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Abstract. This paper deals with the problem "Can a noisy orbit be tracked by
a real orbit?" In particular, we will study the one-parameter family of tent maps
and the one-parameter family of quadratic maps. We write gμ for either fμ or
Fμ with fμ(x) = μx for x ^ \ and/μ(x) = μ(l — x) for x ^ \, and Fμ(x) = μx(l — x).
For a given μ we will say: gμ permits increased parameter shadowing if for each
δx>0 there exists some δμ > 0 and some δf>0 such that every δf -pseudo
gμ-orbit starting in some invariant interval can be δx-shadowed by a real
ga-orbit with a = μ + δμ. We show that gμ typically permits increased parameter
shadowing.
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0. Introduction

Studying simple dynamical processes by computer simulation, the question arises
whether a trajectory of the numerical process actually corresponds to a trajectory
of the real process. We can model these questions by discrete processes, where the
Real Process is

The Numerical Process can be represented by the same process plus small
perturbations (the perturbations represent round off error)

(NP) xn + i=f(Xn) + Pn with \Pn\^δf forg iven δf>0.

For each point x the orbit (or trajectory) of x under / is the set {fn(x)}n^0,
where / " is the nih iterate of/. A sequence {yn}n>0 is called a real orbit (or exact
orbit) of/ if (RP) is satisfied for n = 0,1,2,3, We call such a sequence a "real"
orbit to emphasize that there is no perturbation. For δf > 0 the sequence {xn}n>0

is a (Sj-pseudo orbit of / if \f(xn) -xn + 1\^δf ϊor every integer n ^ 0. For δx > 0
the sequence {xn}n^0 will be £x-shadowed by a sequence {yn}n^0 if \xn-yn\^δx

for all n.
When / is sufficiently uniformly hyperbolic, Bowen [2] obtained a result saying

that each pseudo orbit can be shadowed by a real orbit if the perturbation is small.
More precisely, he gave conditions under which the following holds: for every
δx > 0 there is an δf > 0 such that every δf -pseudo orbit of / in the nonwandering
set can be <5x-shadowed by some real orbit of/

We will study discrete processes which are not sufficiently hyperbolic to be
modelled by an Axiom A diffeomorphism. Let / be a continuous map from the
real line into itself. We assume that / is strictly increasing on (— oo,c] and / is
strictly decreasing on [c, oo) for some real number c. Such a point c will be called
a critical point. A sequence {xn}n>0 is called non-critical if xnφc for each n, in
other words, the sequence does not hit the critical point c. For each real x we
define Symbol (x) = L if x < c, Symbol (x) = C if x = c, and Symbol (x) = R if x > c.
The itinerary (or symbolic sequence) of a sequence {xn}n>0 is the sequence
{Symbol(xJ}M>0. Note that two non-critical sequences {xn}n>0 and {yn}nkQ have
the same itinerary if they have the same symbolic sequences, i.e., {Symbol(xn)}n>0 =
{Symbo\(yn)}n>0. We frequently exclude consideration of orbits that pass through
the critical point, because the kneading theory requires much more complicated
terminology in such a situation.
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In this paper we will study two one-parameter families of maps, namely the
one-parameter family fμ of tent maps defined by

(Tent) /„(,)=> « X ξ C = l μ > l .
(/ί(l — X) if X^C = j;

as a prototype for the one-parameter family of expanding unimodal maps, and the
one-parameter family Fμ of quadratic maps defined by

(Quad) Fμ(x) = μx(l-xl μ>l,

as a prototype for the one-parameter family of unimodal maps with negative
Schwarzian derivative.

For either f = fμ9 1 < μ < 2, or / = Fμ, 3 :g μ < 4, we define the invariant set
In\(f9δf) = [f(f(c) + δf)-δf9 f(c) + δf] for δf^0 sufficiently small. This set
has the property that if x0 is in lnv(fδf) then so will be all xn, n^.1, whenever
(NP) is satisfied with \pn\ ̂ δf. No smaller interval will suffice for all choices of

iPnJn^O'

We write δx for the distance between two nearby trajectories, δμ for the increment
of the parameter value, and δf for the maximum size of the perturbation. Write
gμ for either fμ or Fμ9 if α = μ + δμ9 then we write ga = gμ + δμ.

Definition. For a given μ we say gμ permits increased parameter shadowing if for
each δx > 0 there is some δμ > 0 and some δf > 0 so that each δf -pseudo gμ -orbit
starting in Inv(gμ,δf) can be (5x-shadowed by a real gμ + δμ-orbit, and gμ permits
same parameter shadowing if for each δx > 0 there is some δf > 0 such that every
(^-pseudo #μ-orbit starting in I n v ^ , ^ ) can be (5x-shadowed by a real g^-orbit.

This study began by trying to show that increased parameter shadowing holds
for the tent maps (Tent) with 1 < μ < 2. Two proofs emerged and the methods were
quite general. One of these was based upon kneading sequences and turned out
to be capable of also dealing with the quadratic map (Quad) with 1 < μ < 4. The
other method, reported by Coven, Kan and Yorke [6], apparently cannot be used
for (Quad) but can be used to show that same parameter shadowing holds for
(Tent) for almost all μ in (1,2). It is also shown that same parameter shadowing
for (Tent) fails for an uncountable set of μ that is dense in (1,2).

1. Statement of the Results

For clarity of exposition we will state the obtained results for noisy tent maps and
noisy quadratic maps separately.

I-A. Noisy Tent Maps. Consider the 1-parameter family of maps on the real
line given by fμ(x) = μx for x ^ \, fμ(x) — μ(l — x) for x ^ \. We assume 1 < μ <
μ + δμ < 2 and 0 < δf < δμ{μ - l)2/(4μ), and we define ^ e n t - &δμ + δf)/(μ + δμ- 1).
Notice (5^ent goes to zero as δμ goes to zero.

Theorem A-l. For every non-critical δf-pseudo fμ-orbit {xn}n>0 with x0 in
In\(fμ9δf) there exists a real fμ + δμ-orbit {yn}n^0 such that the itinerary of {yn}n^0

equals the itinerary of {xn}n>o
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Theorem A-2. For every δf-pseudo fμ-orbίt {xn}n>0 with x0 in ln\(fμ,δf) there
exists a real fμ + δμ-orbίt {yn}n>0 such that \xn — yn| ^ δ^nt for every nonnegative
integer n.

Corollary. For each {μ(n)}n^0, μ-2δf^ μ(n) ζμ + 2δf we have: For every {xn}n^

given byxn + 1= fμ(n){xn) withx0 in Inv(/μ, δf)9 there is {yn}n^0 with yn + 1= fμ + δμ(yn)>

so that \xn-yn\S <%ent for e a c h n έ 0.

Remark. Thm. A-2 says that fμ permits increased parameter shadowing.

1-B. Noisy Quadratic Maps. Consider the 1-parameter family of maps on the real
line defined by Fμ(x) = μx(l — x), μ > 1. Our first result answers the question "Can
the symbolic sequence of a given noisy orbit which does not hit the critical
point also be realized by a real orbit?" For the quadratic map we assume
1 < μ<μ + δμ<4.

Theorem B-l. Assume that the critical point is not periodic and assume that Fμ has
no one-sided attractive periodic orbit. Then there exists δf>0 so that for each
non-critical δf-pseudo Fμ-orbit {xn}n>0 with x0 in In\(Fμ,δf), there is a real
Fμ + δμ-orbit {yn}n^0 such that the itinerary of{yn}n^0 equals the itinerary of{xn}n^0.

Remark. If Fμ has a non-critical attractive periodic orbit, then the conclusion in
Theorem B-l also holds for δμ — 0.

For clarity, we give an example which shows that one cannot hope for a similar
result as Theorem B-l for all noisy sequences.

Example. Let μ be the parameter value so that F3

μfy = \. The itinerary of the real
Fμ-orbit {JVUO with yo=\μ, is given by RLC RLC RLC RLC RLC RLC...
Notice Fμ has an attractive periodic three orbit. Obviously, we can perturb the
orbit slightly so that as many of the C's can be replaced by R and L as one desires.
Hence, for each δf > 0 we can find a δf -pseudo Fμ-orbit whose itinerary is given
by RLL RLC RLL RLC RLC.... In contrast, for each δμ ^ 0 there is no real
Fμ + δμ -orbit whose itinerary starts with the second given sequence above. When
the C occurs for the second time, the itinerary of a real Fμ + δμ-oτbit must thereafter
repeat periodically, and this one does not. This completes the example. •

An important question is "Is it true that every noisy orbit can be approximated
by a real orbit for slightly greater parameter value?" First we will present an
example for which the increased parameter shadowing does not hold. This example
illustrates a shadowing obstacle that occurs whenever there is a one-sided attractive
periodic orbit.

Example. Let μ be the saddle node bifurcation parameter value for the periodic
three orbit. Choose δμ > 0 such that the symbolic sequence of Fμ + δμ% equals the
symbolic sequence of Fμ$), i.e., the kneading sequences of the maps Fμ and Fμ + δμ

are equal. This is true for all sufficiently small δμ.
For this value of μ there is a unique period three orbit. Let q be the periodic

point with period 3 which is nearest the critical point \. Under F3

μ the point q is
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a fixed point and it is attractive from the left, but it is repelling from the right. We
define

Let δf > 0 be given so that δf<(μ- 2) (4 - μ)/(4μ) « 0.02 (this condition will
become clear later on). Let N ^ 1 be an integer such that \F3

μ

Nfy -q\<δf. (Such
an integer JV exists since, by a result due to Singer [32], the increasing sequence
{FT(2)}n^o> converges to q as n-κχ>.) For N sufficiently large, a perturbation of
size δf > 0 will be large enough to push the trajectory past q.

We consider the noisy sequence {xn}n>0:xo =hxn = Fμ(Xn-i)^or 1 ̂  ft ^ 3N —1
and for n ^ 3 N + 1, and x3N = Fμ(x3N_ x) -\- p3N_ ι with 0<p3N_1 <δf such that
x3N > q and x3N is a periodic point of Fμ. (The existence of such a real number
p 3 N _ 1 is guaranteed by the fact that the periodic points are dense in the
complement of the domain of attraction of the one-sided attractive periodic orbit,
see Guckenheimer [13].)

Let {yn}n>0 be a sequence defined by yn + 1 = Fμ + δμ(yn) such that the symbolic
sequence of {yn}n>0 equals the symbolic sequence of {xn}n>ί. From the kneading
theory due to Milnor and Thurston [23] (see also Sect. 2-A), and a theorem due
to Guckenheimer [13] it follows that such a sequence {yn}n>ι is uniquely
determined.

For δμ>0 small, each trajectory of Fμ + δμ that starts near \ will necessarily
tend asymptotically to the attractive periodic 3 orbit. Hence, if {yn}n>ι has the
same itinerary as our {xn}n>ι, it follows that y0 must be far from \, so |x 0 — y01 is
not small and does not go to zero as δμ goes to zero. More specifically, because
of the fact that {yn}n>o is contained in the complement of the domain of attraction
of the attractive periodic orbit of Fμ + δμ, we have |x 0 — yo\ > δ*. Even if δf goes
to zero, the quantity δ* is bounded away from zero. Consequently, the sequence
{χn}n>o cannot be <5J-shadowed. End of the example. •

Now we will present the results obtained concerning the problem whether or
not a noisy orbit can be approximated by a real orbit for slightly larger parameter
value. It will turn out that increased parameter shadowing holds for all parameter
values except for a countable set of parameter values. Consequently, the example
given above is an exceptional case. Further we will see that, for a large open set
C of parameter values (those μ for which there is an attractive periodic orbit), one
can actually shadow a given noisy Fμ-orbit by a real Fμ-orbit with μ in C. In
particular, for such μ the parameter value need not be increased to find the real
orbit for shadowing.

Theorem B-2. Assume that Fμ does not have a one-sided attractive periodic orbit.
Then Fμ permits increased parameter shadowing. Moreover, if Fμ has an attractive
periodic orbit, then Fμ permits same parameter shadowing.

Theorem B-3. Assume that Fμ has a one-sided attractive periodic orbit. Then there
exists δ* > 0 so that for every δμ^0 and every δf>0 there is a δf-pseudo Fμ-orbit
which cannot be δ*-shadowed by a real Fμ + δμ-orbίt.
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2. Preliminaries

This section is devoted to symbolic dynamics. In the first subsection we will restrict
our attention to reviewing those basic facts from kneading theory which are suitable
for our purposes. In the second subsection we will, motivated by the concept of
cylinder, introduce noisy cylinders. Let / be a continuous map from an interval
[α, b\ a <b, into itself with one critical point c in (a, b) so that f2(c)<c< f(c) < b.
We assume that the endpoint a is an unstable fixed point of/ and the point b will
be mapped into a, hence f(a) = /(&); further we assume that / is strictly increasing
on [α, c] with f(x) > x for all x, a < x g c and /is strictly decreasing on [c, b~\.

2-A. Kneading Theory. Kneading theory for continuous piecewise monotone maps
was largely developed by Milnor and Thurston [23], see also Derrida, Gervois
and Pomeau [9,10], Guckenheimer [13, 14], Jonker [16], Collet and Eckmann
[4], Guckenheimer and Holmes [15].

Previously, kneading theory has been used in order to obtain some desired
results, e.g. (1) the classification of maps with one critical point by Guckenheimer
[13], (2) the computation of the topological entropy of maps with one critical point
by Collet, Crutchfield and Eckmann [5] and, (3) the bifurcation in one dimension
by Jonker and Rand [17].

In this paper kneading theory will be used for the approximation of noisy
orbits by real orbits. In order to do so, we shall review some basic facts. For each
point x, a^x^b, the address Symbol(x) of x is the formal symbol L,C, or R as
x < c, x = c, or x > c. The itinerary /(/*(x)) of x under the map / is the sequence
of addresses {Symbol (/"(x))}π>0 of the successive images of x under / The sequence
{Symbol(/"(x))}n>0 will also be called the /-itinerary of x as well as the itinerary
of the sequence {/"(x)}^0

 W e n o t e t h a t ' (/*(/(*))) = s(/(/*(x))) with s the shift
map on sequences defined by s({An}n>0) = {An + 1}n>0. The kneading sequence K(f)
of / is the /-itinerary of /(c), i.e., K(f) = {Symbol(/Λ(/(c)))}^0 = {Symbol
(fn(c))}n>i- Finally, a finite sequence consisting of the symbols L and R is called
odd or even as the number of K's it contains is odd or even.

Let Y be either the set of /-itineraries (permitting the symbol C) or a subset
of all sequences consisting only of the symbols L and R. In either case we will
define an ordering on Y. First, we define the order L < C < R for the symbols L, C,
and R. If A = {An}n>0 and B = {#n}n>0 are two different elements of Y, then there
is a smallest integer N for which AN φ BN. For N = 0 we define A < B if Ao < Bo;
for JV^l we define A<B if either (i) {An}0^n^N^ (= {Bn}Oύn^N_ι) is even and
AN<BN, or (ii) H J O ^ N - I ( = Φ . } O ^ J V - I ) i s o d d a n d BN<^N- We will use

the notation A> B, Af^B and A ^ B in the standard way.
Now we will state the monotonicity theorem M and the existence theorem E

due to Milnor and Thurston. For the proofs of these theorems we refer the reader
to the mentioned references at the beginning of this section.

Theorem M. Let x and y be points in the interval [a, b~\. Then (i) x <y=>I(f*(x)) S

I(f*(y)ϊ, (ii) I{f*{χ))<l{f*(y))=>χ<y.

Theorem E. Let A = {An}u>0 be a sequence consisting of the symbols L and R such
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that s(K(f)) :§ {̂ 4n + jv}n>o = K(f) for e a c n integer N ̂  0. Then there is a point x
in the interval [/2(c), /(c)] so that A = /(/*(*)) = {Symbol(/"(x))}^0.

2-B. Noisy Cylinders. We assume throughout this section that for given δf ^ 0
the set Inv(/, δf) = [/(/(c) + (5y) — δf9 f(c) + <5y] has the property that if x is in
Inv(/, δf) then f(x) — δf is in Inv(/, <5y) and /(x) + δf is in Inv(/, δf). This will be
true if δf is chosen sufficiently small.

Motivated by symbolic dynamics, see e.g. Parry [30], Lasota and Yorke [19],
Alekseev and Jakobson [1] and, Crutchfield and Packard [8], we write for each

J{L\(f,δf)} = [a,c\ J{C\(f,δf)} = {c}9 J{R\(f,δf)}=(c,bl (2a)

and we define by induction for each nonnegative integer n, the noisy cylinder
J\An + 1An...Ao\(f9δf)}by:

J{An+1An...Ao\(fδf)} = {x in J{An+1\(fδf)}: Lf(x)-δf,f(x) + δf]

nJ{An...Ao\(f9δf)}Φ0}9 (2b)

with Ak being one of the symbols L, C, or R for each k with 0 ̂  k ̂  n + 1.
Let {An}0^nύN and {Bn}0^n<N be two different finite sequences of the symbols

L, C, and/or ϊ?. From the definition of noisy cylinders it follows that the noisy
cylinder J{AN...A0\(f,δf)} is either empty or a nonempty closed set. Hence, if
J{AN...A0\(f,δf)} is nonempty, then it is a point or a (nontrivial) interval. For
δ / ==OwehavethatJ{>l w . . .>l 0 | (/,δ / )}nJ{β J v . . .JB 0 | (/,δ / )}isempty,butforδ / >0
it can occur that J{AN...A0\(f,δf)}nJ{BN...B0\(f,δf)} is an interval.

Proposition 2-1. Let {An}0<n<N be a given finite sequence consisting of the symbols
L, C, and R. For δf ^ 0 we have:

(i) J{RAN...Ao\(f9δf)}=0*>J{LAN...Ao\(f9δf)}=φ9

(ii) J{LAN...Ao\{f9δf)}Φ0=>J{RAN...Ao\{f9δf)}Φ0.

Proof. It follows from f(f(f(c) + δf) - δf) -δf^ f(f(c) + δf) - δf. Π

Proposition 2-2. Let {An}0<n<N be a given finite sequence consisting of the symbols
L, C, and R. For δf^0 we have: IfJ{AN A0\(fδf)} is empty, then there is no
δf-pseudo f-orbit in lnv(fδf) whose itinerary has initial part AN...A0.

Proof: Apply the definition of J{AN...A0 \ (fδf)}. Π

Now we will state a monotonicity property for noisy cylinders. This property
can be viewed as an analogue of the monotonicity theorem M for the /-itineraries.

Proposition 2-3. Let A = {An}n>0 and B = {Bn}n>0 be two different sequences
consisting of the symbols L and R. Let N be the smallest integer with ANΦBN.
Assume that the cylinders JA = J{A0 ... AN\(f,δf)} and JB = J{B0...BN\(fδf)} are
nonempty for some given δf ^ 0. Then we have:

(i) sup JA < sup JB => A < B; (ii) A < £=>sup JA rg sup JB;
(iii) inΐJA<infJB^>A<B; (iv) A < B=>inϊ JA ^ inf JB.
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Proof. The proof is straightforward, and it is left to the reader. Π

Proposition 2-4. Let {Dn}Qύn^M be an arbitrary given not empty sequence consisting
of the symbols L and R. Let {An}Q<n<N be a sequence consisting of Ls and R's so
that lΏΪJ{A0...AN\(f,δf)}>f{c) + δf

=.'τhen we have: J{D0...DMA0...AN\(fδf)}
is empty.

Proof From {x in [α,6]: [ / ( * ) - δfj(x) + δrfn J{A0...AN\{f,δf)}} =0 it
follows immediately that J{ YA0...AN\ {f,δf)}=φ with 7 - L o r Y = R. Π

Proposition 2-5. Let {An}0<n<N be a finite sequence consisting of the symbols L
and R such that inϊ J{A0... AN\(f δf)} > f(c) + δf. Then the cylinder J{RB0 ...BN\
(fδf)} is empty for each sequence {Bn}Q<n<N consisting of Ls and R's with

Proof If An = Bn for O^n^N then J{RB0...BN\(f,δf)} is empty by Prop. 2-4.
If J{B0...BN\(fδf)} is empty then J{RB0...BN\(f,δf)} is empty. So we assume
from now on {Bn}QύnύN>{An}Q^N and J{B0...BN\(fδf)} is nonempty. Then
iΏίJ{B0...BN\(f9δf)}'£iΏΪJ{A0...AN\(f,δf)} by Prop. 2-3(iv). Using Prop. 2-4
we get J{RB0...BN\(fδf)} is empty. •

3. Tent Maps Under the Influence of Noise

As in the introduction we let fμ.R —• R be the one parameter family of maps defined
by fμ{x) = μx for x ^ \ and fμ(x) = μ(l — x) for x ^ \. Let μ be a fixed parameter
value with 1 < μ < 2.

3 - A . T r a c k s of Noisy Orbits. L e t δμ > 0 a n d δf>0 b e g i v e n . L e t {xn}n>o ^Q a

δy-pseudo /^-orbit, i.e., xΛ + 1 = /μ(xw) + pn with |pΛ | g δf. First, we will present a
result concerning neighborhoods of the elements of the noisy sequence by applying

fμ + δμ'

Proposition 3-1. For every nonnegative integer n we have: [xn + 1 — δx,xn + 1 + δx~]n
( - oo,i(μ + δμ)] cz Fμ + δμ([xn - (5, ,^ + <5X]) wίίΛ (5λ. = (iδ μ + ̂ )/(μ + δμ - 1).

Proof. The proof is left to the reader. Π

Let δx be as in Proposition 3-1. We define for each integer n ̂  0 the set S0(ή)
by S0(ή) = [_xn — δx,xn + δx^\. For every integer n > 0 we define, by induction, for
each integer k with 0 ̂  k rg n — 1, Sk + x (n) by

Proposition 3-2. IfS%= f] SN(N) φφ, then there is a sequence {yn}n^0 defined by

n) so that \xn-yn\^δxfor all n.

Proof Assume that S^ is a nonempty set. Pick arbitrarily y0 in S%. Then

\*o-yo\^δχ> Now define {yn}n^0 by yn + ί =fμ + δμ(yn).
Let integer N > 0 be given. Fix arbitrarily an integer n, O^n^ N. Then, by

definition, we have that yn is in SN^n(N). From SN_n(N) included in S0(ri) =
Lχn — δxixn + δx^\ it follows that \xn — yn\ ̂  δx. Since n was arbitrary, we obtain
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that I xn — yn | ̂  δx for each integer n,0^n^N. The conclusion is that | xn — yn | ̂  δx

for all n since N was arbitrary. Π

3-B. Noisy Attractor. A necessary condition, in order to be able to track noisy
orbits which start in the unit interval, seems to be some invariance criterion, because
the unit interval is positively fμ + δμ-invariant for each δμ with 0^δμ^2 — μ.
Of course, if such an invariance condition has been satisfied, this will not
necessarily imply that every noisy orbit in the unit interval can be tracked by a
real orbit.

The set Inv(/μ,0) = [μ — iμ 2 , |μ] is a positively fμ-invariant set, and fμ maps
Inv(/μ,0) onto itself. Consequently, /μ(Inv(/μ,0)) = Inv(/μ,0). For each open set
U in (0,1) containing Inv(/μ,0) we have that f] fk

μ(U) = Inv(/μ,0) since, for each

x , 0 < x < l , there is an integer n^O such that fn

μ(x) is in Inv(/μ,0). Hence,
Inv(/μ,0) is an attractor for fμ.

The above observations indicate that for the noisy map N{fμ,δf} associated
with /μ, also positively N{fμ,δf}-invariant sets might exist with N{fμ,δf}(x) =
lfμ(x) - δf, fμ(x) + δfl for each integer n ̂  0. Recall that Inv(/μ, δf) = [/μ(/μ(i) +
^ / ) ~ ^ / » Λ ( 2 ) + ^/]J

 a n d n o t e t n a t t n e attractor Inv(/μ,0) of fμ is contained in
Inv(fμ,δf) for every δf^.0. It will turn out that the set lnv(fμ,δf) is positively
N{fμ,δf}-invariant, provided that δf is suitably chosen.

Proposition 3-3. For every δf with 0 < δf ^ (μ — 1)(2 — μ)/(2μ) and for each δr

pseudo fμ-orbit {xM},,>0 we have:

If x0 is in ln\(fμ9δf) then xn is in ln\(fμ9δf) for all n^O.

Proof. By induction. Π

Proposition 3-4. For every δf with 0 < δf < (μ — 1)(2 — μ)/(2μ) the set Inv(fμ,δf) is
an attractor for the noisy map N{fμ,δf}.

Proof Let δf be as in the proposition. For x with δf/(μ—l)<x<j we have
μx — δf>x which implies inϊN{fμ9δf}(x)> x. Further, it is easily verified that
δf/(μ-l)<μ-y2-μδf-δf. We obtain that f)(N{fμ,δf}

k{U) = Inv{fμ9δf)

with U = (δf/(μ — 1), 1 — δf/(μ — 1)). We conclude: Inv(/μ, δf) is an attractor for
the noisy map N{fμ,δf}. Π

3-C. Length of Noisy Cylinders. For our purposes we need the length of noisy
cylinders. Let δf^0 be given with δf^(μ—1)(2 —μ)/(2μ). For a given finite
sequence {An}0^n<N consisting of the symbols L,C, and R, the noisy cylinder
J{AN...A0\{fJδJ)} is given by (2b). We write |J{AN...A0\(fμ,δf)}\ for the length
ofJ{AN...A0\(fμ9δf)}.

Lemma 3-5. Let {An}n^0 be a sequence consisting of the symbols L,C, and R. For
each δj>0 there is a positive integer N so that for each integer n, n^N we have:
\J{An...A0\(fμ,δf)}\^2δf/(μ-l) + δj.

Proof. Let {̂ 4n}n>0 be as in the proposition, and let δs > 0 be given. If δj ̂  1 then
the claim is trivial. So, we assume that δj<\. Choose N so that N^ —
log((5j)/log(μ). Then for each integer n with n^iVwe have:
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\J{An...A0\{fμ,δf)}\^\J{An.ί...A0\(fll,δf)}\/μ

f Σ f f
k=ί k=1

^ μ~n + 2δf/(μ - 1) ̂  μ~N + 2δf/(μ ~l)^δj + 2δf/(μ - 1).

D
Proposition 3-6. Let {An}n>0 be a sequence consisting of the symbols L,C, and R.
Assume that there exists a δf-pseudo fμ-orbit {xn}n>0 with itinerary {An}n>0, i.e.,
Symbol(xn) = An for each n. Then the set of initial values for δf-pseudo fμ-orbits
with itinerary {An}n^0 is a nonempty interval of length at most 2δf/{μ— 1).

Proof Apply Lemma 3-5. •

Remark. Let {An}n>0 be the sequence defined by An = R for each integer n ̂  0.
The interval consisting of initial values for δf -pseudo fμ-orbits with itinerary
{An}n>0 has length 2δf/(μ — 1). Consequently, one cannot obtain a better estimate
than the one given in Prop. 3-6.

3-D. Cylinders, Itineraries and Monotonicity. In this section we will study the
question whether or not there is an ordering on the noisy cylinders in some sense,
which is compatible with the ordering on the symbolic sequences. For the real
number δf ^ 0 we assume that δf^(μ—l)(2 — μ)/(2μ). For a given finite sequence
{An}0SnύN consisting of the symbols L,R the cylinder J{AN... Λ0\(fμ9δf)} is given
by (2b). For ^ = 0we have: if x0 < y0 then {Symbol ( x j ^ o < {Symbol (yn)}n^0 with
xn = fn

μ{x0), yn —fμ{yo\ see e.g. Guckenheimer [13]. This monotonicity is not
true for noisy sequences, but we have the following result.

Proposition 3-7. Let {xn}n>0 and {yn}n>0 be two non-critical δf-pseudo fμ-orbits in
Inv(fμ,δf) with xo<yo. Then we have: if y0 — x 0 > 2δf/(μ — 1) then {Symbol

Proof. Let {xn}n>0 and {yn}n>0 be as in the proposition. The itineraries of {xn}n>0

and {yn}n>0 are sequences consisting of the symbols L and R, because of the
δf -pseudo fμ-orbits are assumed to be non-critical. Applying Propositions 3-6 and
2-3 gives the result. •

Proposition 3-8. Let {An}n>0 be a sequence consisting of Ls and K's. Assume that
the cylinder J{A0...AN\(fμ,δf)} is nonempty for some given integer N>0. Let
{χn}n>o be a non-critical δf-pseudo jμ-orbit in lnv(fμ,δf). Then inf J{A0... AN\(fμ,
δf)} >y + δf implies {Symbol(xn))^ 0< {An}n^0.

Proof. Let {An}n>Q, {xn}n>o a n <^ V̂ be as in the proposition. Assume
mϊJ{A0...AN\{fμ~δf)}>y~+δf. We write Bn = Symbol(xj, O^n^N. Since
{xn}nz0 in lnv(fμ9 δf) we know inf J{B0 ... BN\(fμ, δf)} < \μ + δf. Applying Prop.
2-3 (Hi) gives {Bn}n^ < {An}n^. We conclude: {Symbol(xπ)}^0 < {An}n^. Π

3-E. Pseudo Orbits and Kneading Sequence. C h o o s e δμ s o t h a t l < μ < μ + δ μ < 2 .
Choose the noise level δf so that 0 < δf < δμ(μ — l)2/(4μ). For a given finite sequence
{An}o^n<N consisting of the symbols L, C, and R the cylinder J{AN...A0\(fμ,δf)}
is defined by (2b). The kneading sequence K(fμ) oΐfμ is the fμ-itinerary of/μ(j) = \μ.
Let {xn}n>0 be a non-critical (^-pseudo /μ-orbit with x0 in Inv(fμ,δf).
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In this section we will obtain the result that {Symbol (xJ},?a>0 < K(fμ + δμ) with
{Symbol(xJ}n>0 the itinerary of the sequence {xn}n>0- In order to prove this claim,
we will introduce an auxiliary map g being topologically conjugate with fμ + δμ, for
which we will show that {Symbol (xw)}π>0 < K(g) = K(fμ + δμ). Then by the existence
Theorem E due to Milnor and Thurston we know that there exists a sequence
{zn}n^0 defined by zn + ί=g(zn) such that the itinerary of the sequence {zn}n^0

equals the itinerary of the sequence {xn}n>0, i.e., Symbol(zw) = Symbol (xπ) for
each n.

Let the diffeomorphism Φ from [0,1] into [5,1 — s] be defined by Φ(x)~
(1 — 2s) x + s, with s = %δμ — δf)/(μ + δμ—l). We consider the map g:[s, 1 — s] -•
[s ,1-5] defined by g{x) = Φ°fμ + δμ-Φ~λ(x).

Proposition 3-9. The map g, which is topologically conjugate withfμ + δμ, has the
following properties:

(0 9(2) = 2^ + 5/, (ϋ) 9(μ - i μ 2 - μδf - δf) <μ2- \μ3 -μ2δf- μδf - δf; and
(iii) g{\μ + δf) + 2δf/(μ - 1) < μ - \μ2 - μδf - δf.

Proof. Notice g(x) = fμ + δμ(x) — (^δμ — δf) for s g x ̂  1 — s. The rest of the proof
is straightforward, and it is left to the reader. •

Proposition 3-10. {Symbol(xn)}i?>0 < K(g).

Proof. By Prop. 3-5 we know that there exists an integer M > 0 such that the
length of the cylinder J{AM...A0\(fμ,δf)} is smaller than 2δf/(μ— 1) + \{μ —
iμ2-μδf-δf-2δf/{μ-l)-g(^μ + δf)} with {An}0^M an arbitrary finite
sequence consisting of the symbols L and R. Pick α in (g(^μ + δf\g(^μ + δf) +
2{μ-Ίμ2-μδf-δf-2δfl{μ-\)-g(lϊμ + δf)}) such that fN

μ{a)=\ for some
integer N ̂  M. The existence of such a point α is guaranteed by the well known
fact that the union of the pre-images of the critical point (i.e. the set {x'.fn

μ(x) = h
n ̂  0}) is dense in the interval [0,1]. Note that this fact also follows from Prop.
3-5 with δf = 0.

We write Dn = Symbol(/£(α)) for each integer n ̂  0. Notice DN = C. Since
K(fμ) < K(fμ + δμ) we know by the existence Theorem E of Milnor and Thurston
that there is a point β in the interval (g(\μ + δf),%) such that Symbol [fμ + δμ{β) = Dn

for each n, O^n^N.
From the choice of α and the definition of cylinders we get inϊJ{RD0...DN\

(fμ>δf)} > i μ + δf. By applying Prop. 3-8 we conclude that {Symbol(xw)}π>0<
K(g). Π

Proposition 3-11. There exists a sequence {zn}n>0 defined by zn+1 = g(zn) so that
Symbol^) = Symbol(xπ) for each integer n^.0.

Proof. Apply Prop. 3-10 and the Theorem E of Milnor and Thurston. •

3-F. Proof of the Results. Let fμ:R^R be defined by fμ(χ) = μχ for x ^ and
fμ(x) = μ(l-x) for x ^ | . We assume that \<μ<μ + δμ<2 and 0<δf<δμ

{μ - l)2/(4μ); and we recall that δx = (^δμ + δf)/(μ + δμ - 1), and Inv(/μ, δf) =
Uμ{fμ&) + δf)-δf9fμ{i) + δfl

Proof of Theorem A-l. Let {xn}n>0 be a non-critical c^ -pseudo /u-orbit with x 0
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in Inv(fμ9δf). By Prop. 3-3 we know that {xw}M>0 is in Inv(fμ,δf). Let the maps
g and Φ be as in Sect. 3-E. Applying Prop. 3-11 we obtain that there exists a real
0-orbit {zn}^0 with {Symbol(zn)}^ 0- {Symbol(xJ}^0. We define yn = φ-i(zn\
for each n^O. We conclude: the sequence {yn}n>0 is a real / μ + (5μ-orbίt with

}

Proof of Theorem A-2. Let {xn}n>0 be a non-critical c^-pseudo /μ-orbit with x 0

in lnv(fμ,δf). Then, by Prop. 3-3, {xπ}n>0 is in Invί/^,^) . Let for each integer
ΛΓ ̂  0 the set Sk(N), 0 ^ fc ^ N, be defined as in Sect. 3-A. For every integer n ^ 0
we have by Prop. 3-1 [xΛ + 1 - <5x,xn + 1 + < 5 J n ( - oo,(μ + (5μ)/2] afμ + δμ([χn -
^x,xn + ^ x ]) . Let { y n } ^ 0 be the real / μ + (5μ-orbit whose itinerary equals that of
{χn}n>o> s u c n a r e a ^ o r bit exists by Theorem A-l. It follows that S^ = (°) ^ ( N ) is

nonempty since y0 is in S^. Using Prop. 3-2 gives |xπ — yn| ^ (5X for each n ^ 0. Π

Proo/ o/ Corollary. The union of the graphs of fμ{n) is contained in the graph
of the noisy map, more precisely: the set {(x,fμ(n)(x))' x in lnw(fμ,δf)} is in
{(x, ίfμW - δf9 fμ(x) + ^ ] ) : x in Inv(/μ, ̂ ) } . Q

4. Quadratic Maps with Noise

Let Fμ\R->R be the one-parameter family of maps defined by Fμ(x) = μx(l — x).
We restrict μ to 3 ^ μ < 4, except where specified.

4-A Noisy Attractor. The set Inv(Fμ,0) = [ F ^ ) , F μ ( i ) ] is an attractor for Fμ9

because Fμ(Inv(Fμ,0)) = Inv(Fμ,0) and for each open U in (0,1) containing
Inv(Fμ,0) we have f| Fk

μ(L/) = Inv(Fμ,0).

For every δf^0 the noisy map N{Fμ,δf} is defined by Λ^{JFμ,^/}(x) =
[Fμ(x) — (5/5 Fμ(x) + δf~]. As for the tent map we will see that an attractor will exist
provided that the noise level δf is sufficiently small. Recall Inv(Fμ, δf) = [Fμ(Fμ% +
δf) — δf, Fμ% + δf~]. We will assume for the rest of this section that 0 < δf < (μ — 2)
(4-μ)/(4μ).

Proposition 4-1. For each δf-pseudo Fμ-orbit {xn}n>0 we have: ifx0 is in Inv(i^, δf)
then the sequence {xn}n>0 is in Inv(Fμ,δf).

Proof. By induction. •

Proposition 4-2. lnγ(Fμ,δf) is an attractor for N{Fμ,δf}.

Proof Write rad = [ ( μ - I) 2 - 4μδfY
/2. For x = (μ - 1 - rad)/(2μ) we have

μx(l—x) — δf = x, and for each point x with (μ — 1 — rad)/(2μ) < x < \ we have
μx(l — x) — δf > x ; this implies inϊN{Fμ,δf}(x) > x. Since μα(l — α) > α with
α = μ(iμ + (5/)(l - | μ - 5,) - (5r we have (μ - 1 - rad)/(2μ) < μ$μ + (5r)
(1 - iμ - δf). We obtain, by writing U = {β, 1 - β) with β = (μ-l- rad)/(2μ), that
f] (N{Fμ, δf})k(U) = I n v ^ , ^j). The conclusion is that Inv(Fμ, δf) is an attractor

for N{Fμ,δf}. Π

4-E. Noisy Periodic Attractors and Shadowing. We assume that F μ has an attractive
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periodic orbit P. Hence, there exists a smallest positive integer p such that P consists
of p asymptotically stable periodic points qt with F ̂ qt) = qi+1,l^i^p—l and
Fμ(qp) = q1. Since Fμ(0) = μ > 1, it follows from a theorem due to Singer [31] that
all the other periodic points are not asymptotically stable.

First, we have to define "Noisy periodic attractor." A closed set A is called an
attractor for the map N{Fμ9δf} (which is defined by N{Fμ9δf}(x) = [Fμ(x) —
δf, Fμ(x) -f δfj) if there exists an open neighborhood U of A such that
P| (N{Fμ9δf})k(U) = A. An attractor A for the noisy map N{Fμ9δf} is called a

/c^O

noisy periodic attractor if the following two conditions are satisfied: (i) The attractor
A contains the attractive periodic orbit P of F μ\ (ii) Each component of A contains
precisely one point of P. Such a noisy periodic attractor for the noisy map N{Fμ, δf}
will be denoted by Ap(Fμ9δf).

Proposition 4-3. There exists δf>0 such that N{Fμ,δf} has a noisy periodic
attractor.

Proof. It follows immediately from the proof of Theorem B in [29]. Π

Proposition 4-4. If the attractive periodic orbit P of Fμ does not contain the critical
point ofFμ, then there exists δf > 0 so that N: {Fμ, δf} has a noisy periodic attractor
Ap(fμ,δf) for which we have: The itinerary of each δf-pseudo Fμ-orbίt starting in
the component of Ap(Fμ, δf) which contains the supremum of the noisy periodic
attractor, equals the kneading sequence K(Fμ) of Fμ.

Proof It follows immediately from the proof of Theorem D in [29]. Π

Proposition 4-5. If the attractive periodic orbit P of Fμ does not contain the critical
point ofFμ, then there exists δf > 0 so that for every non-critical δf-pseudo Fμ-orbit
{xn}nzo in ln\(Fμ9δf), we have: {Symbol(xn)}n^0^ K(Fμ)9 with K(Fμ) the kneading
sequence of Fμ.

Proof It follows from the Propositions 4-3,4-4, and 2-3 (i) above; and the proofs of
Theorems B and D in [29]. •

Notice in Prop. 4-5 we have the restriction that δf goes to zero as the parameter
goes to some critical value for which the critical point is periodic. However, the
same parameter shadowing will be permitted in such a situation for some δf

bounded away from zero.
Therefore, we will say, a δf-pseudo Fμ-orbit {xn}n>0 is bounded away from the

noisy attractor Ap(Fμ9δf) if the distance between Ap(Fμ9δf) and the closure of
{χn}n^o *s bounded away from zero. Obviously, for δf as in Proposition 4-3 we
have: if a ^-pseudo F^-orbit {xn}n>0 is not bounded away from the noisy attractor,
then it will be attracted by the noisy attractor.

Proposition 4-6. For every δx>0 there exists δf>0 such that each δf-pseudo
Fμ-orbit in lnv(Fμ,δf) can be δx-shadowed by some real Fμ-orbit.

Proof. It follows from Proposition 4-5 above, the existence Theorem E due to
Milnor and Thurston, and the proofs of Theorems B and D in [29]. Π

4-C. Obstruction for Shadowing. In this section we assume that μ is a saddle-node
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(or tangent) bifurcation parameter value. Assume that Fμ has a one-sided attractive
periodic orbit P consisting of p periodic points with smallest period p for some
integer p. Notice p ̂  3.

Proposition 4-7. There exists δ* > 0 such that for every δμ^0 and each δf>0 there
is a non-critical δf-pseudo Fμ-orbit {xn}n>0 which cannot be δ*-shadowed by a real
Fμ + δμ-orbit, whose itinerary equals that oj'{xn}n>o

Proof. It is no restriction to assume that μ ̂  μ + δμ ;§ 4 and that 0<δf<
(μ — 2)(4 — μ)/(4μ). Let q be a point of P such that \q — i\ = min{|x —£|:x in P}.
For δμ>0 sufficiently small we have that Fμ + δμ has an attractive periodic orbit
Ps and a repelling periodic orbit Pu both emerging from P at parameter value μ.
We write q(μ + δμ) in Pu such that \q(μ + δμ) - | | - min{|x - £ | : x in Pu}.

For each (5μ ̂  0 the periodic point g(μ + (5μ) exists by a result due to Milnor
and Thurston which says that the kneading sequence is non-decreasing for the
quadratic family, see Milnor [24]. We define δ* = ^ inf {\q(μ + δμ) — ̂ |:μ ^ μ +
<5μ ^ 4}, since g depends continuously on the parameter. Let N > 0 be an integer
so that \Fp

μ

N(^) — q\<δf. Such an integer N exists by a result due to Singer [32]
since F' (0) > 1, which says that lim Fp

μ\\) = q.

Consider the ^-pseudo Fμ-orbit {xn}n>0 defined as follows: χo=^χn =
Fμ(

xn-i) for 1 ̂  π SpN — 1 and n ̂ pN + 1, and xpN = i7

μ(xp i V_1) — α if F£ has a
local maximum at \ and xp/v = Fμ(xpN_ J + α if F£ has a local minimum at \ with
0 < α ^ ^ such that \xpN — ̂ | > |^ — il and xpiV periodic. The existence of such a
real number α is guaranteed by the fact that the periodic points are dense in the
complement of the domain of attraction of P, see e.g. Guckenheimer [13].

Let δμ^0 be given and let {yn}n>0 be a sequence in [0,1] defined by
JWi = Fμ + δμ(yn\

 s u c h t h a t t h e itinerary of {yn}n^ equals the itinerary of {xn}n^v

From the kneading theory due to Milnor and Thurston [23] and from a theorem
due to Guckenheimer [13] it follows that {yn}n>{ is uniquely determined.

B e c a u s e of t h e fact t h a t \yo — ̂ \>\q{μ + δμ) — \\>δ* w e h a v e \xo — y o \ > δ*.
Now we consider the noisy sequence {Xn}n>0 defined by X 0 = x 0 + ̂ //100 if
y0 >j,X0 = x0- δf/\00 if y0 < \, and Xn = xn for n ̂  1.

Conclusion. The ̂ -pseudo Fμ-orbit {Xn}n>0 cannot be (5J-shadowed by a real
Fμ + δμ-orbit for every δμ ^ 0, μ + δμ ^ 4. Π

4-D. When There are only Repelling Periodic Points. We assume that all the
periodic points of Fμ are repelling. For each sequence {An}n>0 consisting of the
symbols L,C, and/or R the noisy cylinder J{A0...AN\(Fμ,δf)} is defined in (2b)
for each N^0. The kneading sequence K(Fμ) of Fμ is the itinerary of Fμ(\).

In this section we will obtain the result that for δμ > 0 there is δf > 0 such that
for every non-critical (5^-pseudo ^-orbit {xn}n>0 we have {Symbol(xn)}n>o =
K(Fμ + δμ). In order to prove such a claim, we will similarly as with the tent maps,
introduce an auxiliary map g being topologically conjugate with Fμ + δμ for which
we will show that {Symbol(xJ}^ 0 ^ K(g) = K(Fμ + δμ).

Proposition 4-8. For every δμ > 0 there exists δf>0 such that for each non-critical

δrpseudo Fμ-orbit {xw},^0

 ίn I n v ( ^ μ ^ / ) ™e nave' {Symbol(xJ} ;^0 ^ K(Fμ + dμ).
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Proof. Let δμ>0 be given with μ + δμ < 4. Write s = βδμ-2δf)/{μ + δμ-2).
Define #:[s, 1 - s ] - * [ s , 1 - s ] by #(x) - [(μ + <5μ)/(l - 2s)]-(x - s ) ( l - s- x) + s.
This map #, which is topologically conjugate with Fμ + 5 μ (namely g = Φ°Fμ + δμ°Φ~1

with diffeo Φ:[0,1] -• [s, 1 — s] given by Φ(x) = (1 — 2s)x + 5) has the properties:
g(s) = g(\ — s) = 5, #(^) = ̂ μ + δf = Fμ{\) + δf. For <5y sufficiently small, we have
Fμ{Fμ&) + 5,) - δf > g{Fμ% + δf) and Fμ(Fμ(Fμ(i) + ̂ ) - δf) - δf > g{Fμ{Fμ% +
δf) - <5r). Notice for δf = 0 the difference [Fμ(Fμ(i) + <?,) - <5/] - 0(Fμ(i) + δy) =
FμiϊlA — 9(ϊμ) o n l y depends on the given μ and <5μ.

Since the lengths of the noisy cylinders go to zero as δf goes to zero (this
follows from the fact that the pre-images of the critical point under Fμ are dense
in the interval, see Guckenheimer [13]), we obtain, in a similar manner as for the
tent map, there exists noise level δf>0 and a sequence {An}0<n<N consisting of
the symbols L and R except the last one which is equal to C, i.e., AN = C
such that inϊJ{A0...AN\{Fμ,δf)}>iμ + δf and inf J{A0...AN\(g9ϋ)} <\μ + δf.
Hence {Λn}Oύn^N < K(g).

Let {xn}n>0 be a non-critical ^-pseudo Fμ-orbit in Inv(Fμ,δf). We write
Bn = Symbol(xπ) for O^n^N. Since {xn}o<n<N ̂  I n v (^μ ' ^/) w e know
iΏΪJ{B0...BN\(Fμ9δf)}<%μ + δf. Applying Prop. 2-3 (iii) gives {Bn}0^n^N<
{A«}o<n<N W e o b t a i n {B«}n>o = {Symbol(xπ)}π>0 < K[g). Thus {Symbol(xn)}^0 <

Proposition 4-9. For every δx > 0 there exist δμ>0 and δf>0 such that for each

non-critical δf-pseudo Fμ-orbit {xn}n>0 we have: There exists a real Fμ + δμ-orbit

{yn}nzo s o t h a t \xn ~ yn\ ̂  δxfor each n^O.

Proof Let δx > 0 be given. For each δμ > 0 with μ + δμ < 4 we let δf > 0 be as in
Prop. 4-8. For each non-critical δy-pseudo Fμ-orbit {xn}n>0 we write {yn}n>0 for
a real Fμ + δμ-oΐbit whose itinerary equals that of {xn}n>0, i.e., Symbol(xn) =
Symbol(yJ for each n ̂  0. For a given όy-pseudo i^-orbit {xn}n>0 we write
A = {An}n>0 = {Symbol(xM)}n^0, and we define ^(^4) = supδx(A;n) with δx(A;ri) =
sup{\x-y\:xin J{AnAn + 1...\(Fμ,δf)},y in J{AnAn+1...\(Fμ9δf)}}.

Let δμ > 0 be so that all the δx(AYs are less than δx, i.e., sup{^x(^l): A symbol
sequence of non-critical δf -pseudo Fμ-orbit} ^ δx. Π

Remark. Note that δx goes to zero as δμ and δf go to zero.

4-E. Proof of the Results. Le t Fμ:R->R be defined by Fμ(x) = μx{\ —x). We assume
that 1 < μ < μ + δμ < 4. For μ ̂  3 we recall that Inv(Fμ, δf) = lFμ{FμQ) + δf) -
δf>Fμ(j) + <5y] for (5y sufficiently small.

Proof of Theorem B-l. Let F μ be as in the theorem. For 1 < μ < 3 it is rather
obvious, and therefore left to the reader. Assume from now on 3 ̂  μ < 4. We
consider two cases, namely (1) Fμ has an attractive periodic orbit, and (2) all the
periodic points for Fμ are repelling. Case (1): By applying Prop. 4-5 and the existence
Theorem E due to Milnor and Thurston, the desired result follows. Case (2): We
obtain the result by using Prop. 4-8 and the existence Theorem E. •

Proof of Theorem B-2. Let Fμ be as in the theorem. For 1 < μ < 3 it is left to the
reader. Assume from now on that 3 S μ < 4. There are two cases, namley, (1) Fμ
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has an attractive periodic orbit, and (2) all the periodic points for Fμ are repelling.
Case (1): From Prop. 4-6 it follows that Fμ permits same parameter shadowing.
Further, the map Fμ also permits increased parameter shadowing because for δμ > 0
sufficiently small we have that Fμ + δμ has an attractive periodic orbit consisting of
either p or 2p points which is contained in the noisy attractor Ap(Fμ, δf). Case (2):
Using Prop. 4-9 we obtain that Fμ permits increased parameter shadowing. •

Proof of Theorem B-3. Let Fμ be as in the theorem and apply Prop. 4-7. Π

5. Discussion About More General Results

The tent map is a prototype for piecewise expanding unimodal maps. We have
shown that this family permits increased parameter "shadowing. This result can be
generalized in several ways. Let F be a continuous map from [0, 1] into itself such
that: (i) F(0) = F(l) = 0, (ii) there is c such that c ^ F(c) < 1, F'(x) ^ 1 for 0 ^ x < c
and F'(x) ^ — 1 for c < x ^ 1. We consider the maps fμ defined by fμ(x) = μ F(x)
with 1 < μ < l/F(c). We can show: If the topological entropy of fμ is a strictly
increasing function of the parameter μ, then fμ permits increased parameter
shadowing. Furthermore, there are cases where it is not monotonic and so increased
parameter shadowing will fail.

Also the second example we studied can be generalized. Let F be a map from
[0,1] into itself so that (i) F(0) = F(l) = 0, (ii) there is c with 0 < c ^ F ( c ) < l ,
F'(x)>0 for 0^x<c and F'(x)<0 for c < x ^ l , and (iii) F has a negative
Schwarzian derivative, i.e., F"(x)/F(x)-(3/2) [F'(x)/F(x)] 2 < 0 for x # c . Con-
sider the maps fμ defined by fμ(x) = μ F(x) with 1 < μ < 1/F(c). We can prove: If
the kneading sequence of fμ is a non-decreasing function of μ, then fμ permits
increased parameter shadowing except at saddle-node bifurcation values. However,
the quadratic family is the only example we know having this property.

For maps with several critical points we can prove a result similar to Bowen's
result concerning Axiom A diffeomorphisms. This differs from Bowen's result in
that the map is not a diffeomorphism. From the definition and the results in [28,29]
we obtain: Let / be an Axiom A C2-map from a compact interval into itself. Then:
for every δx>0 there is δf>0 such that each c^-pseudo orbit of / can be
δx -shadowed by a real orbit of/. The map fμ in Thm. B-2 is an example of an
Axiom A map whenever fμ has an attractive periodic orbit.

Remark. It is very likely that Theorem B-3 can be improved in the following way:
Assume that Fμ has a one-sided attractive periodic orbit. Then there exist δx* > 0
so that for each real number δμ and every δf>0 there is a (Sj-pseudo Fμ-oτbit
which cannot be (SJ-shadowed by a real Fα-σrbit, with α = μ + δμ.
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