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Abstract. We prove that for the relative entropy of faithful normal states φ and
ω on the von Neumann algebra M the formula

S(φ,ω) = sup{ω(Λ)-logφh(/): h = h*eM]

holds.

In general von Neumann algebras the relative entropy was defined and
investigated by Araki [1, 3]. After Lieb had proved the joint convexity of the
relative entropy in the type / case [10] several proofs appeared in the literature and
they all benefited from the operator convexity of the function t~>— logί [8, 11].
Improving a result of Pusz and Woronowicz [14] Kosaki [9] obtained a
variational formula for the relative entropy, which allows to extend the notion also
to C*-algebras. The expression we are going to deal with is of a different kind. It
shows that the relative entropy S(φ, ω) as a function of φ is the conjugate convex
function (i.e., Legendre transform) of the convex function /z->logφA(/), where φh

denotes the inner perturbation of the state φ by the selfadjoint operator h. The
perturbed state φh was used by Araki to extend the Golden-Thompson inequality
([7, 18], see also [15]) to traceless von Neumann algebras. Approaching our
variational expression for the relative entropy we generalize the Golden-
Thompson-Araki inequality [2] essentially and we state also the exact condition
for the equality.

If φ and ω are faithful normal states of the von Neumann algebra M then the
relative entropy is defined by means of the relative modular operator Δ(φ, ω). If Ω is
the vector representative of ω in the natural positive cone P then

S(φ, ω)- - <logΛ(φ, ω)Ω, β> .

The variational expression of Kosaki says that
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where y(t) = I — x(t), the first sup is taken over the positive integers and the second
one is over all step functions x : [1/w, oo)->M such that the range of x is finite and
x(t) = 1 for t large enough.

For a cyclic and separating vector ΦeP and a selfadjoint element heM the
perturbed vector Φh is defined by

oo 1/2
φΛ =

w = 0 0

where A is the modular operator of φ. The perturbed functional is the
nonnormalized vector functional corresponding to Φh. The inequality

reduces to the Golden-Thompson inequality if the algebra admits a faithful normal
trace.

If φ and ω are faithful normal states on the von Neumann algebra M then ω is
of the form φh for some h = h*eM provided that there are some constants λ, μ > 0
such that φ^λω^μφ [1]. This Λ is called the relative Hamiltonian.

Proposition 1. Let φ and ω be faithful normal states on the von Neumann algebra M
and h = h*eM. Then

and the equality holds if and only if ω = φh/φ\I).

Proof. By Theorem 3.10 of [3] we have S(φh, ω) = S(φ, ω) — ω(h). The monotonicity
of the relative entropy gives that S(φh, ω) ϊ> ω(I) [log ω(I) — log ψ\I}~] . Theorem 4 of
[12] tells us that here the equality holds if and only if

[Dφ\ Dω]t = (φ*(/)/ω(/)f (* e R) ,

that is, φh = λω with a /eR + such that φh(I) = λω(I).

Corollary 2. logφh(/) = sup{ω(/z) — S(φ,ω): ω is a faithful normal state}.

Corollary 3 (cf. [2]). The function h-^\ogφh(I) is convex on Msa.

Theorem 4. Let α : M0->M be a unital 2-positive mapping between the von Neumann
algebras M0 and M, and let φ be a faithful normal state of M. Assume that φ ° α is a
faithful normal slate of M0. Then for every /ι = /z*eM0, the inequality

holds. Furthermore, the equality implies φΛ(h} ° α = (φ ° a)h.

Proof. Let ω = φa(h}/φa(h\I). Then

by Theorem 3.10 of [2] again. According to the monotonicity of the relative
entropy [9, 11, 16] we have

S(φ, ω) ̂  S(φ ° α, ω o α) ,
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and application of Proposition 1 gives that

log φ«(h\I) ^ (ω o α)(/z) - S(φ - α, ω o α) ̂  \Og(φ o α)
/l(7) .

If the latest inequality is actually an equality, then ω o α = λ(φ ° α)Λ, that is φa(h} o α

Corollary 5. If NcM and h = h* eN, then for a faithful normal state φ on M we
have

and the equality holds if and only if σφ

t(h) E N for every t elR. In particular, if N is
commutative, then φh(I)^φ(QXph) and σφ

t(h) = h for every ίeIR is a necessary and
sufficient condition for the equality.

Proof. We learn from the proof of the previous theorem that φH(I) = (φ\N)H(I)
implies S(φh,φ) = S(φh\N,φ\N), and due to Theorems 4 and 6 of [12] this is
equivalent to the condition σφ

t(h) e N for every t e R.
For a commutative N we have ψh(I) = ψ(exph) for every state ψ on N and

{aeN: σφ

t(a)eN for every ίeϊR} = {αeJV: σφ

t(a) = a for every

Corollary 5 is an extension of the Golden-Thompson-Araki inequality, which
was proved in [2] by different methods. Our proof is based on the monotonicity of
the relative entropy. Roughly speaking, the equality in Corollary 5 may occur only
in a trivial way. It is so also in Theorem 4. The condition φα(/l) o α = (φ ° α)Λ is very
restrictive and its equivalent (formulated in terms of the modular groups) may be
extracted from Theorems 2 and 8 of [13].

Theorem 6. Let (pn) be a sequence of projections in M such that pn^I strongly. If

S(φ\Mn,ω\Mn)-+S(φ,ω)

as n-+co for every faithful normal states φ and ω on M.

Proof. Due to the monotonicity we have S(φ\Mm ω\Mn) ^ S(φ, ω). Using Kosaki's
formula we assume that

logn- j Γlω(y(t)*y(t)) + Γ2φ(x(t)x(t)*)dt
I In

approximates S(φ, ω) for an appropriate step function x : [1/rc, oo)-»M with x(t) = I
for t large enough. Set xn(t) = pnx(t)pn + (I-pn) and yn(ή = I - xn(t). Then

S(φ, ω) ̂  S(φ\Mn, ω\Mn] ^ logn - f t' 1 ω(yn(t)*yn(t)) + 1 " 2φ W* K(0*)^ ,
I In

and since

l/n 1/n

we can conclude the theorem.
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Lemma 7. // φ and ω are positive normal functionals on the von Neumann algebra
M, then for every n e N there is a projection p e M such that

φ(pap) ^ 2nω(pap) (a e M +. )

and

Proof. Let ψ + — ψ _ be the Jordan decomposition of φ — 2nω and let p be suppip _
[17]. Then φ(pap) — 2nω(pap)= — ψ_(pap)^Q if αeM + . On the other hand,
φ(I-p)-2nω(I-p) = ιp + (I-p)^0. So ω(7 - p) ̂  2 ~ >(/ - p) ̂  2

Proposition 8. // φ and ω are faithful normal states on the von Neumann algebra M,
then in any strong neighbourhood of the identity there is a projection q such that for
some constants λ, μeIR + the estimate

φ(qaq) ̂  λω(qaq) <L μφ(qaq)

holds for every a e M + .

Proof. We use the previous lemma twice. First, we choose a projection pn

according to the lemma. Then we take the restrictions of φ and ω to the subalgebra
pnMpn and change the roles. So we get a projection qn^pn such that

φ(qnaqn) ̂  2nω(qnaqn) , ω(qnaqn) ̂  2nφ(qnaqn) (a EM),

and

To show that qn-*l strongly it is sufficient to prove that φ(I — qn)-+Q (cf. [6, I.
Chap. 4, Proposition 4]). Indeed, ω(7 — /?„)-» 0 means that pn-+I strongly. Hence

Now we are in a position to prove the main result of the paper.

Theorem 9. // φ and ω are faithful normal states on the von Neumann algebra M,
then

S(φ, ω) = sup {ω(h) - log φh(I) :h = h*eM}.

If the supremum is attained at h = h* e M, then ω — φh/φh(I).

Proof. We know both the inequality

and the condition for the equality from Proposition 1. A sequence (pn) of
projections is guaranteed by Proposition 8 such that pπ->/ strongly, and on the
subalgebra Mn = pnMpn + (C(I — pn) the mutual majorization

φ(a) ̂  λnω(a) g μnφ(a) (0 g a e Mn)

holds. Due to Theorem 6.3 of [1] the relative Hamiltonian for φn = φ\Mn and
ωn = ω\Mn exists. In other words, there is hnEMn, ωn = (φn)

hn. Hence
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and by Proposition 1 we have

Since S(φn,ωn)~>S(φ,ω) in consequence of Theorem 6 we complete the proof by
establishing ω(hn) — log φhn(I) -> S(φ, ω).
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