$$

Clearly,

$$\lim_{t\downarrow 0} \frac{\log f(J, tMg)}{\log t} = \lim_{t\downarrow 0} \frac{\log f(J, tg)}{\log t - \log M} = \lim_{t\downarrow 0} \frac{\log f(J, tg)}{\log t} = \frac{\widetilde{d}(J, g)}{2} - 1,$$

from which the statement follows. \Box

Corollary 2.7 shows that $\tilde{d}(J,g)$ is independent of the choice of $g = (g_n)$. Henceforth we shall write

$$\tilde{d}(J) \equiv \tilde{d}(J,g).$$

Lemma 2.8. Let (J, g) and (J', g) be two ferromagnetic pairs. Define $J(s) = (J(s)_n)_{n \in \mathbb{Z}_+}$, $(0 \le s \le 1)$ by,

$$J(s)_n = J_n s + J'_n (1 - s).$$
(2.20)

(2.22)

Then,

$$\frac{d}{ds}f(J(s),g) = -\sum_{n} (J_{n} - J'_{n})\frac{1}{2}(\langle \phi_{0}\phi_{n} \rangle (J(s),g) - \langle \phi_{0}\phi_{n+1} \rangle (J(s),g))^{2}.$$
(2.21)

Proof. Direct application of the method used in the proof of Lemma 2.5 proves this lemma. \Box

 $J_n \leq J'_n, \quad n \in \mathbb{Z}_+,$

Corollary 2.9. (i) If

then

(ii) If

$$f(J',g) \leq f(J,g).$$

$$J_n \leq J'_n, \quad n \in \mathbb{Z}_+,$$

then

$$\left|\log f(J,g) - \log f(J',g)\right| \le 2^{-1} \left(\inf_{n} g_{n}\right)^{-2} f(J',g)^{-1} \sum_{n \in \mathbb{Z}_{+}} (n+1)^{-2} (J'_{n} - J_{n}).$$
(2.23)

Proof. (i) From the assumption and Lemma 2.8, the statement follows directly. (ii). From Lemma 2.8, Lemma 2.4, and the assumption, we have,

$$\left|\frac{d}{ds}f(J(s),g)\right| \leq \sum_{n} (J'_{n} - J_{n})^{\frac{1}{2}} (\langle \phi_{0} \phi_{n} \rangle (J(s),g) - \langle \phi_{0} \phi_{n+1} \rangle (J(s),g))^{2}$$

$$\leq \sum_{n} (J'_{n} - J_{n})^{\frac{1}{2}} \langle \phi_{0} \phi_{n} \rangle (J(s), g)^{2}$$

$$\leq \frac{1}{2} \sum_{n} (J'_{n} - J_{n})(n+1)^{-2} \left(\inf_{n} g(s)_{n} \right)^{-2}.$$

Therefore, using the assumption and (i),

$$|\log f(J,g) - \log f(J',g)| = \left| \int_{0}^{1} \frac{d}{ds} \log f(J(s),g) ds \right|$$
$$\leq 2^{-1} \left(\inf_{n} g_{n} \right)^{-2} f(J',g)^{-1} \sum_{n \in \mathbb{Z}_{+}} (n+1)^{-2} (J'_{n} - J_{n}). \quad \Box$$

Corollary 2.10. Assume that $\tilde{d}(J)$ exists. If there exist positive constants C and C' which are independent of $n \in \mathbb{Z}_+$ such that,

$$CJ_n < J'_n < C'J_n, \quad n \in \mathbb{Z}_+,$$

then $\tilde{d}(J')$ also exists, and

$$\tilde{d}(J) = \tilde{d}(J'). \tag{2.24}$$

Proof. From (2.22),

$$f(CJ, tg) \leq f(J', tg) \leq f(C'J, tg), \text{ for } t > 0.$$

Using (2.10), we have

$$f(J, tC^{-1}g)/C \leq f(J', tg) \leq f(J, tC'^{-1}g)/C'$$

The statement is now reduced to Corollary 2.7. \Box

Lemma 2.11. Define a ferromagnetic pair (J, g) by

$$g_0 = g^*/2,$$

 $g_n = g^*, \quad n = 1, 2, 3, ...$
 $J_n = J^*, \quad n \in \mathbb{Z}_+,$

where g^* and J^* are positive constants. Then

$$f(J,g) = (g^*J^* + g^{*2}/4)^{-1/2}.$$

Proof. From (1.6) we see that f(J,g) must satisfy,

$$f(J,g) = \frac{1}{g^*/2 + X},$$
(2.25)

where

$$X = \frac{1}{J^{*-1} + \frac{1}{g^* + X}},$$

from which we obtain

$$X = -g^{*}/2 \pm (J^{*}g^{*} + g^{*2}/4)^{1/2}.$$

If we put this into (2.25), we see that f(J,g) must satisfy:

$$f(J,g) = \pm (g^*J^* + g^{*2}/4)^{-1/2}.$$

Since we already know that $f(J,g)R(J,g)_{00}$ exists and is positive, we have the statement. \Box

Corollary 2.12.

$$\lim_{t \to 0} f(J, tg) = \infty.$$
(2.26)

Proof. Since $J = (J_n)_{n \in \mathbb{Z}_+}$ and $g = (g_n)_{n \in \mathbb{Z}_+}$ are bounded sequences, there exists a constant M(>0) such that

 $J_n < M$, and $g_n < M$, for all $n \in \mathbb{Z}_+$.

Using (2.18), (2.22), and Lemma 2.11, we have

$$f(J,tg) \ge f(M,tM) = (tM^2 + t^2M^2/4)^{-1/2} \uparrow \infty$$
, as $t \downarrow 0$.

3. The Coarse Graining Method

In Chap. 2, we defined the spectral dimension $\tilde{d}(J)$ which describes the "massless singularity" of the measure μ_{Jg} , and derived some properties of $\tilde{d}(J)$, assuming its existence. In this chapter, we prove a simple lemma which gives us a sufficient condition for the existence of $\tilde{d}(J)$. In this lemma, we assume that $f(J,g) = \langle \phi_0^2 \rangle \langle J, g \rangle$ satisfies an identity (in the massless limit) under the scale change of parameters (J,g). To obtain the identity, we then consider a marginal distribution of μ_{Jg} , by "integrating" the variables $\phi_{2n+1}, n \in \mathbb{Z}_+$. The intuition of this procedure came from the coarse graining renormalization group method, which appears in statistical mechanics.

Lemma 3.1. Consider a ferromagnetic pair (J, g). If, there exist positive constants α and β such that $\beta > \alpha$ and

$$\lim_{t\downarrow 0}\frac{f(J,tg)}{f(\alpha J,\beta tg)}=1,$$

then $\tilde{d}(J)$ exists, and

$$\tilde{d}(J) = \frac{2\log\beta}{\log(\beta/\alpha)}.$$
(3.1)

Proof. Put

$$x = -(\log t)/\log(\beta/\alpha)$$

and define

$$F(x) = \log\{f(J, (\alpha/\beta)^{x}g)\} + (\log \alpha)x.$$

From the assumption and (2.10),

$$\lim_{x \to \infty} \{F(x) - F(x-1)\} = 0,$$

from which we have

$$\lim_{x \to \infty} \frac{F(x)}{x} = 0$$

From the definition of x and F(x) we have

$$\lim_{t\downarrow 0} \frac{\log f(J, tg)}{\log t} = \frac{\log \alpha}{\log(\beta/\alpha)}.$$

Proposition 3.2. Consider a ferromagnetic pair (J,g). Define another ferromagnetic pair (\tilde{J}, \tilde{g}) by

$$\tilde{J}_n = \frac{J_{2n}J_{2n+1}}{g_{2n+1} + J_{2n} + J_{2n+1}},$$
(3.2)

$$\tilde{g}_n = g_{2n} + \frac{J_{2n+1}}{g_{2n-1} + J_{2n-2} + J_{2n-1}} g_{2n-1} + \frac{J_{2n}}{g_{2n+1} + J_{2n} + J_{2n+1}} g_{2n+1}, \quad n \in \mathbb{Z}_+.$$

Then

$$f(J,g) = f(\tilde{J},\tilde{g}). \tag{3.3}$$

Proof. The Gaussian probability measure μ_{Jg} has mean 0 and covariance $R(J,g) = (D(g) - H(J))^{-1}$. Consider a measurable map

$$p:\mathbb{R}^{\mathbb{Z}_+}\to\mathbb{R}^{\mathbb{Z}_+}$$

defined by;

$$p:(\phi_0,\phi_1,\phi_2,\ldots)\mapsto(\phi_0,\phi_2,\phi_4,\ldots).$$

The image measure

$$\tilde{\mu}_{Jq} = \mu_{Jq} p^{-1}$$

is again a Gaussian probability measure with mean 0 and covariance $\tilde{R}(J,g) = (\tilde{R}(J,g)_{nm})_{n,m\in\mathbb{Z}_+}$, where

$$\tilde{R}(J,g)_{nm} = R(J,g)_{2n,2m}.$$
 (3.4)

As in Lemma 2.1, we decompose D(g) - H(J) into a sum of diagonal part $D(\mu)$ and off-diagonal part E(J):

$$D(g) - H(J) = D(\mu) - E(J),$$

where

$$D(\mu)_{nm} = 0, \quad n \neq m,$$

= $\mu_n = g_n + J_{n-1} + J_n, \quad n = m,$
 $E(J)_{nm} = 0, \quad |n - m| \neq 1,$
= $J_{n \land m}, \quad |n - m| = 1.$

As have been proved in Lemma 2.1,

$$\widetilde{R}(J,g)_{nm} = R(J,g)_{2n,2m} = \sum_{N=0}^{\infty} \left\{ (D(\mu)^{-1} E(J))^N D(\mu)^{-1} \right\}_{2n,2m}.$$

On the other hand, from the definition of $D(\mu)$ and E(J), we have, for odd N,

$$\{(D(\mu)^{-1}E(J))^N D(\mu)^{-1}\}_{2n,2m} = 0.$$

Therefore,

$$\widetilde{\mathcal{R}}(J,g)_{nm} = \sum_{N=0}^{\infty} \left\{ (D(\mu)^{-1} E(J))^{2N} D(\mu)^{-1} \right\}_{2n,2m}$$
$$= \sum_{N=0}^{\infty} \left\{ (D(\mu)^{-1} E(J) D(\mu)^{-1} E(J))^{N} D(\mu)^{-1} \right\}_{2n,2m}$$

If we define $D_0, D_1 \in \mathbf{M}$ by

$$D_{0,nm} = 0, \quad n \neq m,$$

= $D(\mu)_{2n}, \quad n = m,$
 $D_{1,nm} = 0, \quad |n - m| \neq 1,$
= $(E(J)D(\mu)^{-1}E(J))_{2n,2m}, \quad |n - m| = 1,$

we have

$$\sum_{N=0}^{\infty} \left\{ (D(\mu)^{-1} E(J) D(\mu)^{-1} E(J))^N D(\mu)^{-1} \right\}_{2n, 2m} = \sum_{N=0}^{\infty} \left\{ (D_0^{-1} D_1)^N D_0^{-1} \right\}_{nm}$$
$$= (D_0 - D_1)_{nm}^{-1},$$

where the last equality can be proved in the same way as Lemma 2.1. If we write down the last expression explicitly, we find that it is equal to $R(\tilde{J},\tilde{g})$. If we use (3.4) we obtain, in particular,

$$f(J,g) = R(J,g)_{00} = \tilde{R}(J,g)_{00} = R(\tilde{J},\tilde{g})_{00} = f(\tilde{J},\tilde{g}). \quad \Box$$

4. Proof of the Main Theorem

Proof of Theorem 1.1. For $\gamma = 0$, the theorem is a direct consequence of Lemma 2.11 and Corollary 2.10. Let us assume $\gamma > 0$. We first consider the following nonlinear eigenvalue problems:

$$\alpha J_n = \frac{J_{2n} J_{2n+1}}{J_{2n} + J_{2n+1}}, \quad n \in \mathbb{Z}_+.$$
(4.1)

The above set of equations has an explicit solution.

Lemma 4.1. For any fixed $\gamma > 0$, (4.1) with $\alpha = 2^{-\gamma - 1}$ has a solution:

$$J_n = J_n^*, \quad n \in \mathbb{Z}_+,$$

where,

$$J_n^* = \{ \alpha/(1-\alpha) \} (2\alpha)^{\lceil \log n / \log 2 \rceil}, \quad n \ge 1,$$

= 1, n = 0, (4.2)

and for $x \in \mathbb{R}$, [x] is the largest integer k satisfying $k \leq x$.

Proof. Straightforward calculation proves the statement. \Box

Next we consider the following set of equations:

$$\beta g_n = g_{2n} + \frac{J_{2n-1}^*}{J_{2n-2}^* + J_{2n-1}^*} g_{2n-1} + \frac{J_{2n}^*}{J_{2n}^* + J_{2n+1}^*} g_{2n+1}, \quad n \in \mathbb{Z}_+,$$
(4.3)

where $g_{-1} \equiv 0$.

Lemma 4.2. Equation (4.3) with $\beta = 2$ has a solution:

$$g_n = g_n^*, \quad n \in \mathbb{Z}_+,$$

where,

$$g_n^* = 1, \quad n \ge 2, = 3/\{2(2-\alpha)\}, \quad n = 1, = 3(1-\alpha)/\{2(2-\alpha)\}, \quad n = 0.$$
(4.4)

Proof. Straightforward calculation proves that (4.4) satisfies (4.3).

We put $\alpha = 2^{-\gamma-1}$ and $\beta = 2$ in the following. We define the family $(\overline{J^*}(t), tg^*(t)), t > 0$, of ferromagnetic pairs on \mathbb{Z}_+ by

$$J^{*}(t)_{n} = \frac{1}{\alpha} \frac{J_{2n}^{*} J_{2n+1}^{*}}{t g_{2n+1}^{*} + J_{2n}^{*} + J_{2n+1}^{*}}, \quad n \in \mathbb{Z}_{+},$$
(4.5)

$$g^{*}(t)_{n} = \frac{1}{\beta} \left\{ g^{*}_{2n} + \frac{J^{*}_{2n-1}}{tg^{*}_{2n-1} + J^{*}_{2n-2} + J^{*}_{2n-1}} g^{*}_{2n-1} + \frac{J^{*}_{2n}}{tg^{*}_{2n+1} + J^{*}_{2n} + J^{*}_{2n+1}} g^{*}_{2n+1} \right\}, \quad n \in \mathbb{Z}_{+}.$$

$$(4.6)$$

Then (3.3) implies

$$f(J^*, tg^*) = f(\alpha J^*(t), \beta tg^*(t)), \quad \text{for} \quad t > 0.$$
(4.7)

The following uniform estimates are easily derived by explicit calculations: For $n \in \mathbb{Z}_+$ and t > 0,

$$C_4 n^{-\gamma} < J_n^* < C_5 n^{-\gamma}, \quad n \ge 1,$$
 (4.8)

$$2\alpha J_n^* \le J_{2n}^*,\tag{4.9}$$

$$0 < J_n^* - J^*(t)_n < C_1 t, (4.10)$$

$$0 < g_n^* - g^*(t)_n < C_2, \tag{4.11}$$

$$\beta g^*(t)_n > g^*_{2n}, \tag{4.12}$$

where C_i , (i = 1, 2, 4, 5) are positive constants independent of $n \in \mathbb{Z}_+$ and t > 0. Next we define, for t > 0,

$$h_1(t) = \frac{f(\alpha J^*(t), \beta t g^*(t))}{f(\alpha J^*, \beta t g^*(t))},$$

and

$$h_2(t) = \frac{f(\alpha J^*, \beta tg^*(t))}{f(\alpha J^*, \beta tg^*)}.$$

If we can show $h_1(t)$, $h_2(t) \rightarrow 1$ as $t \downarrow 0$, then (3.1) with $\alpha = 2^{-\gamma - 1}$ and $\beta = 2$ follows, and hence we have the value of $\tilde{d}(J^*)$.

Lemma 4.3. Suppose that we have the estimate:

$$\overline{\lim_{t\downarrow 0}} \frac{\log f(J^*, tg^*)}{\log t} \leq -\delta$$
(4.13)

for some $\delta > 1 - 1/\gamma$. Then it holds that

$$\lim_{t\downarrow 0} h_i(t) = 1, \quad i = 1, 2,$$

which, (as we remarked above,) implies

$$\tilde{d}(J^*) = 2/(\gamma + 2).$$
 (4.14)

Proof. First we note that

$$J_n^*/J^*(t)_n - 1 = t/(4\alpha J_n^*), \text{ if } n > 0.$$
 (4.15)

Let ε be an arbitrary constant satisfying $0 < \varepsilon < 1$. For sufficiently small t > 0, we can define,

$$N(t,\varepsilon) = \max\{N \in \mathbb{Z}_+ | J^*(t)_n / J^*_n > 1 - \varepsilon \quad \text{if} \quad 0 \leq n \leq N\}.$$

(Since we assumed $\gamma > 0$, we have $N(t, \varepsilon) < \infty$.)

Let us show that if t > 0 is sufficiently small,

$$N(t,\varepsilon)^{\gamma}t > C_{3}\varepsilon, \tag{4.16}$$

where C_3 is a positive constant independent of t and ε . We have, with $N = N(t, \varepsilon)$:

$$\begin{split} N(t,\varepsilon)^{\gamma}t &= N(t,\varepsilon)^{\gamma}4\alpha J_{N+1}^{*}(J_{N+1}^{*}/J^{*}(t)_{N+1}-1) > N(t,\varepsilon)^{\gamma}4\alpha J_{N+1}^{*}\varepsilon \\ &> 4\alpha C_{4}N(t,\varepsilon)^{\gamma}(N(t,\varepsilon)+1)^{-\gamma}\varepsilon > C_{3}\varepsilon, \end{split}$$

where we used (4.15), $J^*(t)_{N+1}/J^*_{N+1} \leq 1 - \varepsilon$, and (4.8). Thus we obtain (4.16).

We also see from the definition of $N(t,\varepsilon)$ that if $0 \le n \le N(t,\varepsilon)$,

$$0 < 1 - J^*(t)_n / J_n^* < \varepsilon, \tag{4.17}$$

and from (4.3), (4.6), (4.1), (4.5), $J_{2n}^* \ge J_{2n+1}^*$, (4.9), and (4.17):

$$0 < g_{n}^{*} - g^{*}(t)_{n} \leq \frac{\alpha}{\beta} \left\{ \frac{J_{n-1}^{*} - J^{*}(t)_{n-1}}{J_{2n-2}^{*}} g_{2n-1}^{*} + \frac{J_{n}^{*} - J^{*}(t)_{n}}{J_{2n}^{*}} g_{2n+1}^{*} \right\}$$

$$< \frac{1}{\beta} \varepsilon \frac{1}{2} (g_{2n-1}^{*} + g_{2n+1}^{*}) < \varepsilon/2.$$
(4.18)

Next we decompose $h_1(t)$:

$$\begin{split} h_1(t) &= \frac{f(\alpha J^*(t), \beta t g^*(t))}{f(\alpha \widetilde{J}(t), \beta t g^*(t))} \frac{f(\alpha \widetilde{J}(t), \beta t g^*(t))}{f(\alpha J^*, \beta t g^*(t))} \\ &\equiv P_1(t) Q_1(t), \end{split}$$

where

$$\vec{J}(t)_n = J^*(t)_n, \quad n \le N(t,\varepsilon),
 = J^*_n, \quad n > N(t,\varepsilon).
 (4.19)$$

Let us estimate $P_1(t)$. From (2.10) and (4.13) we have

$$f(\alpha J^*, \beta tg^*) \ge \alpha^{\delta - \varepsilon - 1} \beta^{-\delta + \varepsilon} t^{-\delta + \varepsilon}$$
(4.20)

if t(>0) is small enough. Using (2.23), (2.22), and (4.10), we have:

$$|\log P_1(t)| \leq \frac{C_7}{N(t,\varepsilon)t\,f(\alpha J^*,t\beta g^*)},$$

where C_7 is a positive constant independent of t and ε . Furthermore, by the help of (4.20) and (4.16), we obtain

$$|\log P_1(t)| \leq C_8(\varepsilon) t^{1/\gamma - 1 + \delta - \varepsilon},$$

where $C_8(\varepsilon)$ is a positive constant independent of t. Therefore, if $\delta > 1 - 1/\gamma$, we have $P_1(t) \rightarrow 1$ as $t \downarrow 0$ by choosing sufficiently small ε . Let us estimate $Q_1(t)$. Since (4.17) implies

$$(1-\varepsilon)J_n^* < \widetilde{J}(t)_n, \quad n \in \mathbb{Z}_+,$$

we have

$$1 \leq Q_1(t) < \frac{f(\alpha(1-\varepsilon)J^*, \beta tg^*(t))}{f(\alpha J^*, \beta tg^*(t))} = \frac{1}{1-\varepsilon} \frac{f(\alpha J^*, (1-\varepsilon)^{-1}\beta tg^*(t))}{f(\alpha J^*, \beta tg^*(t))} \leq \frac{1}{1-\varepsilon}$$

where we also used (2.22), (2.10) and (2.18). Thus we see that

$$1 \leq \underbrace{\lim_{t \downarrow 0}} h_1(t) \leq \overline{\lim_{t \downarrow 0}} h_1(t) \leq (1 - \varepsilon)^{-1}$$

holds for any $\varepsilon < 0$ sufficiently small. This proves $h_1(t) \rightarrow 1$ as $t \downarrow 0$.

The proof of $h_2(t) \rightarrow 1$ as $t \downarrow 0$ goes along the same line. We put

$$\tilde{g}(t)_n = g^*(t)_n, \quad n \le N(t,\varepsilon), \\ = g^*_n, \quad n > N(t,\varepsilon),$$

and decompose $h_2(t)$ as

$$h_2(t) = \frac{f(\alpha J^*, \beta t g^*(t))}{f(\alpha J^*, \beta t \tilde{g}(t))} \frac{f(\alpha J^*, \beta t \tilde{g}(t))}{f(\alpha J^*, \beta t g^*)}$$
$$\equiv P_2(t)Q_2(t).$$

Equations (2.19) and (2.18) together with (4.11) and (4.12) imply

$$|\log P_2(t)| \leq \frac{C_{10}}{N(t,\varepsilon)t f(\alpha J^*, t\beta g^*)},$$

which, together with (4.20) and (4.16), yields

 $|\log P_2(t)| \leq C_{11}(\varepsilon) t^{1/\gamma - 1 + \delta - \varepsilon},$

where $C_{11}(\varepsilon)$ is a positive constant independent of t. On the other hand, since (4.18) and (4.4) imply

$$(1-\varepsilon)g_n^* \leq \tilde{g}(t)_n, \quad n \in \mathbb{Z}_+,$$

we have

$$1 \leq Q_2(t) \leq \frac{f(\alpha J^*, \beta t(1-\varepsilon)g^*)}{f(\alpha J^*, \beta tg^*)} = \frac{1}{1-\varepsilon} \frac{f((1-\varepsilon)^{-1}\alpha J^*, \beta tg^*)}{f(\alpha J^*, \beta tg^*)} \leq \frac{1}{1-\varepsilon},$$

where we used (2.19), (2.10) and (2.22). This proves $h_2(t) \rightarrow 1$ as $t \downarrow 0$.

Let us continue the proof of the theorem. For each $\gamma > 0$, we denote by J_{γ} , the interaction J^* defined by (4.2) with $\alpha = 2^{-\gamma - 1}$, and similarly, we define g_{γ} . We have proved that, if there exists a constant $\delta > 1 - 1/\gamma$ that satisfies

$$\overline{\lim_{t\downarrow 0}} \frac{\log f(J_{\gamma}, tg_{\gamma})}{\log t} \leq -\delta,$$
(4.21)

then we have

$$\tilde{d}(J_{\gamma}) = 2/(\gamma + 2).$$
 (4.22)

Since, from (2.26), we have the trivial estimate (4.21) with $\delta = 0$, (4.22) holds for $0 < \gamma < 1$, in particular, for $0 < \gamma \le 1/2$. Suppose that we have proved (4.22) for $\gamma \le \tilde{\gamma}$. Then for any γ satisfying $\tilde{\gamma} < \gamma$, we have:

$$\overline{\lim_{t\downarrow 0}} \frac{\log f(J_{\gamma}, tg_{\gamma})}{\log t} \leq \overline{\lim_{t\downarrow 0}} \frac{\log f(J_{\tilde{\gamma}}, tg_{\gamma})}{\log t} = \tilde{d}(J_{\tilde{\gamma}})/2 - 1 = -(\tilde{\gamma}+1)/(\tilde{\gamma}+2).$$

Therefore (4.21) with $\delta = (\tilde{\gamma} + 1)/(\tilde{\gamma} + 2)$ holds. Since, for $\gamma \leq \tilde{\gamma} + 1$,

$$1 - 1/\gamma \leq 1 - 1/(\tilde{\gamma} + 1) = \tilde{\gamma}/(\tilde{\gamma} + 1) < (\tilde{\gamma} + 1)/(\tilde{\gamma} + 2) = \delta,$$

(4.22) holds for $\tilde{\gamma} < \gamma \leq \tilde{\gamma} + 1$. Therefore we have (4.22) for all $\gamma > 0$ by induction.

For any J satisfying (1.5), applying (2.24), we have $\tilde{d}(J) = \tilde{d}(J_{\gamma})$. This completes the proof. \Box

Appendix

For a ferromagnetic pair (J, g), we prove

$$\langle \phi_0^2 \rangle (J,g) = \frac{1}{g_0} + \frac{1}{J_0^{-1}} + \frac{1}{g_1} + \frac{1}{J_1^{-1}} + \cdots,$$
 (A.1)

that is,

$$\langle \phi_0^2 \rangle (J,g) = \lim_{n \to \infty} f_n,$$
 (A.2)

where

$$f_{2n-1} = \frac{1}{g_0} + \frac{1}{J_0^{-1}} + \frac{1}{g_1} + \frac{1}{J_1^{-1}} + \dots + \frac{1}{g_n}, \quad n > 0,$$

$$f_{2n} = \frac{1}{g_0} + \frac{1}{J_0^{-1}} + \frac{1}{g_1} + \frac{1}{J_1^{-1}} + \dots + \frac{1}{g_n} + \frac{1}{J_n^{-1}}, \quad n > 0.$$

Since Seidel–Stern's theorem ([2] p. 87) implies $\left(\text{ because of } \sum_{n \in \mathbb{Z}_+} (g_n + J_n^{-1}) = \infty \right)$

$$\lim_{n \to \infty} f_{2n} = \lim_{n \to \infty} f_{2n-1}$$

it suffices to show that

$$\langle \phi_0^2 \rangle (J,g) = \lim_{N \to \infty} f_{2N}.$$
 (A.3)

Put $\mu_0 = g_0 + J_0$ and $\mu_n = g_n + J_{n-1} + J_n$, n > 0. From

$$\langle \phi_0 \phi_n \rangle (J,g) = (D(g) - H(J))_{0n}^{-1},$$
 (A.4)

we have

$$\mu_0 \langle \phi_0^2 \rangle (J,g) - J_0 \langle \phi_0 \phi_1 \rangle (J,g) = 1,$$
(A.5)

$$\mu_n \langle \phi_0 \phi_n \rangle (J,g) - J_{n-1} \langle \phi_0 \phi_{n-1} \rangle (J,g) - J_n \langle \phi_0 \phi_{n+1} \rangle (J,g) = 0, \quad n \ge 1.$$
 (A.6)

We modify the original ferromagnetic pair (J, g). Fix N > 0. Put $J_N = 0$ and increase g_N so that the value of μ_N does not change. Write the resulting ferromagnetic pair as (\tilde{J}, \tilde{g}) . Put

$$c_n = J_{n-1} [1 - \langle \phi_0 \phi_n \rangle (\tilde{J}, \tilde{g}) / \langle \phi_0 \phi_{n-1} \rangle (\tilde{J}, \tilde{g})], \quad n > 0.$$

Then the analog of (A.5) and (A.6) imply

$$f(J,\tilde{g}) = 1/(g_0 + c_1),$$
 (A.7)

$$c_n = 1/\{1/J_{n-1} + 1/(g_n + c_{n+1})\}, \quad N > n > 0,$$
(A.8)

$$c_N = 1/\{1/J_{N-1} + 1/(g_N + J_N)\}.$$
(A.9)

As is easily seen from (A.7), (A.8), (A.9), and (A.1), it holds that

$$f(\tilde{J},\tilde{g})=f_{2N}.$$

On the other hand, from the definition of (\tilde{J}, \tilde{g}) , $f(\tilde{J}, \tilde{g})$ can be written in the form of (2.8) that is a finite volume approximation of the original expression (2.8): i.e., the summation is now taken over all walks in W(0,0) not passing through the point N + 1. Since the finite volume approximation of (2.8) converges to $f(J,g) = \langle \phi_0^2 \rangle (J,g)$ in the limit $N \to \infty$, we have (A.3).

Acknowledgements. We would like to thank Professor M. Miyamoto for taking interest in our work, and for informing us of his work before publication.

References

- 1. Ma, S. K.: Modern theory of critical phenomena. New York: W. A. Benjamin 1976
- 2. Jones, W. B., Thron, W. J.: Continued fractions, analytic theory and applications. London: Addison-Wesley 1980
- 3. Rammal, R., Toulouse, G.: Random walks on fractal structures and percolation clusters. J. Phys. Lett. 44, L13-22 (1983)

- 4. Ito, K., McKean, H. P.: Diffusion processes and their sample paths. Berlin: Heidelberg, New York: Springer 1965
- 5. Kasahara, Y.: Spectral theory of generalized second order differential operators and its applications to Markov processes. Jpn J. Math. 1, 67–84 (1975)
- 6. Hattori, K., Hattori, T., Watanabe, H.: Gaussian field theories on general networks and the spectral dimensions. To appear in Progr. Theor. Phys. Suppl. 92, (1987)
- 7. Fujita, T.: A fractional dimension, self-similarity and a generalized diffusion operator. To appear in The Proceeding of Katata Symposium
- 8. Miyamoto, M .: Private communication

Communicated by H. Araki

Received August 16, 1986