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Abstract. This paper is devoted in part to clarifying some aspects of the relation
between quantum field theory and infinite Grassmannians, and in part to
pointing out the existence of a close analogy between conformal field theory on
Riemann surfaces and the modern theory of automorphic representations.
Along the way we develop a multiplicative analog of the usual additive Ward
identities of current algebra. We also reformulate the additive Ward identities
in a way which may be useful, in terms of the residues of operator-valued
differential forms. A concluding section is devoted to some remarks on string
field theory. In an appendix, we attempt to clarify the recent construction by
Beilinson, Manin, and Schechtman of what might be called global Virasoro
algebras.

The present paper consists of several sections. In Sects. (1) and (2), I will attempt to
describe in physical terminology some aspects of the relation, surveyed in [1],
between Riemann surfaces and infinite Grassmannians. This relation has been
essential in recent studies of the Schottky problem [2, 3], and its relation with
quantum field theory and string theory have been the subject of recent discussions
[4-6] from a physical viewpoint. In the first section we will consider the
Grassmannian of [1] as the space of boundary conditions on the D operator. This
way of looking at things really provides the essential link between Grassmannians
and the theory of free fermions. In the second we introduce "multiplicative Ward
identities." These are needed to describe the relation between the Baker function
and the tau function. They also, I believe, shed considerable light on the whole
phenomenon of bosonization of fermions. And they are a needed preliminary for
the latter part of the paper.

In the third section, we reformulate the Ward identities of conformal field
theory, first described in [14], in terms of "operator valued differential forms,"
which will have already made their appearance in Sect. one. In particular, we will
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show that the basic Ward identity is the statement that "the sum of the operator-
valued residues of an operator-valued differential form is zero." Apart from other
possible merits, the description of conformal field theory in these terms has the
virture that it makes sense purely algebraically, with ordinary Riemann surfaces
replaced by curves over an arbitrary ground field. Thus, we will go on in Sects, four
and five to develop the rudiments of an algebraic description of conformal field
theory in the simplest cases of free fermions and of current algebra on a Riemann
surface. In doing so, we will find a close relationship between conformal quantum
field theory on Riemann surfaces and the mathematical theory of "automorphic
representations of adele groups" (see [7] for introductions). Thus a general
quantum field theory observable is an arbitrary finite product

Π OM (i)
i= 1

of local operators 0{ inserted at points P{ on a Riemann surface. The space of such
observables forms what would in the mathematical theory be called an automor-
phic representation (of the current algebra or Virasoro algebra appropriate to the
quantum field theory in question). The Ward identities of quantum field theory
assert the existence of a vector invariant under the global group (or Lie algebra), a
standard condition in the theory of automorphic representations.

Section six of the paper is devoted to a brief exploration of the possibility that
the "field variable" of string field theory should actually be not a string field, as it is
usually taken to be, but an arbitrary product of local observables, as in Eq. (1). The
discussion will be intriguing but inconclusive.

Finally, in an appendix, we express in physical language the global generali-
zation of the Virasoro algebra which was presented recently in [19], and use it to
describe the Virasoro analogues of some constructions carried out in the body of
the paper for current algebra and for free fermions.

I. Grassmannians and Determinants

In attempting to elucidate certain of the ideas expounded in [1], we will essentially
be concerned with some properties of the determinant of the Dirac operator on a
Riemann surface with boundaries or punctures. The mathematical literature on
fermion determinants was started in [8-10] and has a counterpart, of course, in the
physics literature on effective actions and anomalies.

To be specific, consider a one component chiral fermion ψ propagating on a
disc D. We take D to be the region |z| ̂  1, with the center of the disc at z = 0. ψ is a
section of L1/2, L being the canonical line bundle. L is trivial topologically and
holomorphically. Trivializing it, the Dirac operator is essentially the d operator,
and the action is

I=^Sd2zψϊψ. (2)

One can of course choose a flat metric on D (Fig. la), though in constructing a
Hubert space and comparing to a canonical formalism it is natural to think in
terms of a metric in which the boundary S of D has zero extrinsic curvature
(Fig. Ib).
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Fig. la and b. A disc with flat metric a or embedded with zero extrinsic curvature b

Let us in fact pause to discuss the connection with the canonical formalism,
before trying to make contact with Grassmannians. (The following remarks
amount to determining which of the two spin structures on a circle is a spin
boundary.) In describing the spinor field on D as a function ψ rather than a section
of the line bundle L1/2, we have essentially trivialized the line bundle L by the

choice of a one form dz. The section of L1/2 corresponding to ψ is just \p = ψγdz

(]/dz is a formal symbol that transforms like the square root of dz). For comparing
to the canonical formalism, it is not convenient to trivialize L by the one form dz
since this is not invariant under rotations of the circle S. Introducing Cartesian and
polar coordinates by z = x + iy = relθ, a section of L near S that is invariant under
$-»$ + constant is, e.g. dr + irdθ. This choice, though not holomorphic (and ill-
defined at θ = 0), is well adapted to comparing with the canonical formalism. The

relation between them is dz = eίθ(dr + irdθ). Thus, our section of L1/2 is ψ = ιp]/dz

= ιpeiθ/2 ]/(άr -f irdθ). Thus, the fermion field ιp' of the canonical formalism is really

ip' = ipewl2. (3)

Since ψ (which extends over D) is periodic under $->0 + 2π, the factor elθ/2 in (3)
means that ψ' is antiperiodic. Thus, free fermions on D correspond in the canonical
formalism to the Neveu-Schwarz sector (antiperiodic boundary conditions) on
S = dD. The spin structure of the Neveu-Schwarz sector is the one that is a spin
boundary.

Let H be the space of fermion wavefunctions on the circle, i.e., the space of
smooth sections of L1/2 restricted to the boundary of the circle. On the vector space
H, we can define the following structures. First, since the product of two spinors is a
differential, which can be integrated along a curve in an invariant way, we have the
natural bilinear form

(4)

Second, on the disc D there is no natural notion of taking the complex conjugate of
a spinor field ψ, that is, of a section of L1/2. But on restriction to S = dD, L1/2

reduces to the complexification of the (Neveu-Schwarz sector) spin bundle, which
is naturally real. Thus, on restriction to S, there is a natural notion of taking the
complex conjugate of a spinor field. This gives us the hermitian inner product,

which endows H with the structure of a Hubert space. This Hubert space structure
was essential in [1], entering, for instance, in the precise definition of the
Grassmannian Gr. In our considerations, the Hubert space structure will play a
less extensive role.
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Now let us discuss the quantum theory corresponding to (2). The quantum
effective action is in some sense det^; however, the meaning of that infinite
determinant must be clarified. The ^operator on the disc has an infinite number of
zero eigenvalues,

δz" = 0, n = 0,l,2,. . . , (6)

unless they are eliminated by some suitable boundary condition. (The normaliz-
able zero eigenvalues are zn, n ̂  0, since our disc is |z| fg 1.) This is a symptom of the
fact that to obtain an elliptic operator on a manifold with boundary, such as D, it is
necessary to adopt a suitable boundary condition, which will eliminate all but
perhaps finitely many zero eigenvalues.

A suitable boundary condition must remove roughly half the components. For
a second order operator, such as the Laplace operator P2, one can choose a local
boundary condition. The most convenient local boundary condition is usually to
require that the scalar field or its normal derivative should vanish on S. For a first
order Dirac operator acting on a field with both chiralities, a local boundary
condition is likewise possible. The two component Dirac eigenvalue problem

(7){ }

certainly admits the local boundary conditions ψ = ψ on S - a condition familiar
from the bag model and from the theory of open strings. However, for the one
component chiral Dirac operator, there is no way to choose a local boundary
condition. Instead, as in [11], one must in a generalized sense set "half the
components of the field ψ to zero.

Let H+ be the subspace of// generated by the boundary values of the functions
z"1, z~2, z~ 3 , . . . . And let H_ be the subspace generated by l,z,z 2 , . . . . Thus, H_
consists precisely of boundary values of zero modes of the Dirac operator. The
factor elθ/2 in (3) means that in the canonical description, H+ is spanned by wave-
functions

e-iβ/29 e-w/29 e-
5ίθ/2,..., (8)

while H _ is spanned by

eίβ/2 ^ e3iθ/2 ^ esίθl2,.... (9)

The functions

Vn = zn (10)

clearly form a basis for H, and in this basis [remembering the elθ/2 in (3)], the
quadratic form Φ is

Φ(7π,7J = 2πδπ + m + 1 . (11)

A typical boundary condition that gives an elliptic cί operator is to require that
ψ restricted to S should lie in H + . This removes all of the zero eigenvalues of d,
since they have boundary values in H_. More generally, we may consider any
subspace W of H which is comparable to H+ in a sense described in [1]. Roughly
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speaking, we wish to require that W differs from H+ only by a finite dimensional
amount. Rather than follow the definitions in [1], let us try to see on physical
grounds what the requirements on W should be.

Let dw be the Dirac operator acting on functions whose boundary values are in
W. One requirement on VKmust definitely be that the intersection Wr\H_ should
be finite dimensional, so that dw only has finitely many zero eigenvalues. In the
theory of one component chiral fermions, with boundary conditions correspond-
ing to a choice of We Gr, in addition to ellipticity of dw, one also requires that the
operator dw should be skew symmetric - a property that corresponds to
hermiticity of idw upon Minkowskian continuation. Thus, we require that

< V > ι l V > 2 > = y- ί d2zψίdιp2 (12)
2π D

should be odd under ψi^ψ2 In fact, upon integrating by parts, we find

\ d2zψίdιp2=- J d2zdψlιp2+^ιpίψ2, (13)

so skew symmetry holds only if Φ(tpι, Ψ2)
 = O Here the only restriction on ψ1 and

ψ2 is that their boundary values lie in W. Thus, in the theory of one component
chiral fermions, the boundary conditions depend on a subspace W of H with the
property that for all ψί9 \p2 e W, Φ(ψ1,ψ2) = Q. This condition means that W is an
"isotropic" subspace of H with respect to the quadratic form Φ.

So far we have learned two conditions on W:
(i) WnH_ is finite dimensional so that dw only has finitely many zero

eigenvalues.
(ii) W is isotropic, so that dw is skew-symmetric.
A third condition is necessary, and we may guess what it is by thinking about

the standard space W = H + . A look back to (1 0) reveals that H + is indeed isotropic,
but also has the following more delicate property. H+ is a maximal isotropic
subspace of H if one added to H + any linear combination of the vectors 1 , z, z2, . . .
not in H + , the enlarged space would no longer be isotropic. With this in mind we
are led to guess the following additional condition on W:

(iii) W is a maximal isotropic subspace of H.
To understand the need for this third condition, let us determine the conditions

on W such that the Dirac propagator will exist. The Dirac propagator G(z, w)

should be an inverse of the operator — δ; that is, it should be a solution of the
2πi

equation

2πίdG(z,w) = δ2(z-w). (14)

The only singularity of G should be a pole at z = w with residue 1. Moreover, the
statement that ψ has boundary values in W should mean the following. Regarded
as a function of w for fixed z and restricted to |w| = 1, G(z, w) is an element of H
which we will call Gz(w). The boundary conditions are

Gz(w)eVF, for all | z |<l . (95)
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Let us assess the existence of a Dirac propagator in the special case W=H + . In
that case, the above conditions are obeyed by the standard propagator

-1— = - £ z" w- ("+ 1 ). (16)
V '

This series indeed converges for |z < 1 and w on the boundary, and the terms in the
series (regarded as functions of w) are all in H + , so (1 6) obeys (1 5) if W = H + . Notice
that all of the basis functions w" 1, w"2, ... of H + appear on the right side of (16),
with coefficients (z") that are linearly independent as functions of z. Thus, although
the propagator exist with boundary conditions in H + , it would not exist if we
required that the boundary values of the propagator should be in some proper
subspace oϊH + . The fact that H+ is a maximal isotropic subspace of H is crucial for
the existence of the Dirac propagator.

It is true generally that a propagator obeying (1 5) only exists if W7 is a maximal
isotropic subspace of H. Roughly, for a maximal isotropic subspace W the
propagator exists and is unique 1 but if one replaces a maximal isotropic W with a
proper subspace, then the boundary conditions (1 5) become too restrictive, and the
propagator no longer exists.

The space of subspaces of H obeying conditions (i), (ii), and (iii) above is what
we will call the isotropic Grassmannian Grf. It is an analogue for one component
fermions of the Grassmannian considered in [1].

If we want to encounter the Grassmannian in a framework a little bit closer to
that which was envisaged in [1], we must consider a fermion theory with doubled
degrees of freedom,

3>=-$d2zιpdψ. (17)

What are suitable boundary conditions in (17)? Before answering this question, let
us consider the following simple mathematical observation.

For any subspace W off/, there is a dual space W defined as follows. W consists
of all ψ e H such that

Φ(V,X) = 0 (18)

whenever χe W. For instance, if W=H + , then W=W=H+. More generally, if W
is the subspace of H with basis z~ f e, z~k~l, ..., then W is the subspace with basis
z*"1, zk~2, ... . Note that whenever one deletes a basis vector from W, W gains
a basis vector, because one condition is removed from (18); and conversely, if W is
enlarged, W shrinks.

What boundary conditions on ψ and φ will make the Dirac operator
associated with (17) skew-symmetric? Evidently, if we require with ψ s (i.e., ψ
restricted to S = dD) should lie in W, then ψ\s must lie in W. Since the boundary
conditions on ψ are in this way determined by those on ψ, it is possible (as in [1]) to
state the requisite conditions in terms of a single subspace WcH rather than the
pair W, W. Thus, we require that W should obey the following condition:

1 Except when dw has zero modes; then the propagator exists and is unique in a space orthogonal
to the zero modes
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(i') Wc\H- is finite dimensional (so that there are only finitely many ψ zero
modes); and its dual space FF likewise is such that Wr\H_ is finite dimensional (so
that there are only finitely many ψ zero modes).

Conditions (ii) and (iii) above need not be restated explicitly; they are
automatic if the boundary conditions on ψ and ψ are given by a dual pair W, W,
since W® W is automatically maximal isotropic as a subspace of the possible
boundary values of the pair (φ,ψ). The space of subspaces W CH which obey (i') is
what Segal and Wilson call Gr. (The connection with the terminology of [1] is as
follows. In [1], Gr is defined as the family of subspaces WcH such that the
orthoprojection W^>H+ has finite dimensional kernel and cokernel. Finite
dimensionality of the kernel is the statement that WnH _ is finite dimensional, and
finite dimensionality of the cokerned is the statement that WnH_ is finite
dimensional.)

The index of the Dirac operator dw is defined as the number of ψ zero modes
minus the number of ψ zero modes. Clearly, this is the integer n = dim(H_r^W)
— dim(H_nW). It is well known that the index is a topological invariant.
Therefore, the space Gr is not connected; its connected components are labeled by
the integer n. n is called the "virtual dimension" of F^in [1]. In what follows we will
generally restrict ourselves to the n = 0 component of Gr.

Of course, with ψ1 = (φ + ιp)/]/2, ψ2 = i(ψ — ψ)/]/2, (17) is equivalent to

Allowed boundary conditions for (19) that do not "mix" φ1 and ψ2 would
correspond to a choice of a point in Gr' x Gr' - that is, one point in Gr' for ψi and
one for ψ2. More general elliptic and skew symmetric boundary conditions for (19)
would "mix" ιp^ and ψ2. The most general boundary conditions would be
described as follows. Let Hί and H2 be the spaces of boundary values for ιpl and
ψ2; let H = HV®H2. Then a general elliptic and skew symmetric boundary
condition in (19) consists of a subspace WcH which obeys (i), (ii), and (iii) above.
Let Gr be the space of such W. Inside Gr, the Grassmannian Gr as we have defined it
(or as studied in [1]) is the subspace of boundary conditions that are invariant
under the [/(I) symmetry

ψ-*eiaψ, ψ-+e~iaψ. (20)

W being invariant under (20) means it must be of the form W = W® W, with W and
W being spaces of allowed boundary values for ψ and ψ, respectively; and (ii), (iii)
amount to saying that W must be the dual of W (it must be contained in the dual of
W to obey (ii); and it must be the dual to obey (iii)).

From the symmetry (20) follows a characteristic difference between (1 7) and the
one component fermion theory (2). In (17) one may introduce an arbitrary line
bundle E and consider ψ, ψ as sections of L1/2(χ)E and L1/2®^"1, respectively.
[This is equivalent to introducing a (7(1) gauge field with opposite charges for ψ
and i/;.] In this way, the Grassmannian Gr emerges - as in [1] - as a natural
framework for studying a Riemann surface endowed with a line bundle. By
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contrast, in the one component fermion theory, there is no natural way to
introduce a line bundle, and so the isotropic Grassmannian Gr' is a natural
framework for studying Riemann surfaces that are-not endowed with such a line
bundle.

Having obtained elliptic and skew symmetric Dirac operators dw, the next step
is to attempt to define their determinants det<3^. In fact, in the two component
theory (11) we want detcV, while in the one component theory (2) we want ]/detc^
- the square root can be interpreted as the Pfaffian of the infinite dimensional skew
form (antisymmetric bilinear form) dw.

Just as for compact Riemann surfaces, the Dirac determinant will be naturally
a section of a holomorphic line bundle rather than a function. I will now briefly
sketch how this comes about, at the same time using terminology that is
appropriate for "fermion Pfaffians" as opposed to fermion determinants.

For WeGr', let Uw = Γw(
(£ί/2) denote the space of sections of ^1/2 whose

restriction to S lies in W. The expression

<Ψι> V^2> = ̂ r ί d2zψίdιp2 (21)
zπ

defines a skew symmetric bilinear form on elements φ l s ιp2

EUw. We wish to
compute the Pfaffian of this skew form. Before tackling the infinite dimensional
situation, let us discuss Pfaffians in finite dimension. Let U be a finite dimensional
vector space of even dimension 2k. A skew symmetric bilinear form A on U is

(uί,u2y = Aίju(u{, (22)

where u1 and u2 are elements of U whose components (in some basis) have been
denoted u\ and u{, and where Atj = — Aβ are matrix elements of A. The "Pfaffian"
of A is up to normalization

Pf(A} = ̂ -^Aiii2A^...Ai2k_li2k. (23)

Here ε 1 1 --- 1 2 * is the completely antisymmetric tensor. However, if U is presented
merely as a vector space, there is no natural way to normalize ε, which is essentially
a volume form on U. The possible choices of ε form a one dimensional complex
vector space which we may denote as V= Λ 2kU, the antisymmetric tensor product
of 2k copies of (7. The Pfaffian of A is not naturally a number but rather an element
of F*, the dual space of V. This is just a fancy way of saying that to define the
Pfaffian as a number one must supply an element ε of V (and the result, being
proportional to ε, defines a linear map Pf(A): 7-><C; here C denotes complex
numbers).

Suppose that U is presented as an n = 2k dimensional subspace of a larger
vector space U. In this case we may consider the family Grn(U) of n dimensional
subspaces of U. For each UeGrn(U), we define the one dimensional vector space
Vv= Λ 2kU. We will sometimes refer to Λ 2kU as detC/. As U varies, detC/ or Vv

varies holomorphically, giving a line bundle Ί^ on Grn(U). Let X be some complex
submanifold ofGrn(U), and {Uλ\λ e X} the corresponding family of subspaces of U.
If we are given a holomorphically varying family of skew bilinear forms Aλ on the
Uλ, then the Pfaffian Pf(Aλ) is a holomorphic section of i^9 restricted to X.
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This is the finite dimensional situation that we wish to imitate in defining the
Pfaffian of the Dirac operator or more precisely of the skew form

<Ψι\ψ2>=^Sd2zψ1dψ2. (24)

First of all, we must define the determinant line bundle over the Grassmannian,
since the Pfaffian is a section of this line bundle.

Instead of getting into technicalities (proper technical treatments can be found
in [1] or, in a somewhat different context, in [9]), I would prefer to illustrate the
basic idea of the determinant line bundle in a simple and concrete way. To simplify
a few formulas, we will temporarily work with Gr instead of Gr' and fermion
determinants rather than Pfaffϊans.

Let α, β be a pair of complex numbers, not both zero, and defined up to
multiplication by a non-zero complex scalar; thus the pair (α, β) defines a point in
the complex projective line P1. Let λ = a/β (i.e., λ takes values in ^uoo, the finite
complex plane Ή plus the point at infinity; this is a model for P1). For every A, let Wλ

be the subspace oϊH with basis consisting of the vectors z~2, z~3, z"4, ... plus the
one additional vector

1. (25)

Note that at α = 0, Wλ is simply H + for all A, Wλ obeys the proper conditions to be
in Gr. (I leave it to the reader to figure out what is the dual of Wλ.) So the family Wλ

gives an imbedding of P1 in Gr.
Note that Wλr\H_ is zero except at the one point 8̂ = 0, i.e., λ= oo. At β = Q, Wλ

r\H_ is one dimensional, so dw acting on ψ in (17) has a single zero eigenvalue.
Therefore, the Dirac "determinant" should have a simple zero.

Consider on the Riemann sphere P1 an arbitrary smooth complex valued
function /(w) which only has isolated zeros at points w l 5 . . ., wfc. At each zero one
can define a topological invariant, the winding number

nr=^- fdw-^-ln/ (26)r 2πi c dw J v J

with C being a contour that only surrounds the rth zero. One has the basic relation

Σ«, = 0 (27)
r

for any complex-valued function (as opposed to a section of a line bundle). We can
now see that the Dirac "determinant" cannot possibly be a function, since it
violates (27). The determinant, restricted to P1, has only a single zero, at λ= oo, so
the sum in (27) is 1, rather than 0. This shows us that the Dirac "determinant" must
be a section of a line bundle, rather a function, and indeed we can see what the
relevant line bundle must be, when restricted to P1 C Gr. Line bundles over P1 are
classified (topologically and holomorphically) by a single integer, the "degree." A
complex line bundle L over P1 is said to have degree k if [with the nr defined as in
(26)] the zeros of any continuous complex valued section which only has isolated
zeros obey

Σ*r = k. (28)
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Thus, from what we have said, the determinant line bundle, restricted to P1, must
be a line bundle of degree 1.

In the above, we embedded P1 in the Grassmannian Gr rather than the
isotropic Grassmannian Gr'. The sole reason to do so was to simplify the formulas
slightly. An embedding of P1 in the isotropic Grassmannian can be obtained by
taking Wλ to consist of z~3, z~ 4,... as well as

α + βz~2, and -az + βz'1. (29)

This has been constructed to respect the isotropic condition. Notice that with this
choice Wr\H_ is zero dimensional for finite λ but ίwo dimensional at λ — oo. This
latter fact is no accident. The isotropic condition permits us to define a skew form
dw with boundary conditions W, and the kernel of a skew form has a dimension
which can only jump in dimension by a multiple of two2 (and so in our situation is
always even, at it is zero foΐW = H+). Thus, our embedding of P1 in Gr' is such that
the Dirac "determinant" would be a section of a line bundle of degree two; it is this
which permits the determinant line bundle to have a square root, and the Pfaffian
to exist, when restricted to Gr'.

It turns out that the topology of the Grassmannian is such that holomorphic
line bundles over it are uniquely determined (topologically and holomorphically)
by their restriction to P1, so the determinant line bundle is uniquely determined by
the above remarks. Instead of pursuing that line of thought, let us now think of the
above example in a slightly different way. We will carry out the discussion in a way
which is suited to fermion Pfaffians. The "standard" point H+eGrf has basis z~\
z~2, z~ 3 , . . . . In general, another point in Gr' might have all of these basis vectors
z~k perturbed. Let us, however, restrict ourselves to the subspace Gr'k of Gr'
consisting of subspaces of H which contain

z-*- 1, z-*-2, z- f c - 3 , . . . . (31)

(The collection of the Gr^ is dense in Gr', so in some respects restriction to Gr^ of
finite but arbitrarily large k is not a big loss.) A point We Gr'k will have k additional
basis vectors

Ut= Σ "i/zj', i=l...k. (32)
j^-k

In general, the sum in (32) runs from — k to +00, but let us consider the subspace
Gr^ m of Gr^ defined by saying that the utj are zero for j > m. Again, the Gr'k m for very
large fc, m, can be taken as an approximation to Gr'.

2 To see this, note that an antisymmetric bilinear form Atj has the canonical form

/ 0 HI 0 0

A =

«! 0 0 0

0 0 0 n2

0 0 -n2 0
\ : : : :

(30)

with skew "eigenvalues" nk. Clearly, the kernel of A jumps in dimension by two when one of the nk

goes to zero
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In principle, we would like to understand what we should mean by the Pfaffian
of dw for arbitrary WE Gr', but let us restrict the problem to the case WE Gr'k?m for
some /c, m. In this case, the problem of defining the determinant line bundle is really
a finite dimensional problem. Thus, let W0 be the space spanned by (31), and W the
space spanned by (32). We have W= WQ® W'. The determinant line bundle det W
should then be in some sense3

Here det W0 is ill-defined, because W0 is infinite dimensional, but as W0 is constant,
we can ignore this factor in (33) and identify dεtW with detW. W' is a finite
dimensional (in fact, k dimensional) subspace of the finite dimensional vector space
Hk m spanned by vectors zr for m ̂  r ̂  — k. This is precisely analogous to the finite
dimensional situation which we discussed first, so by det W' we mean simply

dεtW'= AkW', (34)

i.e., the highest exterior power of the finite dimensional vector space W'. Equations
(33) and (34), with det W0 replaced by 1, serve as a precise definition of a line bundle
over Gr'kttn which we will call the Pfaffian line bundle PFAFF. For large /c, m, this
approximates a definition of a line bundle which in fact is defined over all of Gr'. As
is indicated by our introductory comments about Pfaffians in finite dimensions,
the Pfaffian of the skew form dw is a holomorphic section of the dual bundle
PFAFF*.

To follow [1,9] somewhat more closely, we should aim to define a determinant
line bundle DET over Gr rather than a Pfaffian line bundle over Gr'. Restricted to
Gr' C Gr, DET is just PFAFF2 (just as the determinant of a skew form is the square
of the Pfaffian), but we must define DET over Gr, not just over Gr'. In doing so, we
would mostly prefer to avoid Dirac "determinants." Our point of view is that
because of anticommutativity of fermions, the Dirac kinetic energy is naturally a
skew bilinear form, not an operator, and the Pfaffian is the natural concept. The
effective action derived from (19) we would view as the Pfaffian of the skew form

11)
in the space of fields (φ, ψ)9 not as the determinant of the "operator" dw. In this
spirit, we can define the DET bundle as the PFAFF bundle in a larger space. Thus,
given WE Gr and its dual space W, we think of W® W as a subspace oϊH®H [the
latter being the set of boundary values of (ψ, φ)]. Approximating Gr by some Grfe m

as in the above, we have W=W0 + W, W=W0 + W', and a reasoning just as above
leads us to the conclusion that the Pfaffian of d'w is a section of

DET- AkW'® AkW'. (36)

This defines the desired line bundle DET over Grfc m, the idea being that the
Pfaffian of the Dirac skew form (35) is a section of DET*. Equation (36) of course

3 We are borrowing the following fact from finite dimensions. If A and B are finite dimensional
vector spaces, say of dimensions p,q, then Λ p + q(A@B)= ΛM® ΛqB, or in other words
det (A 0 B) = det A ® det B
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will serve as a definition only over the Grk m for finite fc, m; to get to the completion
Gr takes a little bit of analysis, as in [1, 9].

Having studied the line bundle of which it is a section, the next goal should be to
actually define Pf(dw), the Pfaffian of the Dirac skew form. As W varies, Pf(dw)
should be a holomorphic section of the dual of the Pfaffian line bundle, restricted
to Gr'. (It should be holomorphic because this is so in the finite dimensional case
which we should aspire to imitate, unless this proves impossible.) As in the case of
finite dimensional Pfaffians, Pf(dw) should have a zero of order r whenever dw has
2r zero "eigenvalues." (Recall that the number of zero "eigenvalues" of a skew
bilinear form such as dw is conserved modulo two under any smooth change of
parameters. In the case of dw this number is always even, as it is zero for W=H + .)
Actually, in view of the fact that there are no non-constant holomorphic functions
on Gr', the above statement about Pf(dw) characterizes Pf(dw) uniquely, assuming
it exists.

To compare to [1], we must consider the doubled skew form d'w of (35). In [1],
the tau function σ(W) was defined as a holomorphic section of DET* that vanishes
precisely when Wr\H_ φ φ or in other words whenever d'w has a zero eigenvalue.
Since this property is also the defining property of Pf(d'w), it is clear that
σ(W) = Pf(8'w). More central in [1] than σ(W) is the tau function τ(W\ which is
essentially a ratio of σ functions, and we will refer to the relation between σ and
Pf(Sw) as the relation between the Dirac Pfaffian and the tau function.

So far we have only discussed uniqueness oίPf(dw) or Pf(d'w). As for existence,
one approach is to follow [1] or [9]. Alternatively, a down to earth and "physical"
approach to defining Pf(dw) is to calculate its variation with respect to a change in
W, which could be expressed in terms of Green's functions. To compute Pf(dw\ one
would pick a path γ in Gr' running from H + to W and compute the ratio of Pf(dw)
to PfφH+) by integrating the logarithmic derivative of Pf(dw) along this path.
Defining Pf(dH)=l one thus obtains a definition of Pf(dw). This will give a path
dependent result for Pf(dw\ which is why the latter is to be seen as a section of a
line bundle rather than a function. The program just suggested would be a
counterpart of the standard procedure in physical discussions of chiral determi-
nants on manifolds without boundary. It would be worthwhile to carry out this
program for manifolds with boundary, but I will not attempt to do so here.
However, after a few digressions, we will give later a fairly precise and concrete
definition of Pf(dw) along different lines.

It is useful to first consider certain other questions. Pf(dw) is a very canonical
holomorphic section of the dual Pfaffian bundle PFAFF*, and has of course a
Feynman path integral interpretation,

Pf(dw) = J ®ψ exp - -L j d2zιpdψ. (37)
w ^n

Here the symbol J <$ψ refers to a Feynman path integral over sections ψ of L1/2

w _
whose boundary values lie in W. While Pf(dw) (as defined in (37) or in other ways
discussed above and below) is a very canonical holomorphic section of PFAFF*, it
is by no means the only one. On the contrary, let P be the center of the disc D and
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let 0(P) be an arbitrary local operator at PeD.4 Then

Pfofiw) = I Dip ( exp - -?- J ψdψ] 0(P) (39)
w \ In J

is a holomorphic section of PFAFF*. Indeed, the assertion that the path integral
depends holomorphically on the boundary conditions and the "anomalies" which
make it a section of a line bundle rather than a function only depend on local
properties near the boundary, and are unaffected by an operator insertion at the
center of the disc.

Thus, there are a vast number of holomorphic sections of PFAFF*. Indeed, by
a well known principle of conformal field theory, states in the quantum Hubert
space are in one to one correspondence with local operators that may be inserted
at the origin (or any other prescribed point).5 Thus the ("second quantized")
Hubert space tffs of fermion states on S = dD can be identified with Γ(PFAFF*),
the space of holomorphic sections of PFAFF*. Actually, this might appear to be
only an embedding of ,tffs in Γ(PFAFF*), but according to [1, 12], this is an
isomorphism; all holomorphic sections of PFAFF* are of the form we have
described.

Since this statement may require clarification, perhaps it is wise to return to our
study of a finite dimensional vector space £/, say of dimension JV, with an n = 2k
dimensional subspace U. Fixing a basis e(j), j = 1 ... N of 17, the components of a
vector ve U will be denoted as vj:

v = Σvje(j}. (40)

The space U is determined by giving n linearly independent vectors v(i} e [/,
i = 1 . . . n. As in (40), the v(i} can be described explicitly by their components v{ί} in the
basis e(jy The wedge product v(ί}Av(2}A ... /\v(n} is an element of the highest
exterior power det U = Λ nU that we considered earlier. If expanded out in the basis
eu}, this wedge product, which is an nth rank antisymmetric tensor, has components
which we may write as (u(1) Λ v(2} A ... A v(n})

h ' ' jn. As U varies, these components
are what we might naively call "functions of U," say

a^-J»(U) = (v(ί}Λv{2}Λ...Λv(n)γι J». (41)

Actually - as U varies in Grn(U) - the ajί'"jn are not functions on Grn(U) in the
usual sense, since there is no natural way to normalize the v(ί}. Rather, they are

4 Thus, 0(P) is a linear combination of expressions

Π (a(kVΓ = ψ(PΓ(dιp(P)Γ (d(fcV W" - , (38)

where each μk is 0 or 1 and all but finitely many μk are 0. Because of fermi statistics, the general local
operator (i.e., polynomial in ψ and its derivation) is a linear combination of such monomials
5 Explicitly, the correspondence is as follows. The quantum fermion theory has operators ψmί

raeZ + i, with {ψm,ψn} = δm+n. There is a vacuum vector |Ω> with ι/)JΩ> = 0,m>0. The general
00

vector is a linear combination of f] (φ_ f c __ 1/2)
μk|Ω> with each μk equal to 0 or 1, and all but finitely

many μk zero. The correspondence between operators and states is

π (δ»vr~ π (v-*-ι/2)Ίβ>
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sections of (det I/)*. It should be stressed that for each choice of the indices a'1 in in
(41) (subject to antisymmetry aίίi2•• ί»=- ahίί H etc.), the "function" alί in(U) is
a holomorphic section of (det (7)*. And all sections of (det I/)* are linear
combinations of these. The latter is a standard and fundamental assertion about
the finite dimensional problem which we will not prove here.

The choice of n indices j1 ...jn in (41) is very similar to choosing a state in a
fermion Fock space. Indeed, consider a system of free fermions, with the one
particle states being arbitrary vectors in U. A state with n particles present has a
wave function which is an nth rank antisymmetric tensor. For any choice of indices
j\ .. .jn there is a very special n particle state e(h Jn) = e(h} Λ ... Λ e(jn) in which the
filled one particle states are exactly e(h}, ...,e(jn). These states are in one to one
correspondence with the sections ah' "jn(U) of (det [/)*. The e(h jn} are a basis of
the n particle portion of the fermion Fock space, and the α 71 "jn(U) are a basis of the
space of holomorphic sections of (det (7)*. These are really dual to each other in a
way we will be more precise about later. This is the basic relation between sections
of DET* and quantum fermion states; its infinite dimensional analogue is the
relation of Jtifs to the space of holomorphic sections of the appropriate Pfaffian
bundle.

We now return to quantum field theory to make this more explicit. In doing so,
it is important to note that in the finite dimensional discussion in the last two
paragraphs, we did not impose a condition of "isotropy" on the subspace UCU;
indeed, there was no quadratic form in the discussion. To compare the results of
the last two paragraphs to quantum field theory we have two options: we can
repeat the finite dimensional discussion with an isotropic condition, and then we
can compare to the quantum field theory (2) of a single fermion; or we can compare
the above results as they stand to the two-component theory (17). We will choose
the latter path; thus, we will study holomorphic sections of DET* over Gr, rather
that PFAFF* over Gr'. We will consider only the component of Gr in which the
Dirac index is zero.

We will use the formula (41) in infinite dimensions to give precise descriptions
of holomorphic sections of the bundle DET* over Gr. To be more exact, we will
give precise formulas for holomorphic sections of DET* over the finite dimen-
sional approximations Grk m to Gr that we considered earlier. The formulas will
vary nicely with fc, m, and in the spirit of this paper we will regard that as sufficient
evidence that the formulas make sense on Gr.

Let w1 ? w 2 , . . . . . . . be a basis of W. Because we will actually work on Grfc m for
some fc, w, we know that z~ncW ίoτ n>k, and we thus choose a basis of W with
wn = z~n for n>k. We want the "components" of the infinite wedge product

W j Λ VV 2 Λ W 3 Λ (42)

To do this, write

w f c=Σ**X (43)
r

Let S denote a sequence of integers in descending order s^ > s2 > s3 > . . . . Expand

W x Λ W 2 Λ W 3 Λ ... = X tts(W)zSl Λ ZS2 Λ ZS3 Λ ... . (44)
S
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Since in Grk m, vvr = z ~ r for r > fc, it is clear that αs( W) as defined in (44) is zero unless
sr = — r for r > k. Likewise, it is clear that us(W) is zero if s1 > m, as long as we work
in Grk?m. On the other hand, these are the only restrictions, so ocs(W) defines a
holomorphic section of DET* for every choice of k distinct integers s1 > ... > sk in
the range m^s^ —k. There is no problem in defining the as(W) rigorously, since
they are finite polynomials in the αk > r Taking k, m larger and larger, the restrictions
on S become weaker. In fact, for every descending sequence S = {sr}, r = 1... oo with
sr = — r for sufficiently big r, the formula (44) defines a holomorphic section of
DET* over Grk > m for sufficiently big /c, m. The fact that the Grk m are dense in Gr
shows that any holomorphic section of DET* over Gr is nonzero when restricted
to some Grk>lfl, so all holomorphic sections of DET* over Gr are of the form (44)
provided that (41) gives all of the holomorphic sections of DET* in the finite
dimensional problem. As already noted, the latter statement is a standard, true
statement which we will not prove here.

Let us now interpret our results "physically." We have alleged that the
quantum field theory Hubert space J^s is the space of holomorphic sections of
DET* over Gr. What, indeed, is J^SΊ The standard basis in Jtfs consists of states
that are described by saying which one particle levels are filled and which are
empty. Let us work in a basis in which the one particle levels are the z", n e Z. If we
agree that at most finitely many states are to be removed from the Dirac sea, the
occupied states must be exactly zSn, n = l,2,.. . where the sn, which we may
normalize so s x > s2 > .. , are any descending sequence of integers with sr = — r for
large enough r. This precisely agrees with the counting of holomorphic sections of
DET*, confirming the correspondence between states and sections of DET*.

We return now to finite dimensions. In certain respects, the above description is
not the most intrinsic. To give as in (40) the components of a vector v, one needs a
basis e(1), ...,e(JV) of U. These components were used later in (41). To proceed
without ever choosing a basis of £7, let V^GrN-n(U) be an N — n dimensional
subspace of £7. Let ω e Λ N ~ " F b e a volume form for V (i.e., ω — /(1) Λ ... Λ /(]V_Π)

with fu) a basis for V). Then

φv(U) = υ ( ί ) Λ ... Λ v(n} Λ ω (45)

is a volume form on £7. (φv(U) depends on ω as well as V, but we suppress this in the
notation.) If α is a fixed volume form on £7, then

σv(U) = θL-lφv(U) (46)

is, as U varies, a section of (det (7)*. The point of describing things in this way is to
make it clear that - without picking a basis or assuming a Hubert space structure
for £7 - it is in the most canonical way a "complementary subspace" to ί/, that is a
space VC U of dimension N — n, that defines a section of (det U)*. Instead of saying
that one gets a holomorphic section of det U* for every "set of indices" i l 5 . . . , iw it is
much better to say that one gets such a section for every N — n dimensional
subspace VC U. This is much better not just because the indices are suppressed but
more importantly because in this form the statement is true without a choice of
basis for £7; it is indeed the N — n dimensional subspace V, no more and no less,
which is needed to define a holomorphic section of det [/*. We could well suppress
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Fig. 2. A Riemann surface with n boundary components

the basis v(ί} of V\ if η is a volume form for V, our section is

(47)

The symmetry of this formula in η and ω (or U and V) makes it clear that what we
have is really a section of (det I/)* (g) (det 7)* (or of (detϊ7)*®(detF)*(χ)detί7, in
view of the dependence on α). It should be stressed that in this way of expressing
things, we never require a Hubert space structure on U.

A section of (dett/)* which is of the form σv(U) for some V will be called a
"primitive section" in what follows. A primitive section is one which is described by
giving a list of one particle states (i.e. a basis of V). It is not the case that every
section of (det U)* is a primitive section. Rather, the general section of (det U)* can
be expanded as a linear combination of primitive sections:

φ(U)=ΣλrσVι(U)9 (48)
i

where λt are complex numbers and V{ are some points in GrN_n(U). The expansion
in (48) is far from being unique. It becomes unique if one fixes a basis e(1), . . ., e(N) of
£/, as in our initial discussion, and considers only spaces V j l n . j N _ n spanned by
subsets e(jl}, " ,e(JN_n}. This is essentially what we did (in infinite dimensions) in
writing (44).

In this description, a Hubert space structure of U was never required. To
specify a section of (det ί/)*5 with dimU = n, dimU = N, required a choice of an
N — n dimensional subspace VcU. If, however, U has a Hubert space structure, the
choice of the N — n dimensional subspace V is equivalent to a choice of an n
dimensional subspace VL - its orthogonal complement. In our preliminary
discussion with a chosen fixed basis e(^...,e(N} of £/, a natural Hubert space
structure was present implicitly - namely the one defined by (.£^^ = 6^.

We now return to the infinite dimensional situation. We would like to describe
the particular holomorphic sections of DET* that arise naturally in certain
"physical" situations.

Consider as in Fig. 2 a Riemann surface Σ with n boundary components,
namely circles S l5S2, .»,$„. Fixing on Σ a square root L1/2 of the canonical line
bundle, we wish to study the chiral Dirac operator D.6 (As there is no convenient
trivialization of L1/2 on Σ, we refer to the Dirac operator as D, and not das in our

6 We will study one component chiral fermions. In the two component case, we would be free to
twist L1/2 by a line bundle
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M

Fig. 3. A finite cylinder Σ embedded in an infinite one M

study of the Dirac operator on the disc.) On each Sk, there is a Hubert space Hk of
possible one particle states, a Grassmannian Gr'k of possible boundary conditions,
and a determinant line bundle DETfe over Gr'k. A "good" Dirac operator requires
the choice of an element Wl x W2 x ... x Wk of Gr^ x Gr'2 x ... x Gr^. The fermion
Pfafίϊan Pf(D(WιίW2,...,^k)) is then a holomorphic section of DETf (χ)...(g)DETjf.

The fact that one obtains in this way a holomorphic section of the tensor
product (x^DETjf is analogous to the fact that in finite dimensions (46) is really a
section of (det (7)*®(det V)*. The subspaces WkcHk are complementary in a sense
somewhat analogous to the role of U and V in our finite dimensional problem. The
analogy perhaps can be sharpened slightly by considering a Riemann surface Σ
which is a sphere with two holes cut out. Let M be the cylinder 0^φ^2π,
— oo < t < oo. Σ can always be embedded in M as the segment 0 ̂  t ̂  T for some

T>0 (Fig. 3). On Σ, L1/2 has a canonical trivialization and D reduces to —,

z = t + iφ. If we do not worry about boundary conditions, the D operator on Σ has
an infinite dimensional kernel. If continued from Σ to M, the zero eigenfunctions
blow up for t> T or for t <0 (i.e. they have singularities either at finite t or for t
-> ± oo). Boundary conditions corresponding to the standard point H + (i} in Gr\
would remove the wave functions that are singular for ί-> — oo, while a similar
choice of H + (2) in Gr'2 would remove the wave functions that are singular for
t -> + oo. Together, these remove the kernel of D on £. More generally, the choice of
general points W± and W2 in Gr\ and Gr'2 removes all but perhaps finitely many
zero modes of D(Wι W2}. Wl and W2 remove in a sense complementary parts of the
kernel of D, The analogy with our finite dimensional situation is perhaps closest if
one considers the intersection ker Dn W1 to play the role of U, and the intersection
kerϊ)nJ/^2 to play the role of V. By ker/)nF!^, for /= 1,2, we mean the subspace of
kerZ) consisting of wavefunctions whose restriction to St is in Wit

Let T be the thickness of Σ. For any T, the formula

Φτ(WM = Pf(DΐWl,W2) (49)

(we denote the Dirac operator as Dτ to stress its dependence on T) gives a section
of DETf (x) DET|. Before attempting to compare to notions of Segal and Wilson
we must note the following. // + (1)nkerJ5 and // + (2)nkerD (that is, the subspaces
of kerϊ) with boundary values in H + (1) or H + ( 2 } ) are not comparable spaces,7 since
one consists of wave functions that decay as f-> + oo and one consists of wave
functions that decay as ί-> — oo. However, if we recall the natural Hubert space
structure of, say, H(2), then H + (2) has an orthogonal complement H + (2) in H(2).

7 That is, they do not in any sense differ by a finite dimensional amount
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Fig. 4. A Riemann surface with one boundary component and arbitrary genus

Taking the orthogonal complement tends to reverse the direction in which the
functions grow, and indeed /f + (2)nkerD is comparable to H + (1)nkerD. Likewise
F^nkerZ) and FΓ2nkerD are not comparable, but Hanker D and Pinker ί) are.
For T^O, Wanker 0 and Wanker D reduce to W, and Wf, and φτ(Wί,W2)
reduces to what Segal and Wilson would call the determinant of the orthoprojec-
tion λ'.W^W^ from Wl to W^. Indeed det/l = 0 precisely if

(50)

while φτ(Wί9 W2) = 0 precisely if

(51)

since under this condition there is a Dirac zero eigenvalue which is not removed by
boundary conditions at either end. Clearly (51) reduces to (50) as T-»0. As det/l
and limτ^0φ

τ(Wl9W2) have the same zeros, they must coincide (up to
normalization).

We are finally ready to consider a situation that is closer to the essence of the
ideas in [1]. Consider a Riemann surface Σ (Fig. 4) with one boundary component
S and arbitrary genus. We will consider the case of one component chiral fermions.
The Dirac operator Dw depends on the choice of a point WE Gr' . Its Pfaffian ψ(W)
= Pf(Dw) is a holomorphic section of PFAFF* and thus is a state in the second
quantized Hubert space J ŝ associated with the free fermion quantum field theory
on S.

These facts are a somewhat exotic manifestation of some general principles of
quantum field theory. For any quantum field theory, not necessarily conformally
invariant, the process of "integrating out" the surface Σ will produce a state in the
Hubert space J^s associated with the boundary S. This always arises as follows.
States ψ E 3^s are always functionals of some kind on the boundary conditions that
arise in the Feynman path integral. Performing the Feynman path integral on Σ
with varying boundary conditions on S, one gets a functional of the boundary
values and thus a vector in J^s.

The detailed realization of this general principle depends on the theory
considered. In the relatively simple case of a real (non-chiral) boson, the Feynman
path integral involves integration over real valued functions X : Σ^R (R denotes
the real numbers). In performing the integral, one can fix a function

= dΣ), and integrate only over functions X whose restriction to S is Y.
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This gives a functional of Y,

w(v\ r ox v a- τS( vxy (^^Ύ(i)— J ΛΛβ . pzj

(The notation X\s = Y refers to integration over maps Σ->R that equal y on S.) As
y varies, Ψ(Y) is a functional on real valued functions on S or in other words a state
in the second quantized Hubert space of free bosons on S.

For chiral fermions, the choice of boundary conditions is a more exotic choice
of a point WE Gr'. The Pfaffian Pf(Dw) describes the dependence of the Feynman
path integral on the boundary values. As such it is a fit counterpart to the more
obvious object Ψ(Y) which arises in the theory of real bosons.

Now we would like to identify the particular state Pf(Dw) that arises for chiral
fermions by "integrating out £." We will show that it is a "primitive state" in the
sense described earlier; that is, it can be described by saying which single particle
levels are filled and which are empty. (Recall that the general holomorphic section
of PFAFF* is not a primitive state in that sense, but a linear combination of
primitive states.) And we will see that the particular primitive state that arises is the
one studied in great detail by Segal and Wilson.

In the chiral fermion theory of Eq. (2), ψ is an operator valued section of L1/2.
Its classical field equation is

Dψ = 0. (53)

This equation can be used inside the Feynman path integral

i -
Z = J 3)\p exp J ψDψ, (4)

w

as long as there are no insertions of operators that do not commute with ψ. The
argument for this is standard.8 One makes the affine change of variables ψ^np + ε,
which leaves the measure @ψ invariant. (One requires ε\s to be in W so that this
transformation preserves the boundary conditions.) To first order in ε, the change

in action is — J εDψ, and the invariance of Z under the change of integration

variables gives

(55)

The assertion that this is true for arbitrary ε is the statement Dip = 0. The argument
would not hold, of course, for a more general path integral

J ®ψ exp - ̂  J ΨDwψ Π 0£(Pi) (56)

with operators γ\ O^P^ that are not invariant under ψ-+ψ + ε. We will discuss the
i

resulting modifications in Sect. (3).
Let / be a c-number section of L1/2 which is holomorphic, i.e. Df = 0. Then fip

is an operator-valued section of L, i.e. a differential form. In fact, fψ is

; It has been given independently in this context in [6]
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holomorphic in the naive sense, i.e. d(fψ) = Q. (On differential forms D reduces to
d.) Thus

0= l®ψexp--Sy>Dψ ίc)(fψ). (57)
w

Integrating by parts, we have J d(fψ) = §fψ, so
Σ S

(58)
w π s

Now we must recall some basic ideas about Feynman path integrals. The
Feynman path integral J ^φexp — / constructs a state \ΩΣy in j^s. If 0 is an

w
operator on 3FS and one wishes to compute OΨ, this is done in path integrals by
computing J &ψ(exp — I) 0. The right-hand side of Eq. (58) is precisely of this

w
form, with 0= $fψ, so we read off that

s

Q=$fψ \ΩΣy. (59)

Thus, the state |ΩΣ) is annihilated by $fψ whenever / can be extended to a

holomorphic section of L1/2 on Σ. Thus the state \ΩΣy can be characterized
(uniquely, as we will argue) by saying that the one particle states which are
boundary values of holomorphic sections of L1/2 are the filled states.

This state is thus the primitive state associated with a very particular point WΣ

on the Grassmannian: WΣ is spanned by sections / of L1/2|s that extend
holomorphically over Σ.

To check that this makes sense, we must (as we are studying here one
component chiral fermions) verify that the point WΣ so obtained is an isotropic
point on the Grassmannian. Indeed i f / and g are holomorphic sections of L1/2

over Σ, then

0= Wg)=f/g. (60)
Σ S

This is the assertion that WΣ is isotropic. That WΣ is maximal isotropic will be
verified presently.

WΣ is essentially the point on Gr that Segal and Wilson associate with the
Riemann surface Σ. However, they are in effect considering two component chiral
fermions. Their ψ is a section of L1/2(χ)E for some line bundle E. As a result / is a
section of L1/2®^"1. Although (59) still goes through, showing that \ΩΣy is the
primitive state associated with a point WΣ E Gr, (60) has no analogue. [Indeed, fg is
a section of L(χ)£~2 rather than a differential form, so D(fg) cannot be integrated
over Σ in an invariant way.]

The fact that (59) uniquely characterizes the state \ΩΣy depends on the
following. Let ψf = §fψ. The canonical anticommutators are {ψf, ψg} = §fg. The
ψf for f<= WΣ thus anticommute with each other. They form in fact a maximal
isotropic (or anticommuting) subalgebra of the Clifford algebra; for g not in WΣ,
there is / in WΣ with {ψf, ψg} = |/gφO. Indeed, if g is the boundary value of a
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section of L1/2 that is meromorphic rather than holomorphic,9 then (38) is replaced
by §fg = 2πi Σ Resp(/g), where P runs over poles of g and ResP denotes the residue

s P
at P; given g, one can pick a holomorphic / to make this nonzero. The Hubert
space Hs is an irreducible representation of the Clifford algebra of the ψf. In an
irreducible representation of a Clifford algebra, a vector (\ΩΣy in our case)
annihilated by a maximal isotropic subalgebra is unique. The argument we have
just sketched showing that the ψf, fe WΣ are a maximal isotropic subalgebra of the
Clifford algebra shows at the same time that WΣ is a maximal isotropic subspace of
H, so we have verified that it obeys the conditions (i), (ii), (iii) above.

To recapitulate this discussion, it follows from general principles of quantum
field theory that integrating out Σ will give an element of the Hubert space Hs.
What is striking about free fermion field theory is that there are special states,
which we have called primitive states, which in some sense are particularly simple.
These are the states associated with points in the nonlinear space Gr'.1 ° Integrating
out Σ always gives one of these special states - it maps Riemann surfaces with
boundary into Gr', not just into J .̂ One may ask whether there is in general
conformal quantum field theory - and not just in the theory of free fermions - an
analogue of the geometrically interesting nonlinear space Gr'.

In a weak sense, one may argue that there is such an analogue at least for
holomorphic conformal field theories. For simplicity, let us consider only the
primary fields φi9 i=\ ...N of a conformal field theory. (Descendants could be
included, however, by treating observables as sections of a vector bundle that is not
just a sum of line bundles.) Let St be the spin of φt. Thus φt is an operator valued
section of LSl. Let / be a onumber holomorphic section of L1 ~Sl on Σ, so that fφt is
a holomorphic operator valued differential form. The argument leading to (59)
then shows that

lfΦi\ΩΣy=0. (61)

Presumably, \ΩΣy is completely characterized (up to normalization) by this
equation. Thus, in holomorphic conformal field theory the state \ΩΣy can
presumably always be described by specifying which moments of conformal fields
annihilate it. (It is necessary in general to use descendants as well as conformal
fields.) The space of states which are primitive in this sense may have an interesting
geometrical structure in general and not just for free fermions. However, in the case
of free fermions it is possible to give an economical description by focussing on the
elementary field \p only; for a general holomorphic conformal field theory there is
no clear analogue of this.

II. Multiplicative Ward Identities

Symmetries in quantum field theory are usually studied by means of Ward
identities. When we think of Ward identities, we usually think of infinitesimal

9 It is enough to suppose that g is the boundary value of a meromorphic function, since every
smooth function on the circle can be approximated by such
10 Other states are linear combinations of primitive states
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transformations - and thus we usually work at the Lie algebra level. It can happen,
though, that a group of interest does not correspond to any Lie algebra. An
obvious case of a group with no Lie algebra is a finite group. A subtler example of a
group that does not correspond to any Lie algebra is the multiplicative group G of
global non-zero meromorphic functions on a Riemann surface. There is no Lie
algebra for this group, since a global meromorphic function which does have poles
or zeros, say /(z)~(z — z0)", for z->z0, is not the exponential of a single-valued
function. In this section, we will formulate Ward identities associated with the
group G. Of necessity, they will be "multiplicative Ward identities," relevant to a
group action, as opposed to "additive Ward identities," associated with the action
of a Lie algebra.

There are several motivations for developing the notion of multiplicative Ward
identities. First, such identities, as we will see, can illuminate some relations
described in [1]. Second, multiplicative Ward identities shed a new light on
bosonization of fermions, a subject which recently has been developed in a global
context [13]. And third, multiplicative Ward identities are a crucial ingredient in
the connection we will describe in Sects, four and five between current algebra on
Riemann surfaces and the modern theory of automorphic forms. The identities we
will develop are similar in spirit to one of the techniques used by DΉoker and
Giddings in their work on the relation between the light cone and covariant
formulations of string theory [21].

We shall study, on a Riemann surface Σ which may have boundary, the two
component chiral fermion theory described by the Lagrangian

j S f = - J φ D v > . (62)
n Σ

ψ and ψ are operator-valued sections of a square root L1/2 of the canonical line
bundle L. In what follows we will discuss certain aspects of the dependence of the
fermion determinant on boundary conditions defined by a point We Gr. We will
discuss the determinant simply as a holomorphic section of DET*, without
worrying about the metric on DET*; from this point of view the conformal
anomaly is immaterial and we will ignore it below. If one is uncomfortable with
this point of view, one can imagine that we are really discussing ratios like
Pf(D'w}/Pf(D'H+) (H+ is the standard point in the Grassmannian discussed in the
last section); such ratios are free of conformal anomaly. Adopting one or the other
of these viewpoints, we may proceed in what follows as if there is no conformal
anomaly.

Let / be a global non-zero holomorphic function on Σ - so [D, /] = 0 and / has
neither zeros nor poles. Then (62) is formally invariant under

Ψ^ψ' = fψ, ψ-^ψ'^f'^Ψ (63)

Of course for such a non-constant global function / to exist, Σ must have a
boundary. For notational simplicity, we suppose the boundary to consist of a
single circle S. In this case, though the action (62) is invariant under /, the boundary
conditions are not. The boundary conditions are that ψ must lie in a subspace W of
the space H of possible boundary values (and ψ must lie in the dual space W, as
described in the last section). Let the functions (w1 ; u2,...}, be a basis for W. If ψ lies
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S

(b)

Fig. 5a and b. A Riemann surface Σ with boundary S and points P{ and <27 a. Upon deleting those
points, a conformal rescaling that "projects them to infinity" can restore completeness in the
metric sense b

in the space W spanned by {uί9u2, ...}, then clearly ιp' = fψ will lie in the space
spanned by {fu t , fu2, . . . } - a point in the Grassmannian which we will call / W. The
transformation W-*fW is an action of the group G of global invertible
holomorphic functions (holomorphic, that is, on the surface-with-boundary Σ) on
the Grassmannian. If Σ has several boundary components, G' acts on the relevant
product of Grassmannians. This action of G' on the Grassmannian entered in [1]
in the special case with Σ a disc. There it was shown that G' actually acts on the
determinant line bundle, and not just on the Grassmannian.

Thus, under the change of variables (63), the action is invariant, but the Dirac
operator Dw is transformed into Dfw. It therefore must be that the Dirac Pfaffian is
invariant under the G action,

). (64)

(Here / denotes the lift of/ to act on DET*, and could have been dropped if the
Pfaffian were an ordinary function rather than a section of a line bundle.) Equation
(64) is our simplest multiplicative Ward identity. As long as / has neither zeros nor
poles, there is little more to say.

We now move on to the case where / has zeros and poles - say simple zeros at
points Qι . . . Qι and simple poles at points Pί... Pk. (As long as Σ has a boundary,
there is no reason to have / = fc.) Clearly, in this more general context, the
transformation (41) is not a symmetry - it is not even a well-defined transformation
of the field variables.

To remedy this situation, we will work on the Riemann surface Σ' which
consists of Σ with the points P1...Pk and Q 1 . . . Ql removed. Of course, the surface
Σ' is not "complete." However, conformal invariance makes it possible to treat Σ'
rather like a complete surface at least from the geometric point of view. We simply
pick on Σ' a metric (compatible with the complex structure of Σ') in which the
missing points are "infinitely far away," as in Fig. 5b.

According to conformal invariance, the fermion determinant on the compact
Riemann Σ of Fig. 5a equals the determinant on the metrically complete but not
compact surface Σ' of Fig. 5b provided that we specify the right class of functions in
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taking the latter determinant. The right class of functions are simply the square
integrable ones,

J M 2 < ^ , ίM 2 <o). (65)
Σ' I'

Now clearly, if we make a change of variables from ip and ψ to ψ' and ψ>', the class of
functions within which we should take the determinant is modified. The new
conditions are

f LΓVl 2 <°o, f |/v5f<oo. (66)
Σ' Σ'

In practice, it is near poles and zeros of/ that the allowed class of functions \p' and
ψf differ from the allowed ψ and φ. We have thus identified the "Ward identity"
associated with multiplication by / A fermion determinant with boundary
conditions described by We Gr on the boundary of I1' and by the class of functions
(65) on the "infinite ends" of Σ' is equivalent to a determinant with boundary
condition determined by fW and the class of functions (66).

This is our "multiplicative Ward identity" for the case that / has zeros and
poles. What remains is to put it in a more tractable form, which we will do by
projecting the "infinite ends" of Fig. 5b back to finite points, whereupon the exotic
restriction (66) on the allowed class of functions will show up as operator insertions
at the points Pt and Qj where / has poles or zeros.

We first need a more concrete understanding of the exotic condition (66). To
this aim, focus on a particular point P at which / has a single pole. Let z be a local
holomorphic function with a simple zero at P. (Thus, /~z- 1 near P.) Instead of
removing from Σ the single point P, let us remove a tiny disc, say the disc Dε defined
by |z| < ε. At this point we need a boundary condition on the values oϊψonS = dD.
The natural boundary condition which corresponds to (65) is that ψ\s should lie in
H + , where H+ is the "standard" point in the Grassmannian with basis
{1, z, z2,...}.1 x Thus, H + consists of functions with no poles if continued inside the
disc. Likewise, ψ\s should lie in H + .

Evidently, the transformation to ψf = fψ and ψ'=f~l\p means that ψ'\s lies in
the space z~1H+, with basis {z"1, l,z,z2,...} and ψ'\s lies in the space zH + with
basis {z,z2,...}.

Now, let us interpret this "physically." The functions {l,z,z2,...} which are a
basis for H+ are the wave functions of filled states of ψ particles in the negative
energy Dirac sea. In z~1H + , spanned by {z"1,!^,...}, there is one more filled
state, with wave function z"1. This is clearly the wave function for the positive
energy state of lowest energy. In conformal field theory, there is of course a vertex
operator for every state. The vertex operator for a state in which the first positive
energy excitation has been added to the vacuum is simply φ.

Thus, up to normalization, the exotic condition (66) at a point P where / has a
pole is just an instruction to insert a factor ψ(P). We must worry about the
normalization, however, since the conformal spin o f ψ is not 0 but 1/2. From the
data at our disposal - a function / with a simple pole at P - the only other factor of

11 The role of H+ and if _ is reversed compared to Sect. (1), because now we are working on the
region |z|>ε, while in Sect. (1) we were working on the Riemann surface z |<l
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spin 1/2 that we can form is

a pole of/ is ψ(P))-
df

- 1

dz
-1/2

-. So it must be that the factor to be inserted at

. Apart from the sign, which we will not try to
dz

clarify (and which is clearly linked to minus signs associated with fermi statistics),

this is invariant under reparametrization of z, since w transforms like , 7\dz
It is now easy to see what happens at a point Q where ψ has a simple zero. Pick

a uniformizer z at β, and remove the disc Dε given by z < ε. Let ψ' = fψ. On S = dD,
ψ' lies in the space zH+ spanned by {z, z2,...}. The missing function 1 means that a
negative energy particle has been removed from the Dirac sea or in other words an
antiparticle has been added. The appropriate vertex operator is ψ or more exactly

(df ^~1/2

- allowing for normalization - it is ψ(Q) I —

Thus we arrive at the definitive statement of our multiplicative Ward identities.
The transformation ψ^fip, ψ^f~ ίψ, in addition to shifting boundary conditions
from W to f W , also brings about the operator insertions just described. So

f ®V^vexp-/= Sψ&φe-'.U f *_ Π ̂ = (67)

Here Pt and Qj run over the poles and zeros of /, which we have assumed to be
simple. It is easy, though, to generalize the formula to allow for fc-fold poles or
zeros. A fc-fold pole would give

while a fc-fold zero gives

, (68)
.7 = 0 dz

fc-i
Π ^v(β) — . (69)

Since (67) may seem unfamiliar, and the derivation could be faulted for lack of
rigor, we will now pause to check (67) explicitly for the simplest case in which Σ is
the Riemann sphere - without boundary. For / we take a general rational function

N z — 0
/(*)= Π —^ (70)

J = l Z~^j

The identity (67) reads

N ίί8f~l\ ίdf\ V1 / 2 / N N \1= π rfcr ΐ •( Π Ψ(Pj) Π v(Qj)>, (71)j = ι \\ dz JP.\dzJQjJ \j=1 k=λ

 J /

or in other words

rm-fj) π (Qi-Qr) / N AT \
^ Π r p ' Φ Q ) = Π Ψ(PJ) Π V(β*)) (72)l l l r /c~^ίJ \ j = ι fc=ι /

k, I
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The right-hand side of (72) can be evaluated in terms of the propagator

Σ(-D" Π ή-Λj-. (73)
π 7 = 1 Γj Uπ(j)

where π is a permutation of N objects, the sum runs over all permutations, and
( — l)π is + 1 for even or odd permutations. The left- and right-hand sides of (72) can
be seen to have the following properties. Both have simple zeros where Pt = Pj or
Qi = Qp and both have as their only singularities a simple pole at Pt = Qj with
residue a function of the same kind with one less pole and one less zero. These
properties characterize the left and right hand sides of (72) completely, verifying the
claimed equality.

The absolute value squared of (72) is often cited as a basic formula in
bosonization of fermions, which lately has been treated in a geometric setting [1 3].
Thus, if φ is a free bose field with propagator (φ(P)φ(Q)y = — In |P — Q\2 one
computes

Π \Qt-Qr2

exp- iφ(Qj) } = ̂  -

On the other hand, if we introduce left moving as well as right moving fermions,
then the absolute value squared of (72) is

Π ψ(l+y5)ψ(Pj) Π vKl-y5)V(e fc)) (75)
7=1 *=1 I

We have extracted the equality of (74) and (75) as a special case of a much more
general multiplicative Ward identity for which we have given a conceptual
explanation. It is in this sense that our considerations shed light on the
phenomenon of bosonization of fermions.

In case / has one zero and one pole, (67) reduces to

df
dz JP\dz

Upon substituting W-^ f'^W, this becomes

(76)

dz p dzQ

Here G(P, Q) = (ψ(P)ψ(Q)y is the Dirac propagator with boundary conditions W.
It is uniquely characterized by the following:12

12 In what follows, we work on the Cartesian product Σ x Σ; L1 and L2 denote the canonical line
bundles of the "first" and "second" copies of Σ
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(1) G(P, g) is a meromorphic section of L1/2(x)L1/2 (or more precisely of
Lj / 2® Lί>/2) over I1 x Σ whose only singularity is a simple pole at P = Q with residue
one. (This notion of "residue" makes some since the restriction of L1/2(χ)L1/2 to the
diagonal in Σ x Σ is L.)

(2) Regarded as a function of P for fixed Q (or Q for fixed P) the restriction of
G(P, β) toS = dΣ lies in P^ (or its dual W).

The first condition here is just the short distance behavior of the Dirac
propagator, and the second was discussed in Sect. (1) [see Eq. (15)].

The relation (67) between the propagator and the determinant holds on any
Riemann surface. If we specialize to the case in which Σ is a Riemann sphere with
one hole cut out, then (76) is the relation between the Baker function and the tau
function as developed by Segal and Wilson in [1]. To compare with their results,
note the following. They work in the region |z| ̂  1 in the complex plane, and take
P = ζ, 6 = 00. A function with a single pole at P and zero at Q is then (in the
notation of [1]) ^ζ~

1(z) = (l-z/0~1. The "Baker function"13 ψw(ζ) of their
discussion corresponds to our G(C, oo). Segal and Wilson describe ψw(ζ) as a
"function" rather than a section of the spin bundle L1/2. In doing so, they are in
effect trivializing the spin bundle on the finite z plane by choosing a section whose
only singularity is a simple pole at z= oo. Thus, when they require \pw(ζ)-^\ for
ζ -> oo, this amounts to saying that G(ζ, oo) has a pole of residue 1 for ζ -> oo. And the
boundary condition at z| = 1 of Segal and Wilson is precisely our condition (2)
above. Thus, with /<-»gζ~ * and τ<->P/, we recognize Eq. (76) as Proposition 5.14 of

[i].
In Eq. (67), we see that operator insertions of ψ(P) and \p(Q) arise at poles and

zeros of a meromorphic function / It is natural to expect that a more general
divisor

ΣPt-ΣQj (78)

(which is not necessarily the principal divisor of a global meromorphic function)
will similarly be related to operator insertions of ψ(Pi) and ψ(Qj). Let E be the line
bundle with divisor (78). The ordinary Dirac propagator G(P, Q) = (ψ(P)ψ(Q)y
(with ψ,ψ sections of L1/2) is - as we have already noted - the section of
J£ = (L1/2)1®(LL/2)2 over ΣxΣ whose only singularity is a pole of residue one on
the diagonal. (5£ is the line bundle whose restriction to either copy of Σ is
isomorphic to L1/2.) If we wish to study fermions ψ, ψ that are sections of L1/2(x)E
and Lγ>2®E~l respectively, the propagator GE(P,Q) would be a section of

^E = (Ll/2®E)l®(L1/2®E~1)2 (79)

over ΣxΣ; that is, <£E is the line bundle whose restriction to the first or second
copy of Σ is isomorphic to (Ll/2®E) or (L1/2®E~ *), respectively. GE(P, Q) is still
required to have for its only singularities a simple pole of residue one on the
diagonal.

Instead of regarding G£(P, Q) as a section of the twisted line bundle J5?£ with
singularity only on the diagonal, we may regard it as a section of 3? with poles at
p = Q or P = QJ and zeros at P = Pf or Q = Qjf (This is so because (78) is the divisor
of £; a section of £ is just a function which to be regular is required to have zeros at
the PJ and permitted to have poles at the QJ.) But we may immediately write down a

13 We suppress g, writing gW as W
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section of <£ with those properties:

GE(P, Q) = (ψ(P)ψ(Q) Π ψ(Pi) Π vKβΛ . (80)
\ i J /

This simple argument expresses GE in terms of G, since the right-hand side is a free
field correlation function which can of course be expressed in terms of the free
propagator G. (The formula is simply

£(-!)" Π G(P,,βπϋ)), (81)
π 7=0

where G(P, Q) is the ordinary propagator, not twisted by £, and we have taken
p = P0^Q = Q0 to simplify the notation.) The argument leading to (80) shows that
the divisor of a line bundle corresponds to insertions of fermions and antifermions.
This fact emerged in [13]. Its analogue for vector bundles will emerge in Sects, four
and five.

Apart from the motivations already indicated above, a further reason for
formulating multiplicative Ward identities is that this is a crucial step if one wishes
to work in an algebraic setting, over ground fields other than the complex
numbers. Multiplicative Ward identities will be one ingredient of the purely
algebraic description of the theory of free fermions that we will give in Sect. (4).
Before plunging into this, however, we first pause to describe the physical
reasoning behind the construction.

III. Operator Valued Differential Forms

Our goal in this section is to express the Ward identities of conformal field theory
[14] in terms of operator valued differential forms. These have already made an
appearance in Sect. (1). We will only consider holomorphic conformal field
theories, that is, theories in which all degrees of freedom are holomorphic. The first
subsection of this section essentially explains the physical background to Sect. (4);
then we continue and analyze more detailed properties of operator valued
differential forms.

Consider, in a conformal field theory on some Riemann surface Σ, a conformal
field ψ of spin S. It is an "operator valued section of Ls," with L being the canonical
line bundle of Σ, and Ls its Sth power. Let / be an ordinary c-number meromorphic
section of L1 ~5. Then fψ is an operator valued section of L, or in other words an
operator valued differential form. Notice that we permit / to be meromorphic, not
necessarily holomorphic; an important part of the story has to do with the poles of
/ Let Pt be the positions of the poles of /

Let us formulate the precise properties of fψ which entitle it to this name,
operator valued differential form. Let us insert fψ(z) in an arbitrary correlation
function with insertions of other operators 0/P}). Thus, we define.

F(z)= \@Xe-J - Π Oj(P'j)'fψ(z). (82)

Here Q)X is a shorthand expression for integration over the unspecified field
variables of the conformal field theory in question. Now, the correlation function
F(z) is an ordinary c-number differential form, which in a holomorphic conformal
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field theory will be holomorphic except for certain poles. It will have poles at the Pb

where / has poles, and it may have poles at the P'p because of possible short
distance singularities in the operator products ψ(z)Όj(P'j) for z^P'j. What we
mean in saying that fψ(z) is an "operator valued differential form" is precisely this:
its correlation functions are ordinary meromorphic differential forms, with the
poles just described.

Let us delete the positions Pt and P'j of the poles from Σ to make an incomplete
Riemann surface Σ' on which F(z) is holomorphic, i.e., obeys dF(z) = 0. Then

0 = j 3 F ( z ) = Σ # F ( z ) , (83)
Σ' a Cx

with α running over the poles of the differential form F(z), and Cα a contour that
encloses the u!h pole. Equation (83) is simply the statement that the sum of the
residues of the differential form F(z) is zero, i.e.,

) = 0, (84)
α

the residues being defined by

Resα(F(z))=-^ |F(z). (85)
2.711 Cx

Equation (84) is of course a fundamental statement about meromorphic
differential forms on a Riemann surface and clearly has nothing to do with the
interpretation of F(z) as a correlation function. The real story begins when one
supplies the geometrical interpretation of the residues of F(z).

We have considered two types of point at which F(z) has poles - points P'j at
which a vertex operator Oj was inserted, and points Pt at which the pole is entirely
due to a pole in / We would like to discuss these two cases uniformly. To do so, let
us adopt the convention that a vertex operator is inserted at each of the Pf and P'j,
but this vertex operator happens to be the identity operator 1 in the case of the Pt.
After all, 1 is a perfectly respectable vertex operator in conformal field theory - it
represents the coupling to an SL(2, R) invariant "vacuum" state. Including 1 as one
of our vertex operators, we henceforth treat the Pt and P'j on an equal footing.

As in Fig. 6c, let us project to infinity one of the points Pα at which F has a pole.
In the infinite past, i.e., far out on the cylinder of Fig. 6c, there will then appear a
quantum state |Λ>. It is simply the state whose vertex operator is Oα. (If Oα = 1, then
|Λ> is the "vacuum.") |Λ> is a state in the Hubert space HPχ of possible "in" states at
Pα. We can give a more physical description of the right-hand side of (85). It is

ResαF(z)= l®Xe-' Π 0/P,) •— § (fψ)\Λy . (86)
7Φ α \2πι/ cα

The notation in (86) is somewhat hybrid. Writing the state \Λy as part of the
argument of the path integral is meant as a reminder that the boundary condition
at Pα is that the state |Λ> is coming in from the far past. At the Pj with; Φ α, which
are of no interest at the moment, we have projected the punctures back to finite
points and restored the vertex operators Oj. The contour Cα surrounds Pα.

Now we must recall the correspondence between Feynman path integrals and
operators. The object ψ inserted in a path integral corresponds in the Hamiltonian
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(α)

(b)

(c)

Fig. 6a-c. Poles of the correlation function F(z) are indicated in a. Upon deleting the positions of
these poles from Z, we can write a contour integral formula picking up contributions from the
"operator-valued residues," as in b. Projecting the position of one of the former poles to infinity, as
in c, we see that the operator valued residues are really moments of suitable operators. A contour C
surrounding one of the poles of F is sketched in b and again in c

description to an operator, which we will also call ψ, acting in the quantum Hubert
space J^Pχ. The factor §(fιp) in (86) is simply an instruction to take the boundary
condition at Pα to correspond not to insertion of |yl>, but rather to insertion of

1

2πϊ
(87)

The analogy with (85) suggests that the operator which appears in (87) should be
regarded as the operator valued residue of the operator valued differential form
fψ. Thus, we define the residue of fψ at P to be the operator

~
2πι

(88)

regarded as an operator on the space of possible quantum states (or equivalently
possible vertex operators) at P; C is a contour surrounding P but no other possible
poles.

Of course, whatever can be said about states can be restated in terms of
operators. If the state |Λ> corresponds to the vertex operator 0P, then the state
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ResP(/φ)|Λ> will correspond to some other vertex operator which we may as well
call ResP(/V) 0(P). Thus, we have a residue operation acting on operators,

0(P)->ResP(/v>) 0(P), (89)

which has neither more nor less content than (88). In this section, we wish to
formalize the basic properties of the residue operation. We can now state the first
principle:

(i) For 0(P) = 1, Resp(/ι/;) - 1 = 0 unless / has a pole at P.
This is just a restatement of the fact that the poles in (82) (which are the only

points at which the residues may be nonzero) only occur at the Pt (where / has
poles) or the P} (where 0 φ 1).

Consider now a product of observeables

Ol(P1)02(P2)...0N(PN). (90)

We have written this as a finite product, but one could equally well think of it as an
infinite product

Π 0P(P), (91)
Pel

which runs over all points in Σ with the agreement that 0P(P) = 1 for all but finitely
many P. We will now in a trivial way extend the notion of ResP(/φ) so that it acts
not just on operators at P but on arbitrary products (91). We simply declare that
Resp(/φ) will be considered to act as before on the P component of (91) while
leaving the other components invariant,

0Q(Q). (92)

Having defined ResP(/ι/?) for arbitrary P as an operator acting on arbitrary
products of observables, we now wish to study the "sum of the residues." Thus, let

(93)

It is important to note that (93) is a well-defined finite sum, since (92) vanishes
unless / has a pole at P or OP=t= 1.

We would now like to find the appropriate statement about operator valued
differential forms which generalizes the statement that the sum of the residues of an
ordinary c-number differential form is zero. Let us think of the Feynman path
integral as defining a linear functional on the space of observables. Thus, for an

arbitrary observable [] 0P(P), we will abbreviate
p

l2Xe'I\\Op(P) (94)
P

as
f Π < W ) > (95)

p

with J being a linear functional from observables to complex numbers. Then (84) is
equivalent to the statement that

(96)
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We have in fact defined the notion of the operator valued residue precisely so as to
be able to express (84) in the form (96).

We thus have our second axiom for operator valued differential forms:
(ii) The expectation value of the sum of the residues of an operator valued

differential form is zero, in the sense that (96) vanishes for all observables f] 0Q(Q).
Q

Equation (96) is a restatement of the usual (additive) Ward identities of
conformal field theory, in terms of operator valued differential forms. The
connection with the formulation of [14] is roughly that they discuss the operator
product expansion

(V>(z) 0(w)Uw~ Σ On.(z-w)" (97)
n^ -N

and must, in principle, keep track of all terms on the right-hand side. [The
correlation functions are in a sense determined just by the terms of π<0, but the
associativity conduction of the operator product involves all terms in (97).] We on
the other hand consider products

f(z)ψ(z) 0(w), (98)

with arbitrary /, and we extract only the residue, that is, the coefficient of (z — w)~ l .
Clearly, by picking f(z)~(z — w)"""1, the operator On of (97) will appear as the
residue Resw(/φ) O(w), so by considering residues of operator valued differential
forms, we in fact repackage all of the information of the usual Ward identities. This
means that like the Ward identities of [14], our Ward identity (ii) is powerful
enough to determine the correlation functions (that is, the linear functional J).
Since (ii) has no content beyond the standard Ward identities, the only issue is
whether one will obtain new insight by thinking in terms of operator valued
differential forms and their residues.

(ii) is recognizably a generalization of a conventional statement about residues
of c-number differential forms. Another fundamental property of c-number
differential forms is that the residues of an exact form

ω = dλ (99)

are all zero. We would like to exhibit the statement analogous to (99) in the context
of the operator valued differential forms of conformal field theory. To do so, the
main obstacle is that we must explain the analogue of the exterior derivative "d"
which appears in the formula ω = dλ. Here λ is of course an ordinary c-number
function, and d is the natural flat connection on scalar functions. To generalize d to
operator valued scalars, it is necessary to show that operator valued scalars are in a
suitable sense sections of a flat vector bundle. We thus must plunge into a long
digression about the bundle of observables in a conformal field theory on a
Riemann surface.

The Bundle of Observables

We will have to systematically discuss arbitrary local observables, which are not
necessarily conformal fields. Let P be a point in Σ, and VP the space of all local
operators that can be inserted at P. Except for conformal fields, most operators in
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Vp do not have a definite dimension. For instance, the energy momentum tensor
T(P) is a fundamental example of a field that is not a conformal field. Under global
scale transformations, T(P) transforms as an operator of dimension two, but under
a general change in local parameter at P, Γ(P) shifts by a multiple of the identity
operator (which has dimension zero), so we describe T(P) as an operator of
dimension at most two.

To put this a little bit differently, what would be described in one coordinate
system as a multiple of the energy momentum tensor, say αT(P) (with α a complex
number), would be described in another coordinate system as a linear combination
of the energy momentum tensor and a c-number, say

jB' + α'ΓίP). (100)

This means that in an invariant way, without choice of a coordinate system, one
cannot think about "inserting the energy momentum tensor at a point P on the
Riemann surface 17' One must always think in terms of inserting a linear
combination of the pair of operators 1 (the identity operator) and T(P). Clearly,
such a linear combination does not have a definite dimension, but it has maximum
dimension two. To illustrate more fully some of the ideas of the present section and
to make contact with [19], the system (1, T) will be discussed more fully in an
appendix.

For convenience, we will assume in what follows that only the identity operator
has dimension zero and that all other dimensions are positive integers. Let VP n be
the subspace of VP consisting of operators of dimensian at most n. Clearly, VP n

CVPn + l9 and
VP=VVp9n. (101)

n

Equation (101) is a filtration of VP by subspaces of finite dimension and is canonical
- it does not depend on a choice of local parameter at P.14 If one chooses a local
parameter z at P and defines the dimension of a field in terms of the transformation
under the vector field z(d/dz) ("a global scaling near P"), then it is possible to define
a definite dimension to the fields (for instance, T(P) has dimension two). Thus,
upon choosing a local parameter, we get a direct sum decomposition

Vp=ΦnWPtn9 (102)

where WP n consists of fields that transform with weight n under z(d/dz).15

In interesting holomorphic conformal field theories, the VP n are finite
dimensional, but VP is always infinite dimensional (since including descendants
there are necessarily infinitely many fields).

As P varies in Σ, the VP are fibers of a holomorphic vector bundle Y* over Σ.16

The Vp „ are likewise fibers of subbundles Y*. Clearly,

T* = U ^?- (103)

14 A local parameter z at a point P on a Riemann surface is simply a function z which is
holomorphic in a neighborhood of P and has a simple zero at P
15 One can interpret WP n as the quotient VPtn/VPtn-^ but there is no canonical splitting
Vp n = Vp > „ _ ! © Wp „. The obstruction is that fields such as the energy momentum tensor which are
not conformal fields mix under change of local parameter with fields of lower dimension
16 ^* js j-jjg cjuaj Qf y^ which will appear later
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Again, (103) is a filtration, and there is no canonical direct sum decomposition that
induces it.

What is the structure group of ̂ *? Let us answer this on physical grounds. Let
ffl be the Hubert space of the conformal field theory under discussion. Given any
point P on a Riemann surface, the space VP of local operators that can be inserted
at P is isomorphic to Jtf, but there is no canonical way to make this isomorphism.
To identify VP with ffl , one needs a local parameter z at P. Given such a local
parameter, one has a natural way to project P to infinity, say by choosing a metric

dsι=
d-^. (104)

In the metric (104), the Riemann surface Σ is a flat cylinder (at least in a
neighborhood of P where the local parameter z is well behaved), and P has been
projected to the "far past," as in Fig. 6c. This gives us an identification with the
canonical formalism, or in other words a specific identification of VP with ffl .

If z is a local parameter at P, then another local parameter z' would be of the
form

z' = aγz + a2z
2 + α3z

3 + . . . (105)

with 0 J Φ O . Such changes of coordinate are generated by the vector fields
zn+l(d/dz\ 7t = 0, 1,2, ... . These correspond to the usual Virasoro generators Lπ,
with n g; 0. If we denote the Lie algebra of the Ln, n^O as ,̂ and the group
generated by & as R, then it is natural to call R the group of changes of local
parameter. The fact that an identification of the fiber of y* with a standard space
Jjf arises on choice of a local parameter means that R is the structure group of y*.

But in fact, i^* is much more rigid than a generic vector bundle with structure
group R. One side of this has to do with group theory. Let ̂ + be the Lie algebra of
the Ln, n ̂  — 1, and let $ be the Virasoro algebra generated by all of the Ln, neZ.
The fiber VP of a vector bundle with structure group Y must be a representation of
the Lie algebra ,̂ but there is no general reason that that representation must
extend to a representation of ̂ + or J>. But in conformal field theory, VP is actually
a representation of J>. ̂ + is about to play a crucial role, but $ will not (except in
the appendix). This is one reflection of the fact that something crucial is missing in
the present discussion (as from other existing discussions of conformal field
theory).

The other side of the rigidity of y* has to do with the following. If indeed z is a
local parameter at P, then for all Q in some neighborhood of P, z — z(Q) is a local
parameter at Q, and the choice of metric

leads just as in our discussion of VP to an identification of VQ with H. Thus,
choosing a local parameter at P gives a trivialization of y* not just at P but in a
whole neighborhood of P.

Pick a local parameter z at P and pick a basis of operators {ψk} in the space VP

of operators at P. For instance, in a theory of free fermions, these may be

), dψ(P), ψdψ(P), d2ιp(P) , (107)
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etc., with "d" being d/dz. As described above, the choice of parameter z gives a
trivialization of ̂ * in a neighborhood Z"0 of P, so we can erase the argument "(P)"
in (107); without any further arbitrary choices, we have in a natural way the basis of
operators 1, ψ, dip, ψdψ, d2ψ, ... at any point in Σ0.

In this section we have been discussing "operator valued differential forms."
We now wish to broaden our horizons a bit and discuss "operator valued
meromorphic functions." An operator valued meromorphic function A(z) is an
object with the property that its correlation functions are ordinary meromorphic
functions. After trivializing i^* in a neighborhood Γ0, a general operator-valued
meromorphic function α can be expanded

α=Σ** vΛ (108)

with the ak being ordinary meromorphic functions in Σ0.
We now want to define the "exterior derivative" dα of the operator valued

meromorphic function α. Proceeding blindly, we write

da=Σdak'ip
k+Σak'dιpk. (109)

By dak we mean (in the z coordinate system) simply dak/dz. But what is dιpkl It is
crucial now that the ψk are a basis for all local operators, and this includes all
derivatives of local operators, as in (107). Therefore, the dψk are simply linear
combinations of the ψm with constant coefficients, say

for some constants wk>w. Thus, (109) can be rewritten

d*=Σ(dam+Σwk.»}ψm, (HI)

and in coordinates this is our formula for the exterior derivative of an operator
valued meromorphic function.

Let jtf be the space of operator valued meromorphic functions, and JΓ the
space of operator valued meromorphic differential forms. We want to interpret
(111) as a natural definition of an exterior derivative

ά\sί-+tf (112)

with the property that if/ is an ordinary meromorphic function, and α an operator
valued meromorphic function, then

d(/α) = d/ α + / dα, (113)

with df the ordinary exterior derivative of functions. What is missing at the
moment is that the definition of (111) seemingly depended on a choice of a local
parameter z at a point P e Σ. We would like to show that there is an intrinsically
defined exterior derivative which in coordinates takes the form (111).

First of all, the question can be reinterpreted in the following way. While we
have spoken roughly of the ak in (108) as "functions," it is clear that this depended
on a choice of trivialization of ̂ *, and hence the correct global description is that
the family {ak} defines a global meromorphic section of the dual bundle 1^. We
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have arranged to call this bundle y , reserving the secondary name y* for the
"bundle of operators", because in a sense it is the ak that one really wishes to study.
In formulas like (108), the \pk play a bookkeeping role. If we were not guided by
physical intuition, we might very well have defined y and neglected to mention the
ιpk altogether.

Let Γ(y) be the space of meromorphic sections of y and Γ(y®L] the space of
meromorphic sections of y®L. These correspond to the spaces of operator
valued meromorphic functions and operator valued meromorphic differential
forms, respectively. Equation (111) is equivalent to a "holomorphic connection"

(114)
obeying

(115)

for ρ E Γ(y) and / an ordinary meromorphic function. In coordinates, D is defined
by (111) with the symbols ψk erased. An element of stf is locally a collection of
functions {ak}, and D of this collection is

D({ak})=Sdak+Σarwrtkl. (116)

A holomorphic connection on a holomorphic vector bundle on a Riemann surface
is automatically flat, since the dimension of the Riemann surface is one in the
holomorphic sense, and there is no room for curvature. Thus we are asserting
among other things that the bundle y is naturally flat.

It is possible to convince oneself that (111) and (116) are intrinsically defined by
thinking about how things transform under change of local parameter. However, a
much more incisive account has been given by D. Kazhdan, and I will follow his
treatment. First of all, the crucial step in making sense of (111) was (110), which is
the statement that the space of all operators is closed under the operation of
differentiation. The derivative of an operator is the application of the Virasoro
vector field d/dz, which corresponds to L_ί. Thus, we recall that the structure
group of V is R, generated by the Lie algebra 0t of Lπ, n ̂  0. The fiber WP of y
necessarily admits a Si action, but this in fact extends to an action of ̂  + , generated
by Lw, n^ — 1, and this is the basis for (110) and thus for our other statements. In
constructing the holomorphic connection D on the bundle y, we must expect to
use the $+ action on the fibers.

The other key property of y is that it is trivialized upon picking a local
parameter z at a point P E Σ. Such a choice gives a canonical identification of the
fiber Wp with the Hubert space 3? of the conformal field theory.17 Thus, let Σ be the
space of pairs (P, z) consisting of a point P E Σ and a local parameter z at P. Σ is
fibered over Σ, and the pullback y of y from Σ to Σ is canonically isomorphic to
the product Σ x Jί.

Vector fields /(z) (d/dz) = zn(d/dz) with n ̂  0 act on Σ by moving the point P and
shifting the local parameter. Explicitly, the action is δP= — /(O), <5z = /(z); this

17 Since we have taken a dual from operators to coefficients of operators, it is Jf * that really
appears here, but this is naturally isomorphic to Jf as Jf is a Hubert space



Quantum Field Theory 565

preserves the requirement z(P) = 0. This gives an action of the ̂ + Lie algebra on Σ.
We will refer to the vector fields zn(d/dz) with the action of Σ just described as
Ln_ j.18 There is no way to exponentiate the &+ Lie algebra action to get a group
action on Σ. However, if we restrict to the subalgebra St of ̂ + consisting of vector
fields that leave P fixed (while transforming the local parameter at P), then the Lie
algebra action exponentiates to an action of the group R. A section of y over Σ is
the same as an 7^-invariant section of the trivial bundle i^ over Σ, where the R
action on sections of i^ is the diagonal action on the two factors in the product
y = Σ x Jjf. Thus, an operator valued function α on Σ is equivalent to a section A of
the trivial bundle Σ x ffl over Σ which obeys

(117)

The canonical line bundle L of Σ likewise can be lifted to Σ, where it becomes
trivial, since given a pair (P,z) there is a canonical basis dz for the space of
differential forms at P. Under a change of local parameter z->z' = aίz-\- a2z

2 + . . ., a
differential form at P is multiplied bya^1. This means that a differential form ω on
Σ1 lifts to a function ώ on £ which obeys

L0ώ = ώ, Lnώ = 0, for n>0. (118)

Since Ί^ and L lift to trivial bundles on Σ, the same is true for their tensor
product y®L. Combining (117) and (118), we see that an operator valued
differential form A on Σ is the same as a section A of the trivial bundle Σ x Jtf which
obeys

L0A = A, LnA = Q, for n>0. (119)

Now, to establish the geometrical nature of (1 1 1) and (116), we must show how
to construct from a meromorphic section of ̂  a meromorphic section of i^®L.
Lifting the discussion up to £, the problem is to find, from an object ά obeying
(117), an object A obeying (119). The formula is painlessly simple:

A = L_1&. (120)

From (117), (120), and the Virasoro algebra, (119) follows.
Thus, while R is the structure algebra of ̂ , we have seen the importance of the

fact that the βfc action on the fibers extends to ̂  + . A gap in the present paper is the
failure to integrate the ̂  action into the constructions.

Some More Axioms

Let jtf be the space of operator valued meromorphic functions and Jf the space of
operator valued meromorphic differential forms. From the last section, we have an
exterior derivative d : j/-> Jf. We consider an operator valued differential form A
to be exact if it is of the form A = doc for some operator valued meromorphic
function α. We can now state our third axiom for operator valued differential
forms :

(iii) // A = da, then ResP^-0 for all P.

18 It is shown in the appendix to [19] that if one is willing to work on the moduli space of surfaces
of given genus rather than a particular surface Σ, one can actually extend this to an action of the
whole Virasoro Lie algebra Φί
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\

Fig. 7. A contour argument which is used to compute the commutator [ResP(,4), ResP(B)], with A
and B being two operator valued differential forms

The justification for this is very simple. Picking a local parameter z at a point
PeΣ, the formula A = da just means A = da/dz. So the residue at P is

~<
2πι c

~
dz

(121)

this being just the statement that the integral of a total derivative around the closed
contour C is zero. This reasoning is indeed trivial; the only difficulty in the last
section was to show that there is a geometrically defined object da which upon
picking a local coordinate z reduces to da/dz.

Having associated to a point P and an operator valued differential form A an
operator Resp(,4) in the Hubert space VP at P, it is natural to try to compute the
commutators of these operators. Thus, let A and B be two operator valued
differential forms, and let us study the commutator of ResP(/l) and ResP(£). This
can be done by a contour deformation argument which is familiar in conformal
field theory (Fig. 7). Let C2 be a contour that encloses P, and Cl a contour that
encloses C2, and such that C1 and C2 are small enough to enclose no poles of A and
B except the possible poles at P. Then acting on some state \A) E VP we have

-LYl
W A

(122)

Here zγ and z2 are parameters along C1 and C2. To take the two operators in
opposite order, let C\ be a contour inside C2; we get

2πι
(123)
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We want to consider the difference (ResP(^)ResP(£)-ResP(β)ResP(,4))|Λ>. This
difference is of course a difference of double contour integrals. Doing the integral
over z1 first for fixed z2, we see that the z1 contour is C1 — C'ί, a contour which
encircles z2 but not P. Thus, we define

(AoB)(z2)=±:$A(z)B(z2), (124)

with C any contour (such as C t — Q) that encircles z2 and no other poles of A.
Then

[Resj.04), Resp(β)]|Λ> = ^-. $ (A<> B)(z2)\Ay . (125)
2πι c2

The right-hand side, however, is precisely the residue operation that we have been
discussing, so we may state this more succinctly in the form

[ResP(,4), Resp(β)] - ResP(,4 <>B). (1 26)

This is the desired formula for commutators of operator valued residues. We can
now state the fourth axiom for such residues.

(iv) Let A and B be operator valued differential forms. Let Qbea point at which B
does not have a pole. Then the value oj B at Q determines a state BQ in the space VQ of
observables at Q. Let (A ° B)Q = ResP(A) BQ. Then there is a meromorphίc operator
valued differential form A o B which equals (A o B)Q except perhaps at finitely many
Q where A or B has a pole. Moreover [ResP(A), ResP(5)] = Resp(,4 ° B).

[In the above, the reason for avoiding poles of A and B is that BQ is not defined
at a pole of B, and the ResP(,4) operation can be seen to depend meromorphically
on P only if one keeps away from poles of A]

Now, A o B can be computed, say, from path integrals with insertions of

§A(z) B(W), (127)

with C a contour circling w. In this formula, B plays a relatively passive role. It is
obvious, for instance, that if / is a meromorphic function, then A o (fB) = f(A ° B).
It is also clear that (127) still makes sense if B is replaced by an operator valued
meromorphic function φ rather than an operator valued differential form. We
would simply study insertions of

§A(z) φ(w) (128)
C

to compute Aoφ. For operator valued functions we have a natural exterior
derivative φ-+dφ. Extracting this derivative clearly commutes with the operation
of multiplying by § A(z\ so A o (dφ) = d(A ° φ). Likewise, the operation in (128)

c
clearly commutes with multiplying φ by a onumber function or taking its tensor
product with a c-number differential form. We can thus add the following to our
list of axioms:

(v) For A an operator valued differential form and φ an operator valued function,
there is an operator valued function Aoφ such that for all but finitely many Q where
A or φ has a pole, (A o φ)Q = Resβ(A) φQ. This operation is compatible with the
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operation A°B for differential forms A, B, in the sense that if ω is a c-number
meromorphic differential form, so that φ®ωis an operator valued differential form,
then

} . (129)

(On the left of (129) there appears the composition of a differential form with a
function, and on the right there appears the composition of two differential forms.) If
moreover f is a meromorphic function, then A o (fφ) = f(A o φ). And finally, the o
operation commutes with the exterior derivative in the sense that

φ). (130)

We will devote the rest of this section to discussing certain facts which follow
from peculiarities of (126). The left-hand side is antisymmetric in A and B, but the
right-hand side is not manifestly antisymmetric. It follows from (126) that
Aoβ + B°A must have zero residues. This does not mean that A°B + B°Ais zero.
We have learned that there is a large class of operator valued differential forms
with zero residues, namely the exact forms. Computation in simple examples
shows that A ° B + B o A need not be zero, but is an exact form. For instance, let χ
and \p be two free fermions, with propagator <tp(z)t/;(vv)> = <χ(^)χ(w)> = l/(z — w).
Let A(z) = χdψ(w) and B(w) = ιp(w). To compute A°B we take the operator
product

A(z)B(w}=^(z-w}nOn(w], (131)
n

and then A°B(w) = 0_1. The singular part of A(z)B(w) is

χ(z) χ(w) dχ(w)

(z-w)2 (z-w)2 z-w ( }

Evidently, 0 _ 1 = — dχ, so

AoB(w)=-dχ(w). (133)

On the other hand, to compute B o A, we express the same operator product in an
expansion around z:

A(z)B(w)=ΣΓ°^-. (134)
n (W — Z)

Then B o A = 0'_ t. But clearly

B(w)A(z)=--^-ϊ + .... (135)
(w — z)

There is no single pole, so B o A = 0. Therefore, in this example,

dχ, (136)

and as expected the differential form on the right-hand side is exact (being d of the
operator valued function χ). This then illustrates the general rule which is needed
for the consistency of (126):

(vi) Let A and B be operator valued differential forms. Then Aoβ + B°Aisan
exact form, say A°B + B°A = dK(A, B), where K(A, B) (defined up to an additive c
number constant) is an operator valued meromorphic function depending on A and B.
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Fig. 8. Contour integrals for three operator valued differential forms A, B, and C

The exactness of Aoβ + B°A has a counterpart, in a somewhat different
context, in recent work by Strominger on string field theory [22]. The relationship
deserves to be explored more fully.

Finally, one more aspect of the consistency of (126) needs to be investigated.
The equation [ResP(^4), ResP(B)] = ResP(/l ° B) suggests that under the o oper-
ation, operator valued differential forms (or at least such forms modulo exact ones)
must form a Lie algebra. Let us try to understand the Jacobi identity.

In Fig. 8 we consider contour integrals for composition of three operator
valued differential forms A, B, and C. From the arrangement of contours in the
figure, one can see that there is a Jacobi-like identity

A ίΏ f\ D ( A f\ ( A Ώ\ Γ* (Λ 1H\/i ° {±j ° L/J — D ° y/L ° OJ = {/L ° Jj) ° L/ . (13 / )

Equation (137) is not quite a Jacobi identity; in fact, the o operation cannot
possibly be a Lie bracket, since it is not even antisymmetric. Even if we define a new
operation [ , ] by [A, B~] = (A o B — B o A)/2, (137) does not become a Jacobi
identify for [ , ]. To get a Lie algebra from (137), it is necessary to work not with
operator valued differential forms JΓ, but with the quotient Jf/djtf of operator
valued differential forms by exact ones. From our above axioms, we have

(138)

as A. FromLet us denote the equivalence class of a differential form A in
(138) it follows that if Ά^=Ά2, and B1=B29 then

(139)
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This meeans that the o operation on s# induces a well defined operation Ά, B
-^Ά°B on Jf/djtf. Since the o operation in Jf/djtf is automatically antisym-
metric, we denote it as [ , ].

Now, although (137) is not and cannot be a Jacobi identity for a ° or [ , ]
operation in Jf, it is easy to see that (137) induces the Jacobi identity for the [ , ]
operation in Jf/dj/. Therefore, $f/djtf has a natural Lie algebra structure.

What is the center of this Lie algebra? In the vertex operator algebra of a
conformal field theory, the center is the identity operator 1, the vertex operator for
coupling to the vacuum state. In a general operator valued differential form
^4 — Σ aίψ1' one °f the operators ψ\ say φ°, is the identity operator, and the
corresponding coefficient function α0 is an ordinary onumber differential form.
Since their "operator" part is the identity operator, such onumber differential
forms are in the center of jΓ/rfj/.

Let Ωl be the space of c-number meromorphic differential forms on the
compact Riemann surface Σ under study. Before identifying the center of Jf/ds/
with Ω1, we must take the quotient of Ω1 by the exact differential forms, since exact
forms are equivalent to zero in tf jdstf. Thus, let Ω° be the space of c-number
meromorphic functions on Σ. It is the quotient Ω1/dΩ° which will be the center of

(vii) The o operation on JΓ induces a Lie algebra structure on tf/dstf, and the
center of tf/djtf is Ω\Σ)/dΩ°(Σ).

If ̂  is the quotient of Jf/d^/ by its center, then Jf/ds/ is a central extension of
Φ by Ωl/dΩ°(Σ):

W^O. (140)

A central extension of the Lie algebra of meromorphic vector fields by Ω^/dΩ0 was
formulated in [19]. What we have described here is essentially the physical setting
for that construction, as well as a generalization to the whole operator algebra of a
conformal field theory. If one considers only the two operators 1 and T (the
identity and the energy-momentum tensor), then ^ becomes the Lie algebra of
meromorphic vector fields, and (140) is the extension constructed in [19]. This
example is worked out explicitly in the appendix.

IV. Quantum Field Theory on an Algebraic Curve

A traditional and powerful way to construct a quantum field theory is to find a
Lagrangian and then "quantize." In the case of quantum field theory on a Riemann
surface, this method has two deficiencies. First (unlike the situation for quantum
field theory in higher dimensions), there are many conformal quantum field
theories on Riemann surfaces for which a suitable Lagrangian apparently does not
exist. In fact, among holomorphic quantum field theories on a Riemann surface,
the theory of free fermions is perhaps the only case in which one knows of a really
satisfactory Lagrangian.

Second, it is very tempting to believe that one should learn to formulate
conformal quantum field theory not just on a Riemann surface over the complex
numbers #, but on a curve over an arbitrary ground field fc. While one would wish
to have an analogue of Lagrangians and quantization of Lagrangians in this more
general setting, such notions appear rather distant at present.
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When a Lagrangian is not available, one can attempt to describe quantum field
theory in terms of Ward identities, an approach which in the case of conformal
quantum field theory on Riemann surfaces was shown in [14] to be particularly
powerful. The Ward identity approach is basically concerned with operator valued
residues of operator valued differential forms, whose basic properties were
described in the last section. Ordinary residues of ordinary differential forms make
sense in an algebraic setting. This encourages us to believe that operator valued
residues of operator valued differential forms - and thus the Ward identity
approach to quantum field theory - can make sense over an arbitrary ground field
fc. The purpose of this section is to work this out for some of the simplest conformal
quantum field theories.

We consider first the case of free fermions. We work on a smooth complete
curve X over an algebraically closed ground field k. (For convenience, we take the
characteristic of k not equal to two; otherwise, one must replace Clifford algebras
by quadratic forms.) Let L be the canonical line bundle of X and let L1/2 denote a
chosen square root of L.

The heuristic idea behind the construction has to do with ideas described in the
last section. The fermion field ψ is on "operator-valued section of L1/2." If then / is
a rational section of L1/2, the product wf = fψ is an "operator valued differential
form." We will then define the "operator valued residue" of wf, and require that
"the sum of the operator valued residues is zero." The latter statement was one of
the properties of operator valued differential forms formulated in the last section.
Having already explained the physical ideas in the last section, we will here simply
proceed with the mathematical constructions, presented hopefully in a self-
contained way.

Let Y be the space of rational sections of L1/2. It is an infinite dimensional
vector space over fc. Let Λ Y be the exterior algebra on Y. As a vector space it is

Λ 7 - ι 0 y e Λ 2 y 0 . . . (141)

with Λ f c 7 the kth exterior power. (The symbol "1" stands for a one dimensional
vector space.)

Let us recall the notion of a Clifford algebra. Given a fc vector space V with a
nondegenerate quadratic form ( , ), one defines a Clifford algebra CV
as follows. Elements v, w of V, regarded as elements of Λ V, anticommute,

I; = O. (143)

In the Clifford algebra, (143) is replaced by the Clifford multiplication law

= -2(t;,w)c. (144)

(Here c is the one dimensional center of the Clifford algebra. One may suppress it
and set c = 1 .) Here υ-+ϋ can be regarded as a natural "lift" of Vc Λ V to CV; this lift
does not preserve the Grassmann algebra (143), the correction being the cocycle
which appears on the right-hand side of (144) and gives the Clifford algebra CFas a
deformation of the Grassmann or exterior algebra Λ V.
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Now, on the space Y of rational sections of L1/2, there is no natural quadratic
form, and thus no natural way to make a Clifford algebra. However, let P be a
point in X. For /, g in Y, the product fg is a differential form. Let ResP denote the
operation of taking the residue of a differential form at P. The formula

(/,g)F = Resp(/g) (145)

then defines a quadratic form ( , )P on Y.
In fact, let Yp be the completion of Y at P, or in other words the space of formal

sections of L1/2 defined by a formal power series near P. Upon trivializing L1/2 in a
neighborhood P, an element of YP can be expressed as a formal series

Σ *«*" (146)
n= -N

with z a uniformizer at P and anek. Since 7 has a natural embedding in its
completion YP, the "global exterior algebra" Λ Y has a natural embedding in Λ YP

for each P. Different completions YP and 7Q of 7 for P Φ Q are very different spaces,
since there is no way to reexpress a formal series at P19 as a series at Q. The
quadratic form ( , )P makes sense not just on Y but on its completion YP, since it
makes sense to compute the residue at P of a differential form which is defined just
in a formal power series at P. (For Q Φ P, the quadratic form (, )Q cannot be
defined in YPί since there is no way to reexpand the formal series (146) around Q.)
The Clifford algebra constructed from YP with the quadratic form ( , )P (and c = 1)
will be called CYP.

We next wish to construct a representation of C YP on a k-vector space VP which
in physical terminology is "the space of observables at P." The irreducible
representation of a finite dimensional Clifford algebra is unique. This is not true in
infinite dimensions. To specify a representation of CYP requires a choice of
"polarization" of ( , )P - that is, a choice of a maximal subspace YP

+ of YP such that
(/5g)p = 0 for /,ge YP

+. For YP

+ we choose the space of sections of L1/2 (or rather,
formal series (146)) which are regular at P. Up to isomorphism, there is a unique
irreducible representation VP of CYP which contains a vector 1P annihilated by YP

+

(or rather the lift of YP

+ to the Clifford algebra).
A standard description of VP would be the following. Pick a complement YP~ to

YP+ in YP. A standard and convenient way to pick such a complement is to trivialize
L1/2 in a neighborhood of P, pick a uniformizer z at P, and then take YP~ to consist

N

of "polar" series £ anz~n Then as a vector space one defines VP by the formula
n= I

VP=AYP- = 1P®YP-ΦA2YP-®.... (147)

Thus, Vp is the sum of exterior powers of YP~. [1P, whose analogue in Eq. (141) was
simply called "1," denotes a one dimensional vector space with basis element 1P.]
Thus, Vp has a basis consisting of elements of the form

f = / l Λ / 2 Λ . . . Λ / Λ (148)

19 Which is not necessarily a convergent series, even if we are working over ̂  where there would
be a notion of convergence
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with fmeYP~ and fc = 0,l,2,.... For feYP, let f = f++f~, with f±eYp

±. The
action of/, or rather its lift / to CYP, on the vector v of (148) is then defined to be

= - Λi> (-lΓ(ResP(/+/J) / ι Λ . . . Λ / m Λ . . . Λ / k . (149)

(On the right the symbol /m means that /m is to be omitted.) This formula gives a
representation of CYP which up to isomorphism is independent of the choice of YP~.
While (149) may look cumbersome, it is actually the perfectly standard formula for
the action of the Clifford algebra on a fermion Fock space.

In the preceding, VP is what usually would be called "the space of quantum field
theory observables at P." We now wish to consider the space of "all observables on

N

XΓ In quantum field theory, an observable is usually a finite product f] 0{(P^ of
i = l

observables at points Pl? or alternatively a product f] 0(P) which runs over all
p

PeX with the restriction that 0(P}=\ for all but finitely many P. Thus, the
appropriate object is the restricted or adelic product of the FP,

V=UVP. (150)
p

An element of Fis an element ®PvP of the ordinary tensor product ® PVP such that
vp = lp for all but finitely many P. (The bizarre-looking symbol U means nothing
more nor less than a "restricted" tensor product, restricted by the condition just
stated that almost all vp equal \P. We will often later use this symbol LJ to denote
similar although slightly different restricted infinite products.) The special vector
\ = ®P\P is called the "vacuum" in physical discussions. A restricted product
V= LJ FP of local vector spaces FP, one for each point P on a curve, is a standard

p
notion in the theory of automorphic representations [7], and one of our main
points in this section and the next is to translate some physical concepts into the
terminology of automorphic representation theory.

Each Clifford algebra CYP acts on Fin a natural way. We just let CYP act on the
Vp component in V=HVQ according to the product law (149), while leaving

Q
invariant the VQ components of Q Φ P. Thus, if υ e V is υ = ® QυQ, then for yp e C YP,
we set

yP'V=®v'Q9 (151)
Q

where v'Q — VQ for Q Φ P and v'P = yp - vp.
We consider an element yp of CYP to be "regular at P" if it is constructed as in

(148) from a wedge product of sections of L1/2 that are regular at P. We wish to
define a sort of adelic product

CY=UCYP (152)
p

of the individual Clifford algebras CYP. The adelic product U CYP is defined as
p

follows. An element of C Y is defined to be a formal sum ®PyP, with yp in CYP for all
P, and yp regular at P for all but finitely many P. Also, in forming the restricted
product of the CYP, we identify their central elements, so that CY has only a one
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dimensional center generated by an object c20. Likewise, we define the restricted
product [J A Yp to consist of objects ®PyP with each ype A YP and almost all ypp
regular at P.

The motivation for the restriction in the definition of the global algebra CY is
to ensure that CY can act on the global space of observables V in a natural way.
The point is that if yp is regular at P, it is a sum of products of annihilation
operators [since in (149) / behaves as an annihilation operator if it is regular at P,
that is if /~ =0]. Hence, if yp is regular at P, it annihilates the vacuum vector 1P.
This permits us to define an action of C Y on V as follows. For y = ®PyPε CY and
υ = ®PvP e V, we define

with yp v as already defined in Eq. (151). The definition makes sense because
yp v = 0 for all but finitely many P (since vp=ίp for all but finitely many P, and yp

is regular at P for all but finitely many P).
Recall now that each CYP is a deformation of Λ YP. For each P, Yc YPC Λ YP

has a natural lift to CYP. This lifting does not preserve the exterior algebra.
Rather, for /, g e Y9 the lifts /P, gp do not anticommute, but obey the Clifford
relations

/Pgp + gp/P=-2cResP(/g). (155)

To recapitulate what we have done so far, we began with a Grassmann algebra
Λ Y. Clifford algebras are such a natural generalization of Grassman algebras that
we were tempted to try to find a Grassmann algebras as a deformation of Λ Y.
Doing so requires a quadratic form on Y, and there is no natural global choice.
However, picking P e X, there is a natural "local" quadratic form ( , )P at P, and
using it we constructed a "local deformation of Λ 7 at P," namely CYP. Since
we wish to work globally, we then combine the CYP into a global object CY. This
object is significant because on the one hand it is the Clifford algebra most
naturally associated with the global curve X, and on the other hand its irreducible
Clifford module V is "the space of observables of the free fermion quantum field
theory."

The next key element is the following. Λ Y has a natural embedding in each of
its completions Λ YP. Therefore, given /e Λ Y, we can naturally regard / as an
element of Λ YP for any P. Putting these together, we get the "diagonal embedding"
of Λ 7 in U Λ Yp,

J : Λ Y - > U Λ Y P , (157)
P

defined as follows. Given /e / \ Y , A ( f ) e \ l / \ YP is the object ΘP/P, where fp = f for
p

all P. This makes sense because any fe Λ Y is regular at P for all but finitely many
P. Since Y is embedded in Λ Y, this gives us in particular a diagonal embedding of
Y in LI A YP.

} The latter remark is of course unnecessary if the reader has mentally set c = 1 from the beginning
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We want to interpret global rational sections of L1/2, that is, elements of Y, as
operators on the space V of observables. To this end, the diagonal embedding (157)
of Yc Λ Γin [] Λ Yp is not good enough. For it is the Clifford algebra CY, not the

p
exterior algebra ]J Λ YP that has a natural action on V. We must lift Y from Λ Y
toCY. p

We already discussed in (155) a natural lift /->/P of Yc Λ Y to CYP. Adding
these componentwise, we get a natural lift

/->/=Σ/pp

of Y to CX We now see for /,ge 7 by summing (155) over P that

O. (159)
p

Here we have used the fact that the sum of the residues of a differential form is zero.
Equation (159) is one of the key equations in our present discussion. It means that
the global exterior algebra Λ Y with which we began can be embedded in the adelic
Clifford algebra CY while preserving the commutation relations. [It cannot be
embedded in any (CY)P because of the Clifford relations.

More generally, let Λ Y+ = Y® Λ 2Y0... be the sum of the positive exterior
powers of Y Since Λ Y+ is generated as an algebra by Y9 the embedding Y-+CY
extends to an embedding of Λ 7+ in CY ~ which preserves the exterior
multiplication in Λ Y+ in view of (159). For/e Λ Y+ we denote the lift to CYasf.

We now wish to describe the "expectation value of a product of observables."
This is a linear functional on V, which we will call j : F->fc. The functional is
required to obey

f / ι> = 0 (160)

for allveV and fe Y. Of course, since Λ Y+ is generated by Y as an algebra, this is
the same as saying

S$ v = Q (161)

for all ye Λ 7 + , VE V. Equation (160) or (161) is the "Ward identity of free fermion
field theory" and is analogous to the statement that the sum of the residues of a
differential form is zero. The rationale for such formulas in quantum field theory
was discussed in Sect. (3).

It is important to observe that the possibility of imposing the Ward identities
(160) depends on the validity of (159). If we had y, ze Y with {j),z} nonzero, and
equal, say to a non-zero element α of the ground field /c, then (160) would imply

0=J{ j>,f} ι; = α J t ; , (162)

and therefore the operation J would have to vanish. The global formula (159) is
necessary for the Ward identities to make sense.21

21 It may be that in trying to go "off shell" so as to formulate string theory geometrically, instead of
considering non-conformally invariant field theories one should consider conformally invariant
structures that are not field theories because some central extension does not split globally
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To understand the content of (160) or (161), a key fact is the following. Let
( Λ Y + )V be the subspace of V consisting of expressions Σ JV^ή wn"h ViE Λ ^ + >
vt e K Then the quotient space V/( Λ Y+) V is one dimensional. As a result, a linear
map J: F->λ; obeying (160) exists and is unique up to multiplication by a scalar.

In showing that V / ( A Y + ) V is one dimensional,22 we will for simplicity
(though it is not necessary) assume that the chosen square root L1/2 of L, which we
have kept fixed in this discussion, has no global sections, i.e., ff°(L) = 0.

Consider in VP a general monomial w = /i Λ /2 Λ ... Λ fk. Each fr has a pole at P,
say or order nr, because of the way VP is constructed [recall Eq. (147)]. We define an
integer |vv| by writing |w| = Σ nr. A general vector in VP is u = Zα^- with αf e /c and wt

r

a monomial. We say u is of order iM^maxlvvJ. If veV is V=®PVP, we write
M = Σ M Thus |u| = 0 if and only if ι;= ®P1P is the vacuum vector. Otherwise

p
\v\ > 0. For v e V we write v for the image of V in V/( Λ 7+) K We will show that if
|ι;| > 0, there isvΈV with |ι/ < |ι;| and v' = v. Applied repeatedly, this will show that
for every veV there is α e f c with v = a T, 1 e F being the "vacuum" 1 = (g)Plp.

Given i; with |ι?| > 0, to find υf with t; = i;' and |ι/| < |u| we proceed as follows. Let
t; = ®pυp. It clearly suffices to consider the case with each vp a monomial, since any
v is a linear combination of these. Pick P with |ϋp|>0, say vp — f± A /2... Λ/ k .
Define w = ®QuQ, where WQ = ι;Q for Q + P and up = /2 Λ ... Λ /fc. Let g be a global
rational section of L1/2 such that g is regular except at P and g — f ± is regular at P.
Such a g exists by the Riemann-Roch theorem [for H°(L1/2) = 0 as we assume].
Then v' = v~gu has the required properties |ι/| < |u| and ϋ' = v. The reason for this is
as follows: in acting on u, g can behave as a creation operator only on the P
component, this being possible because of the pole in g at P. Acting at P as a
creation operator, g turns u into v. Otherwise, g acts as an annihilation operator,
lowering |w|, which is already less than \v\. Hence \v — g u\<\v\.

Repeating this process eventually gives an expression v = α 1 -f y -1 with
y E Λ Y + . This shows that V/( Λ Y+) V is at most one dimensional. To show that
V/( Λ Y+) V is in fact one dimensional, we must show that ϊ Φ 0, i. e. that there is no
relation 1 = Σyi - v Γ Since each vt can (as we have just shown) be written in the form
1;. = ̂ - l+j) f 1, it is enough to show that a relation /M=y l, with βεk,
y e ( Λ 7)+, implies β = y = 0. This is straightforwardly proved somewhat along the
lines of the above. For /e Y, let |/| be the number of poles of / counted by
multiplicity. If α e ( Λ Y)+ can be written as fγ Λ /2 Λ ... Λ fk we would like to define
|α| as Σ\ft\. We must be careful here since the representation α = /i Λ ... Λ fk, if it
exists, is not unique [e.g. /i Λ /2 = /i Λ (/2 —/ι)] To avoid such ambiguity, we pick
a basis for Y For each P and each n = 1,2,3..., let fp „ be an element of Y (a section
of L1/2) regular except at P, and with a pole precisely of order n at P. From the
Riemann-Roch theorem, it follows that the /P>II exist and are a basis for Y. Then we
consider only monomials of the form y = f{ Λ ... Λ fk with each /f one of the /P>II.
We define |y| = Γ |/)|. It follows immediately from the definitions that the vector j> 1

22 This statement is no more and no less than the statement that the Ward identities of fermion free
field theory determine the correlation functions uniquely, and what follows is an essentially
standard argument expressed so as to make sense over any ground field
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has |j> l | = |.y|5 so a nontrivial representation β \=y \ is impossible. More
generally, if y = Σoctyb with α f 6 k and yt a monomial of the form just considered, let
|y| = max 1)^1. Then again |j) l| = |j|, completing the proof that T Φ O and thus that
the expectation value J: F->/c obeying (160) exists and is unique up to normali-
zation. For v E V, j v can be identified as v, the image of v in the one dimensional
space V/(ΛY)+V.

Since this description of free fermions may appear exotic, we will pause briefly
to describe how to recover standard formulas. For each P, let fp be a section of L1/2

regular except for a single pole at P. By the Riemann-Roch theorem, fp exists and is
unique up to a scalar multiple. Given n points P1 . . .Pn, let vPί Pn e V be the vector
v = (x) Vp, where vp = fPiίP is one of the Pb and otherwise VP = \P. What in quantum
field theory is usually called <ιp(Pι) . . . ψ(Pn)y (m a theory of one component chiral
fermions) is in our terminology here \vPl Pn or simply vPl Pn. To see this
explicitly for n = 2, we compute vPιP2. Let w=®w p with w p =l for PΦP2

Wp2 = /p2. Then one computes

/Plw - vPίp2 - 2c - ReSp2/Pl/p2 . (163)

Hence ϋPlp2=ϊ 2cReSp2(/Pl/p2). Because of the dependence on the choice of/Pl and
/P2, Resp2(/Pl/P2) is really a section of L1/2(χ)L1/2 over Σ x Σ rather than a function.
Evidently, this section has a single pole at Pl=P2 and is otherwise regular; this is
the defining property of the Dirac propagator G(P1?P2), as discussed in Sect. 1.
Thus we have retrieved the Dirac propagator from the adelic description of free
fermion quantum field theory.

This completes our discussion of free fermions on an algebraic curve. We would
now like to discuss what one might call "current algebra on an algebraic curve."
The discussion will be quite brief since it is analogous to what we have just
described.

Let ̂  be a finite dimensional simple Lie algebra over k with a Killing form
< , >. Let ̂  be the Lie algebra of rational maps oϊX into 6U. A cocycle for a central
extension of ̂  by k would be a k valued skew form φ(λΐ,λ2) on ̂  with

Φ(λl9 iλ29 λ,-]) + φ(λ29 μ3, λj) + φ(λ3, μ l s λ2-]) =o. (i 64)
This equation is the appropriate one to permit the existence of a central extension
of Lie algebras

0-»fc-^-^-^0 (165)

such that for a certain lift λ-+% of ̂  to ,̂ the commutation relations are

To be more precise, (164) is the condition under which (166) obeys the Jacobi
identity.

There is no natural global choice of a cocycle obeying (164). But note that for
λiy λ2 e ̂ , </ l 5 dλ2y is a differential form. Upon picking some point P e X, we can
use the residue at P of this differential form to define a cocycle:

ι,^2>. (167)
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This makes sense on the completion ̂ P of ̂  at P, and is easily seen (using the fact
that the residues of an exact differential form are zero) to obey (164). Thus, for each
P, we obtain a central extension

0->fc->^p->0P->0. (168)

The importance of the completion ^->^P is that the ^> have a simple and
general form. If z is a local uniformizer at P and k((z)) consists of formal series

00

£ αnz", αnefc, then ^P^^(x)fc((z)). In this, the details of the particular algebraic
n= -N

curve are irrelevant locally at P. Thus, a basis for ̂ P consists of expressions α(x)z",
with n an integer and α e <%. In this basis, ̂ P may be described by saying that for
α, /? e ̂  and n, m e Z,

[_a®zn,β®zml = foβ-]®zn + m + ncδn + m^βy, (169)

where δk = 1 for k = 0 and zero otherwise, and c is a central element. Equation (1 69)
is simply an affϊne Lie algebra over k.

So far, we have only constructed what one might regard as a local central
extension of <8 at P. To work globally, we wish to combine these. Thus, we form the
adelic products

$=\1$P. (170)
P

An element of ̂  is a linear combination of objects ®PλP, where λp is in ΦP for all P,
and λp is regular at P for all but finitely many P. Evidently ̂  is a central extension
of the analogous adelic product [] ̂ P. We identify the central elements c in the

p
various ^P so that the adelic extension is

0-»fc->^->lI#p-»0. (171)
p

To study global properties of the algebraic curve X, it is important to consider
the natural diagonal embedding

^-LJ^P, (172)
p

which maps λ e ̂ -> ®PλP, with λp = λ for all P. We map ̂  into ̂  by embedding in
LI ̂ P as in (172) and then lifting to ̂ . For λ e ̂ , let I be the corresponding lift of λ
P

to .̂ The commutation relations of the I are simply those of ,̂ since

where we have again used the fact that the sum of the residues of a differential form
is zero. Equation (173) shows that the central extension (171) splits (that is,
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becomes trivial) when restricted to the "global Lie algebra" ,̂ or more exactly
when restricted to the image of ̂  under the natural diagonal map to $. This is
quite analogous to the behavior we found in discussing free fermions.

We now must consider representation theory of these Lie algebras. An
irreducible representation WP oΐ^P is said to be a highest weight representation if it
contains a vector v with

(a®zn) v = Q, for n>0 and αe^. (174)

We are interested in representations such that the space of vectors with that
property is finite dimensional. WP is said to be unramified if there is a vector 1P

(necessarily unique up to multiplication by a scalar) such that

(z"(x)α) lp = 0 for n^O and αe^. (175)

An automorphic representation of ^ is a family of highest weight irreducible
representations {WP\PeX} such that WP is unramified for all but finitely many P.
One then forms the adelic product

W=Y[WP (176)
p

generated by sums 0PwP with vvp e WP for all P and wp = 1P for all but finitely many
P. In physical terminology, Wis the space of observables in a quantum field theory.
Points P such that WP is ramified are points at which there is an insertion of a "spin
operator"23 or a non-abelian generalization thereof.

W in this situation automatically furnishes a representation of the adelic Lie
algebra Φ. Thus for λp e ̂ P and w = ®PwP, we simply let λp act on the P component
of w while leaving the others invariant; thus λp w = ®Qwf

Q with w'Q = WQ for Q Φ P
and wp = λp - wp. For λ = ®PλP e @, we define λ w=ΣλP-w. This makes sense
since λp w = 0 for all but finitely many P. p

Next, as in the case of free fermions, we wish to define the quantum field theory
expectation values. This means that we wish to define a linear functional J: W-+k
subject to certain conditions. For Λ,e^ (embedded in ^ by the diagonal
embedding) and w e W, one requires

f y t w = 0. (177)

This corresponds again to the Ward identities of "current algebra on a Riemann
surface." As in our discussion of free fermions, the linear functionals j which obey
(177) form a vector space which can be regarded as the dual space of the quotient
W/&W. It seems (though I will not attempt to prove it here) that the latter quotient
always has a dimension that is positive but typically greater than one.24 Therefore,

23 This concept originally appeared in the theory of the Ising model and lately has become
important in string theory [15]
24 An upper bound on the dimension of W/ΉWis g diπΛ, the product of the genus g of X with
the dimension of the finite dimensional Lie algebra ^i. This upper bound, which comes by using
the Riemann-Roch theorem to count meromorphic functions with various poles, is exact if the
representations WP are Verma modules, but in the more interesting case in which these are
degenerate representations of the &Pί the dimension of W/^W is smaller
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maps J : W-+k obeying (177) exist but are not uniquely determined, even up to
multiplication by a scalar. In a particular physical context, one would usually have
additional requirements beyond (177) that would enter in determining the map J.

It is clear that the two examples of quantum field theory that we have discussed
- namely free fermions, and current algebra - are closely analogous. Actually, the
former can be used to provide an example of the latter, in the following way.

Let us first recall the spinor representation of the affine Lie algebra S0(n) [16].
Let R be an ^-dimensional vector space, with a basis eb i = 1 . . . n and a non-
degenerate quadratic form <ei|ej.> = 5u. Form a Clifford algebra R by

{e,e;H-2<V (178)

The operators

Jij=Lei9e:]/4 (179)

obey the commutation relations of S0(n). They generate, of course, the spinor
representation of S0(n). Let % be the Lie algebra spanned by the Jtj.

The analogous spinor representation of Sf?(n) is constructed from an infinite
dimensional Clifford algebra with basis e", i=l...n and i eZ + ̂  25. The anti-
commutation relations are

{e?,e$=-2δijδ
v+s. (180)

We represent this Clifford algebra in a space & containing a highest weight vector
|Ω> with eV|Ω> = 0, for ι?>0; this representation is unique up to isomorphism.

Introducing a formal variable z, the affine Lie algebra ^ ~ S5"(n) is spanned as a
vector space by ^φfcfoz"1] plus a central element (with ^U the Lie algebra of
S0(n)). To represent SO(n) in the space J1, let Jί7 ®z" be represented by

This can be seen [16] to obey the SO(tt) Lie algebra, with a central term.
To make contact with our discussion of free fermions, we must systematically

repeat our earlier discussion with L1/2 replaced by L1/2(x)^, R an n-dimensional
vector space with basis ei and quadratic form (eί,ejy = δij

26 Thus we replace
Y= {rational sections of L1/2} by Z = (rational sections of Ll/2®R] and repeat the
previous discussion. Completing Z at Pe^, and calling the completion ZP, we
form the exterior algebra Λ ZP as before. We then define a Clifford algebra CZP as
follows. For sections f®et and g®Cj of L1/2®R, we postulate the Clifford
multiplication law

(182)

25 This will give an unramified representation. Choosing υ e Z gives a ramified representation. The

\ here has the same origin it did in Eq. (3) of section I
26 More generally, R may be an N-dimensional vector bundle with a quadratic pairing R(S)R^OX.

Since we will be exhibiting a GL(N, F) action (F = function field of X\ and all vector bundles are

equivalent over F, we content ourselves with the case of R trivial
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Trivializing L1/2 in a neighborhood of P and choosing a uniformizer z at P, a
oo

typical element of ZF is £ απz". Thus (182) is equivalent to the statement that
n= -N

{zn®ei,z
m®ej}=-2δίjRQSP(zn + mdz) = -2δijδ

m + n+1. (183)

This coincides with (180) under e' <-*zv~ll2®ei (for u e z + i). So the irreducible
module Fp for the Clifford algebra CZP is also a highest weight module27 for the
affine Lie algebra &P~SO(ri), with

J?/-»i Σ IX® e/, zB~r~*®£;] . (184)
r

The adelic space V— H VP, which we originally introduced as an irreducible
p

module for the adelic Clifford algebra CZ = [] CZP thus also furnishes an
p

automorphic representation of the adelic Lie algebra ^ = [J @P. We therefore have
p

two notions of what we might require for the expectation value J: V-*k. It may be
compatible with the Clifford algebra in the sense of (160) or with the Lie algebra in
the sense of (177). These two notions are consistent, however (this is well known in
a different language in the physics literature), essentially because the global Lie
algebra ^C^ acts as an algebra of automorphisms of the global exterior algebra
(ΛZ) + CCZ. The unique J:F-»fc compatible with the Clifford algebra is also
compatible with the Lie algebra.

The final subject that we will discuss here is one that is essential for making
closer contact with the modern theory of automorphic forms. In addition to the Lie
algebra of rational maps oϊX into the Lie algebra oΐSO(n), there is also a group G of
rational maps of X into the group S0(n, k) (G consists of orthogonal matrices
whose matrix elements are rational functions). Clearly G and ̂  are closely related,
but ̂  is not the Lie algebra of G. (The exponential of a rational function in ̂  would
not be rational; G has no Lie algebra and ̂  has no Lie group.) One precise relation
is that G acts as a group of automorphisms of ̂  for g e G and λe&,g maps λ to
g~lλg, preserving the ̂  Lie algebra. It is natural to ask whether the ̂  (and @)
module V admits a G action compatible in this sense with the action of λ.

This question is mostly a local question, and as such the answer is known. For
P e X, let Gp be the completion of G at P. Rather like the Lie algebra ^P, the group
Gp has a central extension by the multiplicative group fc* of k:

0-+fc*-+Gp-+Gp-+0. (185)

What is more, the highest weight modules VP for the affine Lie algebra also admit a
group action, with the Lie algebra and and group actions being compatible under
conjugation λ-+g~ίλg [12,17]. To be very explicit, this compatibility of the Lie
algebra and the group means that if λe&P and ge GP are represented in VP by
operators R(λ) and S(g), respectively, then

(186)

' With two irreducible components
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In the case of the spinor representation of §0(n) the group action is also compatible
in the same sense with the action of the Clifford algebra CZP. This means that for
/e Λ Zp, with / denoting the lift to CZP, we have

Equations (186) and (187) are just the assertions that the S(g) transform the Lie
algebra ^ and the Clifford algebras CZP as one would expect.

For each P e X, let KP by the subgroup of GP consisting of rational maps of X
to S0(ή) (or whatever finite dimensional algebraic group we started with) that are
regular at P. (If k is a finite field, KP is the "maximal compact subgroup" of GP.) In
case Vp is unramified, the vacuum vector 1P is invariant under KPCGP.

These are the standard local facts. Passing now to the global situation, form the
adelic product G= ]J GP. G consists of products ®PgP with gPeGP for all P, and

p
gPeKP for all but finitely many P. G acts irreducibly on V= [] VP, the action of

p
®Pgp e G on ®QvQ e V being ®PgP ® QvQ = ®P(gP vp). (This definition is compat-
ible with the "restricted product" definition of K because vp = ίp for almost all P,
gp e Kp for almost all P. and gp 1P = 1P if gp e KP.)

Of course, G is a central extension of LI GP:
p

ΓJ y j^* i/^ T T (^ v Γ ) f 1 R&l

P

We have also a diagonal embedding A : G-> U GP. It is natural to ask whether (as in
p

the Lie algebra case) this can be lifted to A': G->G:

Δ'Ί G

Of course, we can always define a map A' making (189) commute. The issue is
whether A' can be chosen to be a group homomorphism or in other words whether
the central extension (188) splits when restricted to Gc [JGp.

p
To show that it does split, pick first any lifting A' of the diagonal embedding of

G in LfGp For geG, denote Δ'(g) as g. In general g/ίφg/i; rather
p

gfι = a(g,h}gh, (190)

where α(g, h) is a cocycle. One wishes to know whether this cocycle splits in the
sense that α(g,h) = a(g)a(h)a~ί(gh) for some a(g). If so, redefining g^g = a~ί(g)g
will eliminate the cocycle from (190).

In the case of the spinor representation of S0(n\ we can easily prove the
existence of such a splitting by using one dimensionality of V/( Λ Z)+ V and the
compatibility of the group with the Clifford algebra action in the sense of Eq. (187).
The latter implies that for geG, one has g~1(^Z) + g = (/\Z} +. As a result, the
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action of g on V induces an action on the space V/( Λ Z)+ V. Since that space is one
dimensional, generated by the class T of the vacuum vector, it must be that for any
g e G, gϊ is a multiple of T, say

gk\=a(gh)i. (191)

From the first two equations in (191), we see that gKϊ = a(g)a(h)ϊ. Comparing to
the last equation in (191) and to (190) we see a(g,h) = a(g)a(h)a~1(gh). This is the
desired result, showing that the central extension (188) splits when restricted to the
diagonal.

This splitting of the central extension when restricted to the "global group,"
that is to G C G, makes it possible to impose Ward identities for the group action.
Ward identities for group action are much more obvious intuitively than Ward
identities for exterior algebra or Lie algebra actions as discussed earlier. One
simply requires that the correlation functions should be G-invariant; in other
words that for g 6 G and v e V, one requires

Sέ υ=Sυ. (192)

This is possible only because of the splitting of the central extension; if we had g K
= α(g, h) gh with α(g, h) φ 1, it would be impossible for correlation functions to be
simultaneously invariant under g, h, and gh.

I will conclude this section by briefly discussing the general context in which
the discussion can be carried out. Let W be an 0(N) bundle, that is a bundle
endowed with a quadratic form ( , ): W®W-+0X (Ox a trivial line bundle).
Consider a fermion field Ψ which is a section of W®L1/2. The Lagrangian is

J27- J <<F,W>. (193)
x

Let F be the field of rational functions on X, and let U be the group 0(N, /c), i.e.,
orthogonal N x N matrices with entries in k. If W is trivial, let G = 0(N, F) be the
group oϊN xN orthogonal matrices with entries in F; and more generally, let G be
the group of rational gauge transformations of the bundle W which preserve the
quadratic form ( , ). For g e G, consider the transformation

Ψ^gΨ. (194)

Formally, this is a symmetry of (193), if we ignore the fact that g might have poles or
zeros at isolated points Pt e X and so is not in general a well defined transformation
of the field variables. In Sect. (2) we analyzed this problem rather explicitly for the
case N = 2, and found that although not really a symmetry of the Lagrangian, (194)



584 E. Witten

does lead to a well-defined transformation law of observables.28 The transfor-
mation by g behaves as a "creation operator" at points Pt where g has poles. The
resulting statements were the multiplicative Ward identities of Sect. 2.

The global splitting of (189) just described means that we have also for N>2 a
rule for the transformation law of determinants and correlation functions under
the group G. This transformation law is precisely a non-abelian generalization of
the multiplicative Ward identities of Sect. 2 - though it would be hard to write
them so explicitly as we did in the abelian case.

In fact, we learned in Sect. 2 that the multiplicative Ward identities lead
naturally to an understanding of free fermions that are sections of L1/2(χ)£ (with E
being some line bundle) in terms of free fermions that are sections of L1/2. It is
logical to ask whether likewise in the non-abelian case the multiplicative Ward
identities, or in other words the G action on the space V— \\ VP of observables,

p
lead to a relation between free fermion theories constructed using different
bundles. It is easy to see that this is so. The key point is that every vector bundle W
is equivalent if one is only interested in rational functions and one does not care
whether one's rational functions have zeros or poles. Very explicitly, let Ψl be the
components of Ψ, and let gljj = 1... N be N rational sections of W. (In other words,
for each fixed j, the N component object g^ , ΐ = 1... N, is a rational section of W.} We
then make the change of variables

Ψ^έjψJ. (195)

The Ψj are then sections of an N dimensional trivial bundle W, which will be
endowed with some quadratic form which one finds by transforming the original
quadratic form on W by (195). Thus, once one knows a transformation law for
correlation functions under a rational change of variables, it is immediate that
determinants and correlation functions for any bundle can be computed in terms
of those for the trivial bundle with a suitable quadratic form.

While the choice of bundle W is irrelevant in this sense, this is far from true for
the choice of quadratic form ( ,). If we trivialize Wby a rational change of variable,
W is just 0X®R, with RanN dimensional vector space over fc; and Γ(W), the space
of rational sections of W, is just an N dimensional vector space R over the field F of
rational functions. Likewise Γ(0X\ the space of rational sections of Ox, is a one
dimensional vector space 0 over F. If / and g are rational sections of W, a
quadratic form ( , )on FFgivesamap/,g^(/,g)ofΓ(W/)(g)Γ(P7)^Γ(Ox). This map
is just a quadratic form ( , )F on the F-vector space R, i.e. a symmetric F-linear map
R®R-+0, or more explicitly a symmetric N x N matrix M with entries in F. While
all bundles are equivalent over F, it is not so for quadratic forms. The quadratic
form ( , ) has a discriminant S = detM and is nontrivial if S is not a square in F.
(Depending on fe, ( , ) may have other invariants as well.)

The essential generalization of the theory of free fermions as described above is
thus that one can consider a nontrivial quadratic form ( , ). If, say, Λ / " = l , a

28 In Sect. (2), we studied G— (7(1), and considered zeros and poles of g separately; for G = 0(2),
the determinant of every g e G is 1 so the zeros and poles occur at the same points Pt (in different
matrix elements of G). The difference is that what in Sect. (2) were called ψ and ψ are here being
combined in a column vector Ψ
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quadratic form is just a rational function S; the Lagrangian is just 5£ = J S~ lψDψ
and the canonical commutation relations (145) (in the space VP of observables at P)
are replaced by

(/,g)P=-2Resp(S/g). (196)

If S is a square in the completion FP of F at P, this can be absorbed in f-*S~1/2f,
g—> S~1/2g. If, however, Shas a zero of odd order at P, say S = zn with rc odd andz a
local uniformizer at P, then the formula (/, g)P = — 2 ResP(z"/g) is for definitely not
equivalent to (145). If say, n= —1, then (196) becomes

{zn,zm}=-2δm + n, (197)

and this shows that at P one is working in what physically would be called the
Ramond sector. (The Neveu-Schwarz sector is {zn, zm} = — 2δm+n +1. Here m and n
are integers.) In mathematical terminology, what happens for odd n is that the
local module VP is "ramified" in the language of the theory of automorphic forms.
Again in physical terminology, recalling that VP is the space of observables at P, we
observe that the ramification points are points with insertion of a "spin operator."

Though I will not try to do so here, it is a natural guess that if X is a curve over a
finite field /c, then the quadratic reciprocity law for the quadratic extension field
F[y\l(y2 — f\ witn /eis should have a proof by studying free fermions with
discriminant S = f.Ύo prove higher order reciprocity laws (and conceivably non-
abelian ones), one must probably study other quantum field theories on X.

V. Back to Grassmannians

In Sects. I and II, we developed certain aspects of the relation of quantum field
theory with the infinite Grassmannians studied in [1]. In Sect. Ill, we formulated
the simplest quantum field theories in an algebraic language, closely related in fact
to the modern theory of automorphic forms. In this section, we will attempt to
discuss the relation between these subjects.

Let F be the field of global meromorphic functions on Σ. For Pel1, let FP

consist of functions meromorphic in a neighborhood of P,29 and let KP be the
subring of FP consisting of functions regular at P. Let GL(N, F) be the group of
invertible N xN matrices with entries in F. Likewise, let GL(N, FP) and GL(N, KP)
be the group of invertible N x N matrices with values in FP or KP. Thus KP, FcFP

and GL(N9KP\ GL(N9F)cGL(N,FP). Finally, define the adelic ring A=UFPto
p

consist of products ]J/P, with fp e FP for all P and all but finitely many jp e KP.
p

There is a diagonal embedding F-+A given by /-> \\fp with fp = f for all P; this is
p

allowed since each feF has only finitely many poles. Let GL(N,A) consist of
invertible N x N matrices with entries in A. The embedding of F in A gives an
embedding of GL(JV,F) in GL(N9A).

29 To work over an arbitrary ground field /c, one must take FP to consist of formal power series
around P, i.e., the completion at P. In this section, for brevity, we will permit ourselves where
convenient to assume that the ground field is the field of complex numbers
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We work on a Riemann surface Σ (over C) with the GL(JV) invariant theory

^=l-\{piDιpi. (198)

Here ιpb i— 1...N are N sections of L1/2, transforming under GL(N) as ψ^g'^ψ
(the use of g ~ 1 rather than g will standardize later formulas), while ψ\i=l...N are
N sections of L1/2, transforming under GL(N) as ψ-+gτψ. [The theory (198) really
has an O(2N) symmetry, but considering only the GL(N) subgroup will be
adequate for illustrative purposes and simpler. We could more generally regard ψ,
ψ as sections of L1/2(x) W, L1/2(x) ΐ/F with W an arbitrary rank N vector bundle and
Wits dual. Because of the GL(N, F) action proved at the end of the last section and
the fact that every vector bundle is trivial if one works with meromorphic rather
than regular sections, this generalization is not too essential; the dependence on W
is really implicit in the GL(N, F) action.]

Suppose that we delete a point P from Σ. We then need boundary conditions on
the ψi (and dual boundary conditions, which we will not discuss explicitly, on the
ψj) near P. The standard boundary conditions are to require at each P

f l V i l 2 < o o (199)
D

with D a small disc around P. The theory with these boundary conditions is
equivalent to the theory with P not deleted. More generally, we can take

f |g-V!2«x) (200)
D

for some g e GL(N, KP). (D is chosen, depending on g, to contain no singularities of
g except perhaps at P.) The boundary condition (199) is equivalent to (200) if and
only if g is regular at P, i.e. if and only if g<EGL(N,KP). More generally, if
g, g' e GL(N, FP\ the use of g or g' in (200) gives equivalent conditions on ψ if and
only if g = g'h with h regular at P, i.e. hεGL(N,FP). Thus, the space of boundary
conditions that we can obtain in this way is isomorphic to the quotient space
GL(N9Fp)/GL(N,KP).

This quotient space, which we will call GrP, does not coincide with the
Grassmannian as studied in Sect. I, but is closely related. In fact GrP corresponds
to the subspace of the Grassmannian of Sect. I that Segal and Wilson call Gr(n\
Thus, we can immediately restrict the construction of the DET bundle reviewed in
Sect. I to give a line bundle over Grp which we will call DETP. What is more,
according to our discussion in Sect. 1, the space VP of holomorphic sections of the
dual bundle DETJ over Grp is isomorphic to the Hubert space of the quantum field
theory (198) or in other words to the space of observables that can be inserted at P.
We recall that there is a particularly natural "vacuum" section of Grp which we will
call lp.

Now we wish to delete not just a single point P but an arbitrary finite collection
of points P! ...P,,. A uniform way to describe the resulting freedom in choice of
boundary conditions is to say that we pick for each P e Σ a point λp e GrP, with the
proviso that for all but finitely many P, λp is the standard point HP( + } in Grp,
corresponding to (199). Thus, an allowed boundary condition is a point in

Gϊ= [] GrP = U GL(N, FP)/GL(N, KP). (201)
p P
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The symbol ]J Grp simply refers to products f] λp with almost all λp equal to
p P _

HP( + y Over Gr, we define the line bundle DET=(χ)PDETP. Gr is a union of

subspaces GrPl pn= Π GrPι f] HQ(+}, and a section of DET is consi-
ί=l l Qφ(Pί...Pn)

dered holomorphic if it is holomorphic on each GrPι Pn.
The group GL(N, FP) does not act on DETP, but only a central extension of it;

and likewise, it is a certain central extension of GL(N,A) that acts on DET.
However, if GL(N,F) is embedded in GL(N,A) by the diagonal embedding

» Π £P with gP = g for all P\ then the central extension of GL(N,A) becomes

trivial when restricted to GL(N, F), as we saw at the end of the last section. This
means that upon dividing Gr by GL(iV, F\ the DET line bundle descends to a line
bundle on the quotient. Explicitly, the quotient of Gr by GL(JV, F) is the double
coset space

Jt = GL(7V, F)\GL(N, A) /[] GL(7V, KP) . (202)
p

An element of Jί is an element LJ gp 6 GL(JV, A) with JJ gp equivalent to
p P

U (hgpkp), for any /z e GL(N, F) and /cp e GL(N, KP). It is a standard fact that Jt is
p

isomorphic to the moduli space of rank N vector bundles over Σ.30

A holomorphic section of DET* over Jt is a section of DET* on Gr that is
GL(N,F) invariant. There is one such holomorphic section that arises in a
completely natural and canonical way. Observing that a point in Gr corresponds
to a system of boundary conditions_on the D operator, the fermion Pfaffian Pf(D) is
a natural section of DET* over Gr. It is GL(N, F) invariant, this being essentially
the content of the multiplicative Ward identities of Sect. II.

More explicitly, let [J gp define a point in Gr. The corresponding boundary
p

conditions are that gp

lψ should be square integrable near P for each P. For
heGL(N,F), the transformation ψ-^-h~1ιp, ψ^>hτψ preserves the Lagrangian,
once we delete a finite set of points at which h or h~1 is not regular, and maps the
condition of square integrability of gp

 1ιp to square integrability of (hgp)~^\p. This
is the boundary condition associated with LJ/zgPeGr. So the action of

p
h e GL(N, F) on Gr changes the Dirac boundary condition in a way that can be
absorbed in ψ^>h~1ιp, \p^hτ\p. As a result, the Dirac determinant is invariant
under the action of GL(JV, F).

30 The vector bundle W associated to [J gp e GL(N, A) may be described by saying that an ΛΓ-plet
p

of meromorphic functions \pi is to be considered a regular section of W at P if gp 1ψ is regular at P

in the usual sense. The vector bundle associated in this way with Jj gp is readily seen to be
p

isomorphic to the one associated with \^hgpkp, the isomorphism being ψ^-hψ. Thus a point
p

mtJί gives rise to a unique isomorphism class of vector bundles over Σ. That every vector bundle
W over Σ arises from some meJΐ is proved by first finding N linearly independent global
meromorphic sections ψ = (ψlί...ίψN) of W. Then one picks at each P a basis up — (U*...UN) of
sections of W regular and linearly independent at P, and defines gp by up = gpψ
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These observations have close counterparts in the theory of automorphic
representations. (See [7] for an introduction.) The adelic space V= \\ VP of

p
holomorphic sections of DET* over Gr is an automorphic representation of the
adele group GL(N,A\ and the Dirac determinant Pf(D] is a distinguished
GL(N, F) invariant vector in this space which plays the role of an automorphic
form associated with a given automorphic representation. The double coset space
M is analogous to double coset spaces that arise in the theory of automorphic
representations. While these observations do not constitute the solution of any
problem concerning either automorphic representations or conformal field theory,
the observation of the existence of a relation between these fields, which we have
tried to make in this section and the last one, comes as a surprise and may
hopefully help stimulate further developments in future.

VI. Some Remarks on String Field Theory

String field theory is usually formulated in terms of a string functional A(Xμ(σ\
b(σ\ c(σ)) (b and c are the ghosts). Although some structure playing the role
sometimes postulated for string field theory is presumably necessary, string field
theory as presently formulated involves ugly elements like delta function overlaps
of strings which hopefully can be eliminated in the future. To eliminate them it is
probably necessary to introduce new degrees of freedom. Such new degrees of
freedom must of course enlarge the gauge invariance without changing the
physical content.

One line of thought begins with the observation that the ghosts are really left
invariant differential forms on the Virasoro group manifold, i.e. the manifold of
G^diffS1. If G were a compact Lie group, the de Rham cohomology of the G
manifold would coincide with the cohomology of the Lie algebra ̂  (computed by
studying the left invariant differential forms). Thus, this is a situation in which "new
bosonic degrees of freedom," the motion on the group manifold, can be introduced
without changing the "on shell physical theory," i.e. the cohomology. And the
cohomology of the group manifold is surely a more "geometrical" notion than the
formal Lie algebra cohomology of left invariant vector fields. Unfortunately, in the
case of G^diffS1 it seems that the group and Lie algebra cohomology do not
coincide. More generally, in this discussion we could consider a homogeneous
space diffS1///, H a subgroup of diffS1. Again, introducing the motion on diffS1///
as a new degree of freedom in string field theory seems to change the physical
content unacceptably.

Recently, Bowick and Rajeev [18] attempted to formulate string field theory
on the manifold diffSYS1. Their very interesting proposal is in a rather different
direction from including the group manifold as a dynamical degree of freedom;
they require left invariance under diffS1 and reduce everything to computation at
the origin in dittS^S1.

A related line of thought begins with the observation that the space of string
fields A \_X, b, c] is equivalent to the space of local operators that can be inserted at
a point P on a Riemann surface Σ. To actually pick an identification of A [X, b, c]
with observables at a point on a Riemann surface requires, however, not just a
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choice of P but also the choice of a uniformizer or local parameter z at P. The latter
is needed because (except for conformal fields of spin zero) a local operator 0(P) at
P is not invariant under reparametrizations that might be carried out at P. Instead
of regarding the string field as a mere functional A [X, b, c], one might try to let it
"come to life" as an actual operator on a surface Σ. One might suppose that in the
"classical string field Lagrangian" Σ should have genus zero, while higher genus
counterparts of whatever geometrical structures are used in the classical theory are
likely to enter in the quantum perturbation theory.

This idea is closely related to the suggestion made above about including the
motion on the group manifold as a dynamical degree of freedom, since according
to the appendix of [19], the moduli space j\f of a Riemann surface Σ of genus g
with a point P and a local parameter z at P admits a formally transitive action of
the Virasoro algebra (i.e., the tangent space at a generic point x e J\f is spanned by
the vector fields that generate the Virasoro algebra). This means that J\f is formally
G/H, with G the Virasoro group and H the subgroup of G that leaves fixed x e Ji.
Thus, trying to let the string field "live" at a point P on Σ with arbitrary choice of z
is very similar to including the group manifold, or at least a homogeneous space
thereof, as a dynamical degree of freedom.

Once one tries to think of the string field as an observable 0(P), it is natural to
go a little bit farther and do what one actually does both in quantum field theory
and in the modern theory of automorphic forms, namely introduce an arbitrary
product

Π <W (203)

of local observables Oi at points Pf on Σ. Of course, at this stage, we are including
infinitely many copies of the basic physical space which is already adequately
represented by a single local operator 0(P). Therefore, we will need gauge
invariances that create and annihilate the points Pt at which there are operator
insertions, to tame the redundancy in describing the space of physical observables
in string theory by a product such as (203). The gauge invariances that would
create and annihilate the Pf would presumably be along the lines of the
multiplicative Ward identities of Sects. 2 and 4, though I do not have a specific
proposal to make here.

In one approach to string field theory [20], one describes that subject in terms
of a generalized cohomology ring, the basic ingredients being a derivation Q, an
integration J, and a product *. Let us see how far we can get along these lines if the
string field is to be an arbitrary adelic product of local observables as in (203).

For Q we have no problem. Given the basic linear transformation 0(P)
->β0(P) of individual local operators, we extend to arbitrary finite products by
requiring g to be a derivation,

Q (Yl O^Pt)} = Σ (0 iCPi) - - - (QOjίPj)) . . . 0Π(PB)) . (204)

Likewise, for integration there is a completely natural candidate, namely the
Feynman path integral,

UOl{Pi). (205)
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This integration is such that "the integral of a total derivative is zero," i.e.

What about multiplication? Given A= Π 0, (Pi) and B= γ[ 0/g7), as long as
p. φ Q. for all ij there is a perfectly natural candidate for A * B, namely the product

Π0i(Λ) ΠO/β;) (206)

in the naive sense. Clearly Q as defined above is a derivation of this multiplication
law. Expression (206) breaks down, however, if Pi = Qj for some ij, because there is
no natural way to multiply quantum field operators at coincident points. As a
result, I cannot propose a general definition of * . Nevertheless, it is plausible that
there may eventually be some way to overcome these problems and formulate
string field theory "adelically."

Appendix

Let Σ be a Riemann surface and ίf the Lie algebra of meromorphic fields on Σ. In
[19], a certain central extension & of £f was described. The construction made use
of formal pseudo-differential operators. Our purpose here is to give an alternative
explicit description of the central extension y. Apart from making contact with the
results of [19], this will enable us to illustrate in a concrete and interesting context
the properties of operator-valued differential forms described in Sect. (3), and to
repeat for the Virasoro algebra the purely algebraic description of conformal field
theory which was given in Sect. (4).

The starting point is the Lie algebra diffS1 of diffeomorphisms of the circle. A
generator of this Lie algebra is a vector field f(θ)(d/dθ\ with θ an angular
parameter, 0 ̂  θ ̂  2π. The Lie bracket is of course

The universal central extension of this Lie algebra is described by a cocycle

dθ3

The normalization is conventional. Concretely, then, an element of the central
extension diffS1 is a pair (a, /), with / a vector field on Sl and a a real number, and
the Lie bracket being

/ An Af \

(A3)

Here c is an arbitrary real number, known in the physics literature as the "central
charge." Equation (A3) obeys the Jacobi identity because φ obeys the cocycle
condition

Φ(f, fe Λ]) + Φ(g, ft /]) + Φ(h, U, g]) = 0, (A 4)

for any three vector fields /, g, h on S1.
It is well known that the Lie algebra (A3) is closely related to a certain Lie

algebra of meromorphic vector fields on the Riemann sphere P1. The usual
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Virasoro algebra is the subalgebra of diffS1 consisting of pairs (α, /) in which / has
a finite Fourier expansion

+ N

f= Σ ane
ίnθ (A 5)

n= -N

Such vector fields are finite linear combinations of

Ln = ίeinθ~. (A 6)

The commutators of the latter in difLS1 are

cv?
[Lπ,LJ=(n-m)Lπ + m+ — <5Π + W (A 7)

with δk = 1 for fe = 0 and zero otherwise.3 1 If one introduces the variable z = eiθ, then
such vector fields have an analytic continuation throughout the complex z plane,
with possible poles at z = 0 and z — oo. Consequently, the Virasoro algebra may be
interpreted as a central extension of the Lie algebra of meromorphic vector fields
on the complex projective line P1 with poles only at those two points.

We will here describe, for any compact Riemann surface Σ, a central extension
& of the Lie algebra y of meromorphic vector fields on Σ, such that (i) the
definition of & is local and intrinsic, not depending on arbitrary choices; (ii) if
Σ = Pl, and we restrict ourselves to the subalgebra of y consisting of vector fields
with poles only at 0, oo, then ̂  reduces to the Virasoro algebra. The construction
gives a different perspective on the results of [19].

The main problem is to determine the correct generalization of the cocycle
(A2). The most naive idea is to try to interpret </>(/, g) as a residue of a differential
form. Let

and let U be the differential form

U = u(z)dz. (A 9)

Then clearly

(A10)

Although the formulas above are correct, they cannot serve as an intrinsic local
description of the Virasoro cocycle, because they depend on the local parameter z
at the point z = 0 in P1. The problem is that, although once we are given the vector
fields /, g and the local parameter z, no one can stop us from defining a differential
form U by (A 8) and (A 9), the definition of U definitely depends on the local
parameter z. In fact, consider a charge of local parameter from z to w(z). A vector

31 The Virasoro algebra is usually written with a cocycle n3 — n in (A7) instead of n3 the difference
can be absorbed in a shift of L0 (in other words, the two cocycles differ by a coboundary), and the
formulas in this appendix will be shorter and more canonical if we work in the form (A 7)
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field f(z)(d/dz) transforms to ?(ω)(d/dw) with ?=f-(dw/dz). A little computation
shows that u(z)dz transforms to ώ(w)dw, with

αw dwό \ dw αw

Here {z, w} is the so-called Schwarzian derivative,

d^z/d^___3 (d2z/dw2)2

{Z' W| " (dz/dw) " 2 ' Idz/ΛvF ( }

The first two terms on the right-hand side of ( A l l ) are precisely what would be
needed for U to be a well-defined differential form, but the {z, w} term ruins this.

If the {z,w} term were not present in (All), then the desired global
generalization & of the Virasoro algebra would be obtained as follows. An element
of & would be a pair (λ, /), with / a vector field and Λ, a differential form, and the
composition law

(ΛB,

Of course, we have used a local coordinate z in writing this. In the second term on
the right-hand side of (A 1 3), the expression fg' — f'g is intrinsically defined object,
independent of the choice of local coordinate z - it is simply the commutator of
vector fields /, g. But the fg'" — f"'g term on the right-hand side of (A 13) depends
essentially on the choice of coordinate z - as we have seen in (A 12).

It turns out that (A 1 3) should be reinterpreted (in a slightly different framework
in which it is intrinsic and geometrical) rather than discarded. Let us recall the
composition law for the Schwarzian derivative. If u, w, and z are three local
coordinates, the respective Schwarzian derivatives are related by

{u, z} = {u, w} (dw/dz)2 + {w, z} . (A 1 4)

This means that if we define

(dw/dz)

then

UUt»UWtZ=UUίZ (A 16)

wherever w, w, and z are all defined. Equation (A 16) is a cocycle condition, which
means that the C/'s can be interpreted as transition functions of a vector bundle. To
be more exact, if we choose an open cover Σ — (J Σi9 with a local coordinate zf on

i

Σb then (A 16) permits us to interpret the UZιtZ as transition functions on the
intersection regions Σ^Σj. We will call the vector bundle so defined f^0; it is a two
dimensional sub-bundle of the infinite dimensional vector bundle called Ί/" in
Sect. (3).
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We will denote a section of i^0 as

'λ
fj or (A,/). (A 17)

Locally, upon choosing a coordinate z, the objects λ and / are just a pair of
complex functions. What is the right global description? In view of the form of the
transition functions, what in the z coordinate system is (λ, f) is in the w coordinate
system

(dw/dzΓ1λ+^(dw/dzΓ1{w,z}f,(dw/dz)f}. (A 18)

If one sets c = 0, then (A 18) is simply the transformation law for a differential form λ
and a vector field /; thus, at c = 0, the pair (λ, f) is a section of the bundle L0 7^ with
L the canonical line bundle of Σ, and T = L-1 the tangent bundle. At c φ 0, the pair
(λ, f) are a section of a deformation f0 of L© T.

The transition matrices (A 15) are triangular, and this means that i^Q is a vector
bundle of a very special kind; it is an "extension of Tby L." In other words, there is
an exact sequence

0->L->f0->Γ->0. (A 19)

This is simply the assertion that there is a natural map α from sections of L to
sections of i^Q, namely A—>(/l, 0); and a natural map β from sections of i^0 to
sections of T, namely (λ, /)->/ (Moreover, /? o α = 0 and the image of α is the kernel
of β.) For instance, the existence of β is the statement that even at c φ 0, / in (A 18)
transforms as a vector field, although λ does not transform as a differential form.
There is, however, no natural map /—»(?,/) from sections of T to sections of i^0,
because there is no natural way to decide what ? should be (if ? is zero in one
coordinate system, it will not be zero in another). There is likewise no natural map
(/l,/)-»? from sections of f0 to sections of L.

Let us pause for a slight digression. Actually, the extension (A 19) is trivial. This
is closely related to the uniformization theorem for Riemann surfaces. A
uniformization of a Riemann surface Σ gives a covering by open sets Σt with local
parameters zt such that on Σ^Σj the transformations from zf to z7 are SL(2)
transformations zj = (azi + b)/(czi + d). For such transformations the Schwarzian
derivatives {zί5z7 } vanish, so the transition matrices (A 18) become diagonal, and
the extension i^0 is split as L0 T32 Although the extension i^0 can be trivialized or
split, there is no intrinsic or natural way to do this. There are many ways to express
this. On the one hand, although Riemann surfaces can be uniformized, there is no
local way to find a uniformization; on the other hand, f"0 actually has many
splittings, which differ by global holomorphic sections of Hom(T^L) or in other
words by holomorphic quadratic differentials. That the triviality of f0 is a more or
less non-trivial global fact is also illustrated by the comment in the footnote. Since
Ί^O cannot be split by any intrinsic local construction, the fact that it can be split

32 It is also possible to turn this around and use the extension i^Q as a tool in proving the
uniformization theorem. In this approach, one first shows on cohomological grounds that i^0

must split in genus ^ 2, and then one uses a splitting of i^0 in constructing a uniformization of Σ



594 E. Witten

globally is irrelevant in our aim of giving an intrinsic local description of a central
extension of &*.

The introduction of i^0 makes it possible now to give a satisfactory
interpretation to the previous formula (A 13), which we repeat for convenience:

(A20)

We saw in (A 11) that if (λ, /) and (η, g) are regarded as sections of L0 T9 then (A 20)
is not an intrinsic formula, but depends on the coordinate z. If, however, we
interpret F = (λ,f) and G = (η,g) as sections of i^0, then (A 20) is coordinate
independent. In other words, if one computes [F, G] in the z coordinate system by
(A20) and then transforms to the w coordinates by (A 18), one gets the same result
as if one transforms F and G to the w coordinates by (A 18) before using (A 20) to
compute [F, G]. To verify this is a relatively short calculation which we leave to the
reader.33

Thus, we have managed to find a locally defined bracket operation [ , ] on
sections of ̂ 0, but does it obey the Jacobi identity? Let F = (λ,f\ G = (η,g\ and
H = (ρ,h) be three sections of i^Q. One readily computes that

[F, [G, fl]] + [G, [H, F]] + [/f, [F, G]] = (dU - c/12,0), (A21)

where

17(/, g,Λ) = det i f g' h ' = f ' z ' ^ permutations. (A22)

It is easy to see that for meromorphic vector fields f, g, h, U is a well-defined
meromorphic function on Σ9 independent of the choice of coordinate z. In (A21),
dU denotes the ordinary exterior derivative of the function [7; this is a well-defined
differential form, and as we have discussed earlier there is a well defined map
0-»((/>, 0) of differential forms φ to sections (φ,0) of f"0.

Clearly, (A 21) shows that the [ , ] operation is not a Lie algebra structure on
sections of ̂ 0. However, the error is the "exact form" (dU,Q). If we introduce an
equivalence relation ~ on sections of i^Q by writing F~G if F — G = (du,ϋ) for
some meromorphic function u, and denote the space of equivalence classes as &,
then (A 21) is the Jacobi identify for &. Indeed, if we write the equivalence class of a
section F of i^0 as F, then clearly (A 21) gives

[F, [G, H]] + [G, [tf, F]] + [tf, [F, G]] = 0. (A23)
& with the Lie bracket [ , ] is, finally, the Lie algebra that we have been aiming

for. Its center consists of expressions (α, 0) with α a differential form, and α ~ β if
a — β = du. Thus, let Ω1 denote the space of meromorphic one forms on Σ, and Ω°
the space of meromorphic functions; and let dΩ° be the space of exact one forms,
that is, one forms ω that can be written ω = du, with u e Ω°. Then the center of &
can be identified as

33 While the operation F, G->[F, G] is thus coordinate independent, we have made heavy use of
coordinates in describing this coordinate independent operation. Recently, a more obviously
coordinate independent description has been given by P. Deligne (private communication)
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What about the quotient of & by its center? Since a central element of & is an
element of the form (α, 0), taking the quotient by the center means identifying
(α, /) ~ (/?, /) for any α, /?, and / The equivalence class of (α, /) in ^/(center) is thus
uniquely determined by / and the quotient of & by its center can be identified as
the Lie algebra ̂  of meromorphic vector fields on Σ. Thus, we have constructed a
central extension of Lie algebras of the form

O-^ΩVdΩ0-^-^-^. (A24)

This is the extension of Lie algebras described in [19], but quantum field theory
is still lurking in the background. The real goal of the present appendix is to exhibit
(A 24) as a manifestation of the more general framework described at the end of
Sect. 3. To this end, we consider instead of the sections F = (λ, /), G = (η, g) of ̂ 0 the
operator valued differential forms

F = λ ί+f T, G = η l+f T. (A25)

Here "1" is the identity operator and T is the energy momentum tensor. To
compute F o G according to the recipe of Sect. (3), we must compute

F(z) •&(*)= Σ Oπ(w) (z-w)". (A26)
n^ -N

Then F O G(w) = O_1(w). To compute O _ l 5 note that there are no short distance
singularities in operator products 1 1 or 1 T, while the singular part of the
operator product T(z) T(w) is well known to be

.... (A27,-
2 (z — w) (z — w) (z — w)

With the aid of this, we can evaluate

G(w) = ( g(w) - 1 + 2 g . T(w) + /g - dT(w) . (A28)

In particular, the appearance of dT(vv) on the right-hand side of (A 28) shows that
the sections of i^0 do not close under the o operation. We could generalize i^0 to
include dT as well as 1 and Γ; this would require a 3 x 3 generalization of (A 15),
using higher order analogues of the Schwarzian derivative. One would still not get
a closed system under the o operation, since the ° operation applied to operator
valued differential forms containing dT would generate still higher operators.

However, we can get a closed operation on sections of i^0 by defining34

24

(A29)

Clearly, under (Λ,/)<->Λ, 1 +/• T, (A 29) corresponds exactly with (A 20), which we
have thus placed in its quantum field theoretic context. That the [ , ] operation
defined in (A 29) is well-defined is thus a consequence of the general properties of

34 The minus sign in this definition is not essential in getting a Lie algebra, but makes the resulting
formulas more standard
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the o operation discussed in Sect. (3). We also know from Sect. (3) that to get a Lie
algebra it is necessary to take the quotient of the space Γ(i^} by the space of exact
operator valued differential forms. Since d(u l+β'T) = (duΊ+dβ T + β dT),
an operator valued differential form of the type (/1-1+/-T), with no dT
component, can be exact only if / = 0 and λ is exact in the usual sense. Therefore,
we can identify from the rules of Sect. 3 the equivalence relation on the space of
operator valued differential forms F = λ l+f-T that will lead to a Lie algebra
structure. It is exactly the relation F~G if F — G = du \, with u an ordinary
meromorphic function. The space of sections of i^0 subject to this equivalence
relation is precisely the space & introduced above. The general analysis at the end
of Sect. 3 correctly identifies Ω1/dΩQ as the center of &. Thus, we have succeeded in
exhibiting the extension (A 24) as a consequence of a more general framework.

Clearly, the restriction to a finite dimensional subbundle i^0 of V is not very
representative of quantum field theory. Consideration of V instead of i^Q would
lead to Lie algebras much "larger" than (A 24), but it is hard to be very explicit
because regrettably one does not have a useable, concrete description of the
complete operator algebra, i.e., the o operation on arbitrary sections of ̂ , even for
free field theories. I will however briefly illustrate one simple example of a
generalization of (A 24). Consider the two component free fermion system with
Lagrangian

L=-[\pD\p. (A 30)
π

It is easy to see that identity operator together with the operators

Tn,m = d"ιp dmψ, n,m = 0,l,2,... (A31)

are closed under the o operation. Let ̂  be the subbundle of y corresponding to
the operators 1 and Tn > / M. So a section A of y±®L is a meromorphic differential
form which in a local coordinate system can be written

Λ = <x l+ Σ *».*Γn,M. (A32)
n,m = 0

We will not try to describe here the generalization of the Schwarzian derivative
that enters in the transformation of A under change of coordinates.

Before trying to identify a Lie algebra, let us ask which are the exact forms. It is
not too hard to see that any A of the form (A 32) can be written

A = α l+ I αmT0,m + ώ, (A33)
m = 0

with u some operator valued scalar. This means that taking the quotient by exact
forms permits one to eliminate the Tn m for n>0. To see this, note that

(A34)

Repeated application of (A 34) permits one to eliminate all derivatives from \p and
write A in the form (A 3 3).

Next, what is the operator algebra of the operators T0 m? The answer is very
striking and is perhaps most easily obtained in a canonical formalism. Working on
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a circle with angular parameter θ, and using {\p(θ\\p(θ')}=πδ(θ — θ'\ one
immediately sees

i l$dθf(θ)T0,m(θ),Ψ(θ') ]=f(θ')^. (A35)

This means that j dθf(θ) T0 m/π generates the transformation of ψ(θ) that we would
usually associate with the differential operator

dm

(A36)

We can thus expect that under the o operation, the operator valued differential
forms

dmw
A = a.l + Σa'mψ-~ (A37)

m uZ

obey the algebra of the differential operators

Σ<4^ (A38)

More exactly, the correspondence between (A 37) and (A 38) only holds up to a
central extension due to the identity operator "1 ." We therefore reach the following
expectation:

Let Σ be a Riemann surface, and DIFF the Lie algebra of meromorphic
differential operators on Σ. Then there is a central extension DIFF of DIFF, with
center Ω^/dΩ0.

O^ΩV^°^DΪFF^DIFF-+0. (A39)

The central extension & of ̂  constructed in (A 24) is naturally a Lie sub-algebra of
DIFF.

Clearly, much should be done to elucidate this more fully.

Some Applications. We conclude by briefly considering the Virasoro analogues of
some constructions in Sects. 4 and 1. Thinking first of Sect. 4, let us formulate the
Ward identities for the energy-momentum tensor in a way which

(i) makes sense on a Riemann surface of arbitrary genus;
(ii) makes sense over an arbitrary ground field k.
To this end, we simply imitate some of the definitions of Sect. 4. Thus, for every

P e Σ, let &P be the completion of Sf at P. The &P are all isomorphic to a standard
object, namely a certain completion of the Virasoro algebra in which one considers
sums of LΠ's of the form

Σ *A (A40)
n= -N

with n bounded below but perhaps not above. A representation of &P is said to be
of highest weight if it is of highest weight in the usual sense of Virasoro
representation theory, and it is said to be unramified if it contains a unique vector
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IP annihilated by the Lw n^ — 1. An automorphic representation of &P is a family
{ Vp] of highest weight representations of the ̂ P, with a common central charge
and all but finitely many of them unramifϊed.

One then defines the restricted product

V=UVP, (A41)
p

consisting of products ®PvP, with vPeVP for all P and almost all vP=\P. Likewise,
let us define the adelic Lie algebra

&=U^P (A 42)
p

to consist of formal sums 0pSP, with sp e &P for all P and sp regular at P for all but
finitely many P. Then the "space of observables" V admits a natural SP action; ̂
simply acts on F componentwise, just as in similar situations considered in Sect. 4.

The Lie algebra ϊf cannot be embedded in any of the ̂ P, because of the central
extension. In fact, upon picking a local parameter at P, one can map /e^ to

/p = (0,/)e^p, (A43)

but the /p do not obey the ̂  Lie algebra (but a central extension thereof). In trying
to work globally we have a problem that did not have an analogue in Sect. 4: the JP

are not canonically defined, but depend on a choice of a local parameter at P. One
way to proceed is to uniformize the curve Σ\ this will induce a family of local
parameters {zP|P e Σ} which are uniquely determined up to SL(2) transformations

zp -> Zp = (αPZp + bp)/(cpzp + dp). (A 44)

Since the Schwarzian derivative {zp, zp} is zero if zp and zp are related as in (A 44),
this indeterminacy in the zp is limited enough so that the /P E &P are uniquely
defined. Then there is a well defined map

/->/=®P^ (A45)

of ^—>^, and this is an embedding of Lie algebras since

0. (A46)

Here ω is the differential form which for any P can be written

(A47)

in a neighborhood of P. It may seem that we are cheating to use a global
uniformization (or a global splitting i^0 = L© T) after refusing to use this in the
original definition of ̂ . The point is that it is essential to define & in an intrinsic,
local way, but in investigating its properties one is free to use global methods like
the uniformization.

Now we can define the Virasoro Ward identities, that is the identities for the
global group ̂ , embedded in & according to (A45). The "Feynman path integral"
should be a linear functional J : F-»fc. The Ward identities are the assertion that for
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f/ ι; = 0. (A48)

Since this implies

, (A49)

consistency of the Ward identities depends on the absence of a onumber cocycle
on the right-hand side of (A 46). Such a cocycle being absent, we have accomplished
our goal of formulating the Virasoro Ward identities in a global context.

Finally, we briefly return to a situation that we studied in Sect. 1. Let S be a
circle that bounds a Riemann surface Σ. Let Jjfs be the Hubert space of states of
some conformal field theory formulated on S. Let |ΩS> be the state obtained by
"integrating out S." We would like to formulate the Virasoro Ward identities
obeyed by the state |ΩS).

Let 3ft, be the Lie algebra of complex valued vector fields on S, and let &Σ be the
subalgebra of ̂  consisting of vector fields on S that extend holomorphically over
Σ. &Σ is a Lie algebra, since if/ and g are holomorphic on Σ, so is [/, g] = /g' — /'g.

If the energy momentum tensor were a conformal field, we would follow
precisely the argument that led to Eq. (A 59) in Sect. (1) to show that for

= 0. (A50)
S

This is too naive, however, since § dθfT(θ) is (because of the conformal anomaly)
only well defined modulo a onumber; more exactly, §dθfT(θ) changes by a
c-number under a change in the variable θ by which we parametrize S.

What is going on? Recall from (A59) that the idea in proving a statement like
(A 50) is to interpret fT as an "operator valued differential form" and write

(A51)
Σ S

Recall our extension of Lie algebras:

Q-*Ωl/dΩθ^&-+y-+0. (A52)

The problem with (A 50) is that &Σ is naturally a subalgebra of ̂ ,35 but to reason
as in (A 51) one must interpret 3ft, Σ as a subalgebra of the Lie algebra & of operator
valued differential forms. To do this, it is necessary to find a lift $Σ-*& of 3% from
£f to ̂ . More explicitly, we need a splitting i^0 = L® T so that a section / of T can
be interpreted as a section (0, /) of i^Q. A uniformization of Σ induces just such a
splitting of i^Q. Using the definition of the energy momentum tensor that would
come from a coordinate system corresponding to a uniformization of Σ, (A 51) and
(A 50) are valid.

The existence of any coordinate system in which (A 50) is valid implies an
interesting statement about the subalgebra StΣ of 91. The Lie algebra 9ί has a non-
trivial central extension, corresponding to the Virasoro cocycle (A 2). However, the
cocycle (A 2) must split when restricted to the subalgebra &Σ of 3ft, (that is, upon

35 In fact, fflΣ is precisely the subalgebra of y consisting of vector fields that are holomorphic on Σ;
recall that ̂  is a Lie algebra of meromorphic vector fields
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restriction to $Σ it must be possible to eliminate the cocycle by adding onumbers
to the operators $/T). For this cocycle must be absent with any definition of T
such that (A 50) is valid.
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