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Abstract. We demonstrate that for the systems of equations, which are invariant
under a point group or possess conservation laws of the zeroth or first order,
a nontrivial extension of the module of invertible transformations is possible.
That simplifies greatly a classification of the integrable systems of equations.
Here we present an exhaustive list and a classification of the second order
systems of the form ut = uxx + f(u, υ, ux, υx\ —vt = vxx + g(u, v, ux, vx), which
possess the conservation laws of higher order. The reduction group approach
allows us to define the Lax type representations for some new equations of our
list.

Introduction

The systems of evolution equations, related by the invertible transformations, should
be considered as equivalent ones. In many applications there occurs a situation
when a system of equations possess a continuous point symmetry group, and it is
sufficient to restrict ourselves to a reduced subset of dynamical variables, consisting
of the group invariants. With the accuracy up to the unessential constants of
integration, which can be removed by the transformations of the group, a reduced
subset contains all the information about a general solution. Thus, we can also
consider two systems of equations as equivalent ones, if their reduced subsets of
dynamical variables are related by invertible substitutions. In contrast to the point
transformations, such substitutions may violate local conservations laws. We shall
study the most interesting substitutions, that preserve the locality property of the
conservation laws (recall, the conservation law pt = Dσ is called local, if p and σ
are the functions of a finite number of the dynamical variables). The considered
module extension of the invertible substitutions simplifies drastically the classifica-
tion of the integrable equations. The use of these substitutions allowed us to make
a list of integrable systems of equations [1,2,3] more comprehensible. Many
of the well-known equations have proved to be equivalent by this extended
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module. We also give a list of substitutions which connect the equations of the
list. In the end of Sect. II several transformations of the Miura type are also given.
They make it possible to expose additional connections between the equations
which are not related between each other by invertible substitutions. The last
section is devoted to the description of the L-A pairs which are necessary in order
to use the inverse scattering transforms. As it is known, the presence of the
commutational representation is a sufficient integrability condition of the system
of equations.

I. Extension of the Module of the Invertible Transformations

1. For defmiteness, in this paper we shall consider the system of equations of the
form:

v> uχ > vχ\ ~vt = vxx + g(u, υ,ux9υx). (1.1)

In particular, the systems of the two equations of the form

possessing local conservation laws of sufficiently high order can be reduced to the
form (1.1) (See [1]).

The invertible substitutions of variables, that do not change the form of
system (1.1), are exhausted by the composition of the elementary substitu-
tions x -> ax + bt -f c, t^>a2t + d (a9b9c9deC) conformal transformations u -• U(u)9

v -• V(v) and involution

u -> v9 v -• u, t -> — t, x -> — x . (1.2)

The system of evolution equations is extended up to an infinite dynamical system
in variables u9v9uί9vί9u29υ29...9 where u1 = ux9 vx = υX9u2 = uxx, and so on, which

form a complete set of dynamical variables. Systems (1.1), that are invariant under
the continuous conformal group action can be transformed using conformal
substitutions and involution (1.2) to a special form, such as

f=f(εu + υ9uί9υ1)9 g = g(εu + υ9ul9υ1)9 ε = 0,l. (1.3)

For instance, the famous nonlinear Schrodinger equation iφt = ψxx + \φ\2φ is sure
to be reduced to the form (1.3) with ε = 1:

ut = u2 + u? + exp (M + v), -vt = v2 + v* + exp (u + v). (1.4)

If the group of point symmetries is nonabelian, then the reduction to this form is
not unique. The Heisenberg model can serve as an example, of the system that
can be reduced to the form (1.3) in two different ways (see below).

Further the maximal subset of dynamic variables εu + v9ul9vl9... that are
invariant under the one-parametric point group transformations we shall call as a
reduced subset of dynamical variables. Both reduced and complete subsets are
generated by the action of the operator D = u^d/du + vxd/dv + u2d/du1 H— on the
generators. For the generators of a complete set of one should choose u9 v, and for
a reduced subset we shall choose variables εu + v,u1. The considered substitutions
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will have the form εu + υ = Z(y,z) u1 = W(y,z), where Z9W9 are functionally
independent functions of the generators of a reduced y = εu + v9 z = uί (or a
complete, i.e. y = u,z = v) subset of dynamical variables. We shall require that the
function W should be a density of the conservation law of the initial system (1.3)
(or (1.1)). That will allow us to redetermine the evolution in time of a complete
set of dynamical variables.

The example of the invertible substitution defined on the reduced subsets is
U1 = exp(w + υ\ U + V = 2ul9 which relates the nonlinear Schrodinger equation
(1.4) to the system Ut = U2 + (U + V)Ul9 -Vt=V2-(U+ V)Vl9 the last one is
equivalent to the famous Kaup equation. (Below we will denote such transforma-
tions as u1 ->exp(w + v)9u + v-^2u1.) Let's point out that this substitution is not
the transformation of the Miura type, because the latter is not invertible within
the finite subsets of dynamical variables.

There is an important class of invertible substitution that relates reduced and
complete subsets of dynamical variables:

u-^Z(εu-\-v,uί) v -• W(εu + v)9 (1.5)

where Z9W9 are any functions (dZ/dv^W/dvΦO). In general, substitution (1.5)
spoils the form (1.1) of the original system. This form is to be preserved iff

d2fldυι

2 = 0, idZ/dυ = df/dv^Z/du,. (1.6)

Consider the system of equations ut = u2 + 2υvί9 —vt = v2 — uί9 that relate to
the system ut = u2 + vx

2 + v(u — υ2/2), —vt = v2 — u + v2/2 by the substitution
Z = u1 + v2/2, W = v. The initial system of equations which can be reduced to the
Bousinesque equation after excluding the variable u, possesses local conservation
laws of an arbitrary high order. Using the results of paper [1] one can check easily
that the obtained system does not possess local conservation laws. Below we shall
obtain sufficient conditions so that the local conservation laws would not be
violated.

Let us consider the following change of variables:

εu + v-+χ(v\ (1.7)

where p is a density of the conservation law. This substitution is admissible for
the class of system of the form (1.1) iff

d2g/du1

2 = d2g/du,dυι = dKdg/duJ/idp/duMdu = 0,

and

ε = 0,χ = ϋ, if dglduγ = 0 ;

ε = 1, dχ/dv = - (dg/duj/idp/δu) if δg/du, Φ 0.

Let's note that substitutions (1.7) are inverse to the substitution of the from (1.5).
It is evident that substitutions of the form (1.7) preserve the locality property of
the conservations laws and increase their order by one.

2. Here we shall consider the systems of equations of the form:

+ >̂ " i > ι>i)> -vt = v2 + g(u + υ,ul9 vj. (1.8)
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They are invariant under involution (1.2). We shall call them symmetrical systems.
For symmetrical systems we shall take the substitutions which do preserve the
property of the higher order conservation laws to be local. Below we shall refer
to the lemma about the invariant functions. A function g we call invariant if it is
not changed under involution (1.2) and dg/du = dg/dv.

Lemma. If the local conservation law pt = Dσ of the system (1.8) possesses invariant
density p, then function σ is also invariant.

Let's consider the following change of the reduced subsets of the dynamical
variables:

u + v->p(u + v), uι^>pf{u + v)u1 + q(u + v), p 'Φ 0. (1.9)

We require that the function p'u1 + q should be a density, therefore [//(Mi —
t J + 2q\t = Dσ, and σ is an invariant function as it follows from the lemma. The
evolution of a complete set of variables is defined from the relationships ut + vt = pt,
ut — vt = σ. It is easy to check that the obtained system is also symmetrical.

Theorem 1. Substitution (1.9) defines the equivalence relation on the set of symmetri-
cal systems.

Therefore, the systems that relate to substitution (1.9) we shall call symmetrically
equivalent. To construct the equivalence class of a symmetrical system one should
find all the densities of the form p'(u + v)uί + q(u -h v). If there are no nontrivial
densities, then the equivalent class can be determined by the substitution
!<!->«! +μ9 v1-+v1-μ.

Let us consider two examples. The system of the form (1.1) with

/ = 2auvuγ + bu2vx + b(a - b)u3v2/2 + cu\ g = / * (1.10)

(where / * denotes the result of involution (1.2)) by the conformal substitution
u-*\ogu,v->\ogv is reduced to the form (1.8), where

/ = ux

2 + (2aux + bv1 + c)exp(w + v) + \b{a - b)exp2(u + v). (1.11)

Using the conservation law of the system (1.11) with the density ocu1 + βoxp(u + v),
α,/?eC, it is not difficult to check that if b = 2a, c = 0 this system is symmetrically
equivalent to a linear one, if b = 2a, c # 0 it is equivalent to the nonlinear
Schrodinger equation (1.3), and \ibφ2a it is equivalent to the derivative nonlinear
Schrodinger equation (i.e. to system (1.8), (1.11) a = b = 1, c = 0). Some particular
cases of the system (1.1), (1.10) were studied by many authors from the viewpoint
of the inverse scattering transform. In these cases a special gauge transformation
results in substitutions of the form (1.9). In our approach the substitutions are
defined by the classical symmetries and conservation laws. As a second example,
let's establish the relationship between the known systems:

ut = u2- 2u1

2/(u + v\ -vt = v2- 2v1

2/(u + v); (1.12)

ut = u2 — u2 + 2uίvί, —vt = v2 — vx

2 + 2v1u1. (1.13)

The system of equations (1.12) is obtained from the well known integrable
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Heisenberg model St = S x Sxx, S^ -f S2

2 + S3

2 = 1 by the point transformation:

Sί=2/(u + υ)9 S2 = 2uv/{u + υ), S3 = (u - υ)/{u + υ). (1.14)

System (1.13) has been studied by many authors via the inverse scattering transform.
The substitution of the form (1.9) u + υ -> log (u + v), ux -• uj(u + v) transforms the
system of equations (1.12) into (1.13).

These examples show that the systems not related to each other at first glance,
might prove symmetrically equivalent. In the case of the system (1.8) with
d2f/dv1

2 = 0 the following theorem yields a simple criterion of equivalence.

Theorem 2. Two systems of equations of the form (1.8) with d2f/dv]

2 = 0 are
symmetrically equivalent if and only if substitution (1.5), (1.6) with ε = 1 makes them
conformally equivalent.

The theorem means that substitution (1.9) is nothing but a composition of two
substitutions of the form (1.5), (1.6) with ε = 1 and the conformal transformation.

It follows from the lemma that substitution (1.9) allows one to recount the local
conservation laws if the densities are invariant. The following theorem shows that
really conservation laws of higher order can be considered as invariant ones.

Theorem 3. Let system (1.8) have at least two local conservation laws of higher order
and p be the density of the conservation law of the order N ^ 2. Then the density
p + p* is of the order N and invariant modulo of total derivatives and densities of
the order not higher than one.

Corollary. If a symmetrical system possesses local conservation laws of higher order,
then the system of equations, obtained as a result of the substitution of the form (1.9)
or (1.5), (1.6) with ε = 1, also possesses this property.

For example, the substitution of variables u -• 2ίu, v -> i tanh (u + v) in the
following system:

ut = u2 — 2tanh(u + v)ut

2, —vt = v2 — 2tanh(w + φ t

2 , (1-15)

results in the system

ut = u2 + D(u2v), —vt = v2 - D(v2u + μu\ (1.16)

where μ= 1. The system (1.15) relates to (1.12) by the conformal transformation,
hence on account of the consequence of Theorem 3 system (1.16) possesses an
infinite set of local conservation laws. One can make the substitution u-^u1,
v-> — 2/(u + v) directly in system (1.12), in this case one obtains system (1.16) with
μ = 0, i.e. the derivative nonlinear Schrodinger equation. Systems (1.16) with μ = 0
and μ = 1 are not point or symmetrically equivalent.

II. Classification of Integrable Systems of the Form (1.1)

1. In our previous papers [1,2,3] there have been obtained the necessary conditions
that the systems of equations of the form (1.1) possess the local conservation laws
of higher order. These conditions proved to be so effective that they allowed us
to determine completely a possible form of the right-hand sides of the systems.
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Among them quite a lot of systems proved to be symmetrical. The afore-described
module extension allows one to reduce drastically a list of integrable equations: it
is just enough to give a representative from each symmetrical class. Below we shall
present an exhaustive list of integrable systems of equations of the form (1.1).

List

(a)

(A)

(b)

(c)

(d)

(D)

of integrable systems of equations

ut = u2 + D(u2 + v\

— vt = v2 — 2D(uv);

ut = u2 + u2v,

ut = u2 + (M + V)U1,

-vt = v2-υ1

2u1+4u1;

ut = u2 + D{u2v - 4v),

— vt = v2~ D(v2u — 4M);

(d;) ut = u2 - (u + v)~1u1

2v1 - 2(M + v)'1^2,

— υt = υ2 + (u + v)~2v1

2u1 - 2(M + v)~1v1

2;

(d") ut = u2 + sech2(w + v)uί

2v1 — 2 tanh(w +

— vt = v2 — sech2(M + υ)v1

2uί —

(e) ut = u2 — 2 tanh (u -h v)^^ — 4),

— vt = v2 — 2tanh(w + i ; )^ ! 2 — 4);

(f) ut = u2- 2(u + vy'u,2 - 4(M + t;)~2[

(g)

vt = v2-v1

2u1-uί;

(G) ut = u2+ D(u2v%

— vt = v2— D(v2u + M);

(h) ut = u2 Λ-u^ — 2u1vί,

-vt = v2-v1

2-2v1u1;

(H) Mί = M2 + D(M2-2Mi;),

— vt = υ2 — D(v2 — 2uv);
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(h') Ut = U2-%U + Ό)-1U1

2>

— vt = v2 — 2(u + v)~1v1

2;

(h") ut = u2 - 2 tanh (u + v)u x

 2,

-υt = v2-2 tanh (u + υ)vί

 2;

(i) Mί = « 2 + « Λ >

(I) Mf = W2 + D{U2V\

-vt = υ2-D(v2u);

(ϊ) ut = u2 + exp(u + v)u1

2v1 + i^2,

(j)

(k) ut = u 2 - 2{μ + ϋ)" ̂ i 2 - 4(M + Ϊ;)" 2 [(M - v)u1 + wi J ,

- ^ = v2- 2(M + t ? ) " ^ ^ + 4(M + ̂ )"2[(w - v)υί - vu{]\

(l) W ί = u2 + κω«i 2«i + R'iyW - 2βίR"(y) - 2c]Ul

-vt = υ2- RiyWu, + R'iyW + 2/3[Λ"(y) - 2 ^ ^ + lβR'"iy\

where y = y(u + t;), / = R{y) φ 0, /?(};) = αy4 + ̂ y3 + cy2 + dy + β);

(m) ut = u2- 2(M + t;)" ̂ i 2 - 4[P(w, φ x + Rfφj fw + i;)"2,
-t; f = ϋ2 - 2 ( M + v)~ιv1

2 + 4[P(κ,φi + R(-v)uJ(u + / ) " 2 ;

(n) ϋt = u2 - 2(μ + v)~1[u1

2 + Λ(tι)] + Λ'(M)/2,

-t; t - υ2 - 2{μ + ϋ ) " 1 ^ 2 + Λ(-ι )] - R'(-f;)/2;

(in Eqs. (m), (n): P(w, i?) = 2au2v2 + % y 2 - vu2) - 2cuv + φ - v) + 2β, JR(Z) = αz4 +
6z3 + cz2 + dz + e);

(o) Mf = w2 + exp(</))(w!2 + 1)^! + φ ^ i 2 + 2ru,

-vt = v2-Qxp(φ)(vί

2 + l)u1 + c/)^!2 - 2ri;x;

(p) ut = u2 + exp((/>)(Wl

2 + 1)17! + ̂ ( i/ i 2 + 1),

-t; f = t;2 - exp(0)(ι?i2 + l)Mi + W ^ 2 + 1),

(in Eqs. (o), (p): exp (φ) = y(w + ϋ) - y(w - υ), r = y(ι; + r) + y(w - ϋ), / # 0, (/
- 4 / + ay3 + /?y2 + cy + d, or (/) 2 = -y4 + ay3 + by2 + cy + d respectively);

(q)

(Q)

-vt = v2-ut

2;

-v = v2-D(u2);
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(r) ut = u2 + (u + v)2,

— vt = v2 + (u + v)2;

(s) ut = u2 + (u + v)v1 — (M + *;)3/6,

— ̂  = ι;2 — (u + !;)«! — (u + ι^)3/6;

(t) ", = 1/2 + ^ ,

-vt = v2- Ul

2 -(v + u2β)uι

there are six equations of the form:

(u) ut = u2 + υί

2 + θuvί +zΌ9

-vt = v2 + u1

2-θvu1+zu;

where

θ = aexp[-(u + υ)~\ + ax exp(-ωw - ω*v) + α 2 exp(-ω*w - ωυ),

z = b exp (M + v) + ί?! exp (ωu + ω*u) + fo2

 e x P (ω*u + ωι;)

+ c exp [ — 2(M + i;)] + cί exp [ — 2(ωu + ω*ϋ)]

+ c2 exp [ — 2(ω*w + ωi;)]

and ω = exp(2πi/3), ω* = exp( — 2πi/3):

( u l ) Mf = M2 + ^i2>

— ^ί = 1̂ 2 + W l 2 '

(Ul) ut = u2 + 2vvί9

— vt = v2 -\-2uu1;

(u2) ut = u2 + vx

2 -f foexp(ι/ + ι;) — 2cexp[ — 2(w + ϋ)],

— vt = v2 + uγ

2 + bexp(u + t;) — 2c exp [ — 2(u + i;)];

(u3) wf = u2 + i^!2 — {αexp[ — (u + i;)] + ωα x exp( — ωw — ω*z;)

+ ω * α 2 e x p ( — ω*w — ωι;)}ι; l5

vt = V2 + w i 2 + {^exp [ - ( M + U)] + ω*αi exp( — ωu — ω*v)

+ ω α 2 exp (— ω*u — ωv)}u1

(u4) Mf = u2 + U ! 2 — 2 c e x p [ — 2(w + t;)] — 2 ω * c 1 e x p [ —2(ωw + ω*t;)]

— 2ωc 2 exp [ — 2(ω*w + ωι?)]5

— ι;t = ϋ 2 + M X

2 — 2 c e x p [ — 2(M + i;)] — 2ωc x e x p [ — 2(ωw + ω*u)]

— 2 ω * c 2 exp [ — 2(ω*w + ωi;)];

(u5) ut = u2-\-v1

2 + bexp(u + ί;) + ω*fex exp(ωw + ω*z;) + ωZ?2exp(ω*w + ωz;),

~fί = t;2 + π 1

2 + fo exp (u + v)-\-ωb1 exp (COM + ω*v) + ω * b 2 exp (ω*w + ωv);

(u6) wf = u2 + t; x

2 — {αexp[ — (u + v)~\ + ω α x e x p ( — ω w - ω*t;)

+ ω * α 2 e x p ( — ω*w — ωi;)}^! — {aia2Qxp(u + t;)

+ ω*aa2 exp (ωu + ω*ϋ) + ωaa, exp (ω*u + ωv) + α 2 exp [ — 2(M + i;)]

+ ω * ^ ! 2 exp [ — 2(ωω + ω*ι;)] + ω α 2

2 exp [ — 2(ω*w +
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{αexp [ — (u + v)~\ + ω*a1 exp( — ωu — ω*v)

( — ω*u — ωv)}u1 — {a1a2Qxp(u + v)

ωaa2 exp (ωu + ω*v) + ω*aa1 exp (ω*u + ωv) + α 2 exp [ — 2(u + v)~\

x

 2 exp [ — 2(ωu + ω*ι;)] + ω*a2

2 exp [ — ωi;

(v) ut = u2-(u + v) U

— vt = v2—(u + v)~1(

(w) ut = u2 + D(u2 + v~

— vt = v2 — 2D(uv) —

2v1u1)/2

The equations, denoted by one and the same letters, but differing in a number
of primes, are conformally or symmetrically equivalent. For instance, the systems
(h') and (h") are conformally equivalent, but, as has been already pointed out, they
belong to different symmetrical classes, and systems (h), (h') are symmetrically
equivalent, but are not related to each other by the conformal transformation.

2. The substitutions of the form (1.5), (1.6) allow us to establish some additional
relationships between the equations.

The list of changes of variables

(a)-

(b)-

->(b)

->(A)

(c)-*(A)

(a)-

(d)-

(e)-

(d")

(g)-

(JH
(g)-

(h")

(h')-

( 1 ) -

(0-»
( i ' ) -

(!)-»

-> (c)

->• (e)

•> ( D )

-•(0

•(G)

>(h")

-*(G)

- ( I )

•(H)

(h')

>(k)

(m)

(q) -> (r)

( r ) —s

(s)—)
•(Q)

>(t)

U

U

U

U

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

-+ exp (u),

• -+uju,

. - φ + ι;)/2,

- > 2 M 1 + Γ,

-> arctanh (Mi/2) —1;,

-> 2 tanh (M + υ),

-> tanh (M + t;),

->2/M!-ι;,

^ 2 ^ + ί;)"1,

^ iu/2,

->2iul9

->2(u + ϋ ) - 1 ,

-> - M ϋ / 2 5

- ^ 2 / M ! - ^

-> exp (M + v\

-> y(w + z;),

- > ( 2 M 1 + I?)/4,

^ 2 ( M + t;),

^ - (M + 4

I

i;

V

t

v

V

V

V

V

V

V

V

V

V

V

V

V

V

>->exp( — M ) ^ ;

' ^ - ^

^υ;

^vx;

-> — tanh (M + u) - 2/1?!

-> ΪM/2 + arctanh (— ivj;

—• i tanh (M + v);

->• —uv/2 — v1/v;

^v;

-* — 2/ϋ! — exp(M + ϋ);

- + - 2 / Ϊ ? ! -y(w + z;);

^ - t /4;

^ 2 i ; 1 - ( t / + i;)2/2;

the following changes of variables relate (v) and (w) to linear and split systems:
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(lin) ut = u2 + vx + (α — b)u/2,

-Vt = V2-2bu1+{a- b)v/29

(spl) ut = u2 + υ'\

respectively:

(v)^(lin) u-+2(u + t?)1/2 r-> - 2υ1{u + v)~1/2;

•(w) u-*uju, v->uv.

The following universal substitution relates any pair equations, (x) and (X),
denoted by the same letter, of which (x) does not contain u, v explicitly:

(x)-*(X) u-+u1 v-^v1.

A convenient graphical representation of the above substitutions is as follows:
the systems of equations we shall denote by circles o (symmetrical systems
correspond to black circles •) and the substitutions of variables by arrows. As a
result we get:

ao-»ob * d —• e g ~* j

I \ I I \ 4 4 \ 1
c -»oA fo oΌ i -»h ->υG

ϊ \ ϊ \
ko I .-^oH

lo—>om no Oo po qo—> r s -^ot

\ I

oQ

ul — oUl u2 u3 o u4o u5o u6o

Vo->olin splo-^ow

We notice in conclusion that it is just enough to study one of the systems from
each connected graph: for the other equations of this graph all results can be
reproduced via the above-given substitutions.

3. The Miura type relationships, contrary to the afore-described transformations
are not invertible on a finite subset of the dynamical variables. None-the-less, they
could be useful for some applications, and allow one to relate different connected
graphs. A full list of all admissible Miura relations goes beyond the scope of the
present paper. We confine ourselves to citing some of the relationships of this
category.

As a first example we present the Miura type relations of the systems (d') and (i):

( d ^ ^ i ) M->M, vx -> — (u + v)~2v1 — 2(« + v)~ι.

The Miura type relations of systems (e), (j) with the nonlinear Schrodinger
equation we present as a composition of the following symmetrical transformation:



Extension of the Module of Invertible Transformations 11

uγ -+ -2(w + v)~1u1, u + ι;-»log [ε + 2(μ + t;)"2]

(ε = 4,0 in the cases (e), (j) respectively), that maps them into the system

(ε*) ut = u2 + {|[2ε —exp(u + v^u^ + exp(w + v)uιv1}[β — Qxp(u + v)~\~1

+ exp (u 4- v),

— vt = v2 + {i[2ε — expΐu + i ; ) ] ^ 2 + exp(w + ψv^^lε — exp(w + i?)]"1

+ exp (w + t;);

and then with the Miura type relation:

(ε*)=>(b) u-» {[2ε - 2 exp (w + v)~]1/2u1 + 1} exp u,

ι;^{[2ε-2exp(w + ι;)]1/2ί;1 + ljexpi;.

The Miura type relationship of the system

(Γ) ut = u2 + u2v1 - u3v2/2, -vt = v2~ ^ 2 " i - v3u2/2,

that is symmetrically equivalent to the derivative nonlinear Schrodinger equation
(I), with the nonlinear Schrodinger equation (b) is of the form:

(Γ)=>(b) u-^u1 v-^v1-v2u/2.

To find the Miura type relations of the systems (r) and (s) we first perform the
following symmetrical transformation:

(s) -• (s;) μ\u + υ) -+ (u + v)2, μ2u1 -> 2(μ + v)uί+(u + υfβ,

where μ = 2(ω — l)/3, ω = exp(2πi/3). As a result we obtain the system

(sr) ut = u2 - (u + υy'iu,2 + 2uίv1)/2 + μ(u + v)1/2vJ3 + μ\u + ι;)2/18,

-vt = v2 - (μ + i ; ) " 1 ^ ! 2 + 2u1v1)/l- μ{u + ί;)1/2

Wl/3 + μ2(w + i;)2/18,

that is connected with Eq. (r) by the Miura type relation:

(s')=>(r) 6M->(1 - ω2)(u + i;)-1/2w1 - {u + ϋ)/3 - ωu,

6v->(ω — ω2)(u + v)~1/2vί —ω2(u + v)/3 — ωυ.

The Miura type relation of the following systems:

(Ul') 3ut =~u2-2v2 + D(-u2 + 2v2 + 2uυ\

-3vt = - v2 - 2u2 + D(-v2 + 2w2 + 2uv\

and

(r;) Mr = — u2 + 2ι;2, vt = v2 — 2u2/3 — w2/3,

which are point equivalent to Eqs. (Ul) and (r) respectively, is of the form [4]:

(Ul')=>(r') u-+D(2u + v) + uυ-{u + υ)2, v-+D2(u) + D(uv) - (u + v)[D{u) + uυ\.

The Miura type relation of (ul) and (u3) is of the form:

(u3)=>(ul) u1-^u1 — α{αexp[ — (u + v)~] + ω 2 α 1 exp( — ωu — ω2v)

+ ωa2 exp (— ω2 u — ωv)}9
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vi -* vi — β{a e x P C — (u + ϋ )] + ωai e x P ( — con — ω2v)

+ ω 2 α 2 exp( —ω2w — ωv)},

where 2(j8 - α) = 1, 2jβ2 = α.

The Miura type relation of (u3) and (u2) is of the form:

(u3)=>(u2) u + υ-+u + u, u^^^u^^ + {α/2exp[ — (u + ι>)] — a1Qxp( — ωu — ω2v)

- α2 exp ( - ω2 u - ωϋ) }/2

(the consts. b and c in Eq. (u2) are equal to —3a1a2/2 and 3α2/32 respectively).

III. Commutational Representation

A commutational representation (or the representation of the Lax type) of the
nonlinear system of equations is in the basis of the inverse scattering transform.
It has the form [5, 6]:

Ut = D{V) + lU9V}9 (3.1)

where U, V are the functions of the finite set of dynamic variables in some
finite-dimensional unsolvable Lie algebra A, it should be fulfilled as a result of the
initial system and it can be considered as the matrix analogue of the local
conservation laws. However, it is essential that the functions U9 V also contain
the spectral parameter μ, which is not excluded by the gauge transformations

U^g-1D(g)^g~1Ug, V-+g~1gt + g~ιVg. (3.2)

For a given system of equations the commutational representation (3.1) can be
constructed directly from the definition (3.1) considering that U and Fare the
matrices of some fixed dimension N x N. In this case a spectral parameter
parametrizes a manifold of the solutions of Eq. (3.1). For each concrete equation
of the matrices U, V have a rather special appearance connected with the invariance
of the commutational representation (3.1) relative to the action of the reduction
group with elements that are the pairs for (g9g(μ))9 where g is the automorphism
of the Lie algebra A, but (g{μ)) is a fractional-linear transformation in the complex
plane of the spectral parameter μ (see [7,8,9]). It is necessary to study the reduction
group while calculating soliton solutions and formulating the corresponding
Riemann problem. [7, 10]. Reduction groups are very useful in the problems
of search, description and classification of the commutational representations
[7,9 11,12].

Below we shall restrict ourselves to the construction of the commutational
representations for the systems of the type (u) and the systems (m), (n). In the end
we shall give references for the original papers known to us, which contain
commutational representations of the other equations of the list.

1. Consider the systems of the type (u). Suppose that matrix U depends on the
dynamic variables M, V and does not depend onuί9vί.ln this case it follows directly
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from (3.1) and form

V =

Uu-\

wu =
[U

(u) that

Uuux - Uvv1 +

- uvv = 0,
T T Ω i ΓJJJJ

— U ΛJ.. ~Γ I *-> 5 C u

WΛ + U z -U

w w

], Wv

,z = 0 .

= W(u,v),

+ uuu = o,
= ^u^u - Π

(3.3)

(3.4)

(3.5)

(3.6)

It is easy to get from Eqs. (3.4) that

U = a t exp(-cow-ω*v) + a2exp(— ω*u — ωv) -f a sexp(— u — v) + Λo, (3.7)

where a ί ; Λo are some constant matrices. From (3.3)—(3.5) and the fact that
θuu + ΘV = ΘVV + ΘU = O (see 2, 3) it is easy to get the explicit expression for W:

W = [UΌ9 UJ + (1/0 - Uuθv - Uvθu)/2 - Aoθ + C o, IAO, m = 0. (3.8)

(Co is a constant matrix, [C o , L/] = 0.) Thus, the matrix V is expressed through U
and θ in the explicit form (3.3), (3.8). Without any loss of generality one can put
Λo = Co = 0.

Example I. The matrix

[ 0 μx exp( — ωu — ω*v) 0 \

0 0 μ2exp(-ω*u-ωv)\ (3.9)

μ3exp(— u — v) 0 0 /
satisfies the system of equations (3.4)—(3.6) with 0 = z = 0. The parameters μi are
free but there is an essential dependence on one parameter only μ = [μιμ2μ?)ιβ —
this parameter occurs after the gauge transformation (3.2) with g = diag((μ1/μ3)

1 / 3,
3, (μ3/μ2)1/3) τ h e matrix V is reconstructed by Eqs. (3.3), (3.8),0 μ1(-ωu1 +ω*ϋ 1 )exp( —ωw —ω*ϋ) μ1μ2(ω - ω*)exp(u +v)

V = \ μ^μ^ω — ω*)exp(ωu + ω*v) 0 μ2( — ω*u1-\-ωv1)Qxp( — ω*u —
μ3(v1—u1)exp(—u — v) μ^μ^ω — ω*)exp(ω*w + ωv) 0 / (3.10)

Pair (3.9), (3.10) gives a commutational representation for the system (u) with
z = 0 = 0, i.e. for (ul).

Substitute the functions 0,z into (3.8), (3.6) in the form

0 = 2/3(ω*-ω) £ α^expί-ω^- ω*% (3.11)
i = l , 2 , 3

z = X {- l/2j8iexp(-2ωiM - 2ω*ft;) + ̂ exp(ωιw + ω*0}?
i = l , 2 , 3

that will allow us to embrace all the integrable cases (ul)-(u6). Collecting the
coefficients at the same exponents, we get the following system of relationships for
the matrices a^

[>i, [a£, a j ] = α,[af, a j + A a. + y Λ , i ΦjφkΦ I (3.12)

Hence, the problem of the construction of the commutational representations (3.1)
for the systems of equations of the form (u) is reduced to a purely algebraic problem:
it is necessary to find finite-dimensional representation of the Lie algebra, that
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generated by the elements at and relationships (3.12). As it has been pointed out,
in order to apply the inverse scattering transform, it is necessary that this Lie
algebra should be unsolvable and depend essentially on the free parameter μ. The
classifϊcational result for the equations of the form (u) given in II means that this
problem can be only solved while fulfilling some relationships for the constants
0Li9 βh yt. In the example 1 for the matrices at have the form

*1(μ) = μeί2, a1(μ) = μe 2 3 , *1(μ) = μe3ί, (3.13)

(e/i7 is a matrix which has one unit in the (ίj) place and the other elements vanish)
and are the roots of the positive Kac-Moody subalgebra Λ2

{1) [13].
As an example we consider this algebraic problem for the system of equations

(45). In this case αf = βt = 0, γx = y2 = 1, y3 = α, and system (3.12) has the form

αa 1, [ a 2 , [ a 2 , a j ] = αa2, (3.14)

[ai, [a l 9 a 3 ] ] = a 1 ? [a 3, [a 3, a j ] = a 3, (3.15)

[ a 2 , [ a 2 , a 3 ] ] = a 2, [ a 3 , [ a 3 , a 2 ] ] = a 3. (3.16)

It is evident from these equations that matrices a, have zero eigenvalues only. It is
not difficult to check that in the matrices 2 x 2 Eqs. (3.14)—(3.16) do not have
solutions depending essentially on a free parameter. We construct a solution in
the matrices 3 x 3 assuming that they have a rank equal to one, and consequently
they are represented by the bivectors

^ = \a)(dl a 2 = |fc><e|, a 3 = |c></|, (3.17)

where |> and <| denote a vector-column and a vector-row, respectively. Nilpotency
of these matrices means that

0, (3.18)

Substituting (3.17) into (3.14)-(3.16) and taking into account (3.18) we get

-2<d | i>><φ> = α, -2<d|c></ |α> = l, -2<e|c></|&> = 1. (3.19)

We fix gauge freedom (3.2) by the choice of the vector basis

|α> = (l,0,0)tΓ, |fo> = (0,l,0) tr' |c> = (0,0,l)tr,

and (see (3.18))

<d| = (0,μ,α), <e| = (fc,0,μ), </ | = (μ,c,0),

where μ is an arbitrary parameter, the components α, b, c are determined from Eqs.
(3.19). As a result we obtain

*i = μ e ί 2 - e13/(2μ), a2 = μe 2 3 - αe21/(2μ), a 3 = μe31 - e32/(2μ). (3.20)

Let us point out that the dependence on the parameter μ in (3.20) is essential and
these matrices cannot be reduced to a triangular form simultaneously. Thus, the
matrices â  (3.20) generate a commutational representation for the system (5).

It is easy to check that the matrices

~ αe2i/(4μ), a 3 = μe 3 1 - 2jSe13/μ (3.21)
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satisfy the system of Eqs. (3.12) with αt = 0, β1 = β2 = 7i = y2

 = 0? β3 = α, y3 = —2β
and give a commutational representation for the system (u2). The matrices

*i = μe 1 2 - 2e21/μ, a 2 = μe 2 3 - 2αe32/μ, a 3 = μe 3 1 - 2e13/μ (3.22)

satisfy the system of equations (3.12) with at = yt = 0, j8x = α, β 2 = /?3 = 1, and give
commutational representation for the system (u4).

In all cases considered the matrices U, V, at have a rather special structure. This
structure reflects automorphic property of the enumerated matrices relative to the
action of the corresponding reduction group Gr. In this point we restrict ourselves
to the consideration of the finite reduction groups, i.e. the groups generated by
the transformations of the form:

where X(μ) is the N x N matrix with the coefficient depending on μ; G1, G2eSL(iV, C);
g^μ), g2(μ) are fractional linear transformations of the complex plane μ (for a more
detailed and gauge invariant definition of the reduction group see [7]). We shall
call the matrix X(μ) an automorphic one relative to the reduction group Gr, if

for all geGr. It is convenient to construct automorphic matrices via the averaging
over the reduction group

(X(μ)} = Σg[X(μ)l (3.23)

For instance, the matrices U (3.9), V (3.10) are automorphic relative to the group
Gr ~ Z 3 , generated by the transformation

\ Q = diag(ω,ω*, 1), q(μ) = ωμ, ω = exp (2πi/3).

(3.24)

They are obtained by averaging over this reduction group of the following matrices:

U = μA, V = μ2B + μC + F, (3.25)

(A, B, C, F are the matrices of a general form).
We turn to the consideration of the commutational representations invariant

relative to the finite reduction groups which are a stationary subgroup of the point
μ = oo generated by transformation (3.24). In this case we can restrict ourselves to
the averaging of the matrices U of the form (3.29) (μ1 = μ2 = μ3 = μ). Here the
corresponding matrices at are obtained by the averaging of the matrices at (μ) (3.18).
The finite groups of the fractional-linear transformations of the complex plane are
exhausted by the group rotations (ZN), dihedrons (ΌN) and regular polytopes. We
have already considered the rotation group Z 3 — i t results in the commutational
representation (3.9) (3.10) for the system (w2).

The dihedron group D 3 has two nonequivalent realization (representations as
the reduction group):

i) The generators q, k (q3 = k2 — (qk)2 = id) are represented by the transformations
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q[X(μΏ = QX(q(μ))Q ~\ Q = diag (ω, ω*, 1), q(μ) = ωμ, (3.26)

k[X(μn=-Xtr(-δ/μ)l δeC. (3.27)

The averaging of the matrices at (μ)/3 (3.13) over the reduction group with the
generators (3.26) (3.27) yields (cf. (3.22))

*i = μe 1 2 + δe21/μ, a2 = μe23 + <5e32/μ, a 3 = μe 3 1 + δeί3/μ. (3.28)

The matrices af (3.28) satisfy relationships (3.12) with αf = γt = 0, /?f = δ and, thus,
give commutational representations for the system of the type (u4).

ii) Let us represent the generators q, k by transformations (3.26) and

( ή
H= 0 1 0 , <5,τeC. (3.29)

l/τ 0 0/
The averaging of matrices at (μ)/3 (3.13) over the reduction group with generators
(3.26) (3.29) yields (cf. (3.21))

- δe32/(τμ), a 2 = μe 2 3 - δe2ί/(τμ), a 3 = μe 3 1 - <5e13/μ. (3.30)

The matrices at (μ) (3.30) satisfy the commutational relationships (3.12) with α = 0,
βi = ̂ 2 = yi = y2 = 0? ^3 = " <5> 73 = 4^/τ. They generate a commutational repre-
sentation for the system (u2) with a = 4δτ, β = δ/2.

As generators of the tetrahedron group one can choose q, k (q3 = k2 = (qk)3 = id).
Let q have representation (3.26) and

(-1 2 2\

t[_X(μ)2 = TX(t(μ))T, T = 1/3 2 - 1 2 , t(μ) = (μ + 2)/(μ - 1). (3.31)

V 2 2 - 1 /

The averaging of the matrices at (μ)/3 (3.13) over the group generated by transform-
ations (3.26) (3.31) yields

-2a μ + b -2c\ ί Aa 4b -2c\

*τi(β)= 4 c ~2a 4 δ L a Γ 2 (μ)= - 2 c -2a μ +
4b -2c 4a) \ 4b 4c -2a

a Γ 3 (μ)= - 2 c 4a 4b , (3.32)

where

= (μ3 + 2)/(3μ3 - 3),

b - (ί(μ) + ωί(ω*μ) + ω*ί(ωμ))/9 = μ/(μ3 - 1),

c = (t(μ) + ω*ί(ω*μ) + ωt{ωμ))/g = μ2/9(μ3 - 1).

One can check that the matrices aΓ ί (μ) (3.32) satisfy commutational relationships
(3.12) with αf = 4, yf = j8f = 0 and hence, give a commutational representation for
the system of the type (u3).
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Octahedron group can be represented by the transformations q, t (3.26), (3.31)
and

k[X(μU=-X«(-2/μ)). (3.33)

It is evident that the matrices at corresponding to this group are obtained from
the matrices aΓί(μ) (3.22) as follows:

^ = ̂ τi{μ)-2iτn-2/μ). (3.34)

One can prove that matrices â  (3.34) satisfy commutational relationships (3.12)
with αf = 12, γt = βt = 32, and hence, generate a commutational representation for
the system of the type (u6).

2. Consider systems (m), (n). System (m) represents a well-known Landau-Lifshitz
model with a biaxial anisotropy. The commutational representation for it has been
practically simultaneously obtained in papers [14, 15]. The author of the first
paper proceeded directly from the definition (3.1), in the second one this system
of equations and its commutational representation have been obtained as a result
of the quasi-classical transition from the exactly solvable quantum XYZ model.
Here following paper [10] (for detail see [16]) we get this commutational
representation having averaged the matrices

U = i/μΣσkSk, (3.35)

V=iΣσh(Ak/μ + 2SJμ2) (3.36)

(here Ak = Σs^JS^^ corresponding to the Heisenberg model over the infinite
reduction group Gr, given by the generators

0ι LX(βΏ = °3X(μ + ω)σ3, Im (ω/ω') Φ 0,

flf2[^(μ)] = σ i ^ + ω > 1 . (3.37)

As a result we obtain

E7 = iΣσkW\(μ)Sk,

V= iΣσ.W'^S.S^ε^ + 2iΣσkW\{μ)Sk, (3.38)

where Wk(μ) are elliptical functions which expressions through the Weierstrass
function have the form

W1 i(μ) = ζ(μ) + ζ(μ + ω') - ζ(μ + ω)-ζ(μ + ω + ω') + 2ζ(ω),

W1

2(μ) = ζ(μ) - ζ(μ + ω') - ζ(μ -ω) + ζ(μ + ω + ω'), (3.39)

Wι

3{μ) = ζ(μ) - ζ(μ + ω') + ζ(μ + ω)-ζ(μ + ω + ω') + 2ζ(ω'),

Wa+ \(μ) = ( - iγ/alda(W\(μ))/dμa,

and (W\{μ))2 - (W^iμ))2 = {Jm - Jk)/2, JkeC. It is easy to check that (3.1), (3.38)
yield a system of equations

S, = S x S x x + S x J S , J = d i a g ( J 1 , J 2 , J 3 ) , V + S2

2 + S3

2 = 1, (3.40)

which is reduced to the form (m) by the substitution (1.14).
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If we substitute μ2 instead of μ in matrices (3.35), (3.36), then their averaging
over the reduction group Gr (3.37) gives a commutational representation for the
system

St = S x Sxx - (S(S, JS))J4 + JSx/2, (3.41)

related by the substitution (1.14) to system (n) in which

U = iΣσkW\(μ)Sk,

V = iΣσkW
2

k(μ)[-JkSk/2 + ΣS^s^ - 2iΣσkW\{μ)Sk. (3.42)

Representation (3.1), (3.42) has been obtained in paper [17] by another method—
the author proceeded from the infinite-dimensional Lie algebra of a strictly unit
growth as first occurred in reports [11,12]. We point out that the elliptical
functions W2a

k(μ) in (3.42) can be substituted for the rational functions of a new
spectral parameter. Really, from definition (3.39) one can get easily the following
relationships between the functions Xk = W2

k(μ\ Yk = W4

k(μ):

xixj=γk-jkxk/4, kΦiΦjΦK ί 3 4 3 )

XJj-XjYt = (Jt- Jj)Yk/4 + (J2 - Jj2)Xk.

The intersection of quadrics (3.43) yields a curve of the zero genus which can be
simply uniformized by rational functions. Here a uniformizing variables will serve
as a new spectral parameter. But from the practical viewpoint the representation
obtained by averaging over the reduction group is the most convenient one since
it allows to integrate a nonlinear system by a well-known scheme (see for instance
[16]).

3. In conclusion we give a list of the original papers where one can find
commutational representations of the known systems for the equations of our list:

; W-[26]; ( u l ) - [26]; (Ul), (u
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