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Abstract. A principal IR + -bundle over the usual Teichmύller space of an s times
punctured surface is introduced. The bundle is mapping class group equivariant
and admits an invariant foliation. Several coordinatizations of the total space of
the bundle are developed. There is furthermore a natural cell-decomposition of
the bundle. Finally, we compute the coordinate action of the mapping class
group on the total space; the total space is found to have a rich (equivariant)
geometric structure. We sketch some connections with arithmetic groups,
diophantine approximations, and certain problems in plane euclidean
geometry. Furthermore, these investigations lead to an explicit scheme of
integration over the moduli spaces, and to the construction of a "'universal
Teichmύller space," which we hope will provide a formalism for understanding
some connections between the Teichmύller theory, the KP hierarchy and the
Virasoro algebra. These latter applications are pursued elsewhere.

Let Fg denote the genus g surface with s points removed, where 2g — 2 + s> 0,
g ^ 0, and s^l. This paper presents a number of results on the Teichmύller space
JTg of marked conformal classes of complete finite-area metrics on Fg. Actually, we
define a principal IR+ foliated fibration ψ: 3~h

g —> ^ , where the fiber over a point of
3~l is the space of all horocycles about the punctures of Fg; the total space of the
fibration is called the "decorated Teichmύller space." The mapping class group
MCg of homotopy classes of orientation-preserving homeomorphisms of Fg (which
may permute the punctures) acts on 3Γh

q and # * , and the map φ is equivariant. The
theory described below is developed for the decorated Teichmύller space ^ , and
the analogous results for βΓs

q itself are discussed in an addendum.

Our first result gives a homeomorphism between # ^ and IR^ , q = 6g - 6 + 3 s.
Specifically, we assign a positive real number λ (c; Γm) to Γm e 3^s

g and an isotopy
class c of arc in Fg connecting punctures; fixing a family A of such arcs so that each
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component of Fg — A is a triangle, the function X λ(c; •)'• ^~s

g~* IR + is shown to be a

homeomorphism. Moreover, the functions λ( •) are natural for the action of MCs

g.
We next recall a construction from [EP] which gives a canonical assignment of a

kind of decomposition A (fm) of Fg to each point Γm e -Tg. Specifically, A = A (fm)
consists of a collection of isotopy classes of arcs in Fs

g connecting punctures so that
each component of Fs

g — A is a cell (and no two components of A are homotopic);
such a decomposition A is called an "ideal cell decomposition" of Fg. There is thus a
corresponding decomposition of ,Tg itself, where the decomposition elements are
given by

as A ranges over all ideal cell decompositions of Fg. It is proved that

%>g = {^(A): A is an ideal cell decomposition of Fg}

gives a MC*-invariant cell decomposition of #"*. This is analogous to the Harer-
Mumford-Thurston cell decomposition (see [Ha]) of 3Γ^ but we work in the
hyperbolic and [Ha] in the conformal category (see also [BE]). It is furthermore
shown that the isotropy group of (€ (A) in MCg is exactly the collection of mapping
classes φeMCg so that φ{Λ) is isotopic to A. In particular, each $ (A) has a
canonical "center" Γm(A) e Tg whose conformal symmetry group is exactly the
isotropy group of ^ (A) in MCg. In case Φ(A)is top-dimensional, the corresponding
φΓm(A) e^g is shown to be an arithmetic group. On the surface F{, we notice a
connection between centers of top-dimensional cells and the Markov forms (see
[Ca]) of diophantine approximation.

The proof that each $ (A) is actually a cell is rather involved and proceeds as
follows. We define an embedding -Tg c IR+ίjf onto an intersection of homogeneous
quadrics and a smooth gradient flow on IR+β which has this variety as its attracting
fixed point set. The trajectories which limit on $ (A) admit a coordinate simplex
X as a Poincare section; in fact, the induced map X - ^ ( z l ) has as inverse the
projection from IR+fi onto a certain linear subspace. Thus, the cell-decomposition
%>g of <Tg is an essentially linear construction from this point of view.

Finally, we consider the natural action of MCg on our coordinates for .Tg. MCg

is recognized as a subgroup of finite-index in a certain groupoid as in [Mo]. The
groupoid is generated by a simple algebraic transformation, which is related to
Ptolemy's theorem on Euclidean polygons which inscribe in a circle. As a
consequence, we derive a faithful representation of each MCg as a group of rational
transformations IR̂ _ -• IR^. Several examples are pursued in detail. We remark
parenthetically that the embedding -β~g a ΊK2

+

q mentioned above leads to yet
another embedding ^ c z (C2ίi; in case s=\, the corresponding action of MCg on
coordinates is in fact a faithful representation as a group of analytic motions of (£2q.

The work described herein has several applications. First of all, the action of
MCg on the complex ^g allows the computation of certain cohomological
invariants of MCg\ see [HZ, PI]. Furthermore, a problem of current interest in both
Mathematics and Physics is the explicit integration of top-dimensional forms over
the moduli space Mg= -Tg/'MCg. The combination of the cell-decomposition %yS

g
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and the coordinatization of 3~s

g leads to an algorithmic scheme of integration of
forms over Mg (see [P2]), provided the form admits a reasonable expression in our
coordinates. In particular, the Weil-Petersson Kahler form has been computed with
respect to our coordinates in [P2], and it is simply a matter of patience to begin to
numerically compute the Weil-Petersson masses of the various moduli spaces.
Moreover, the perturbative series techniques of [PI] may well combine with the
integration scheme of [P2] to allow such computations by hand. Finally, we
mention that there has been some discussion of a "universal Teichmuller space" in
the Physics literature (see, for instance [FS]), and several of our constructions
suggest a model for such an object.

This paper is organized as follows. Section 1 recalls the basic facts about
Minkowski three-space, where most of our constructions take place. Section 2
develops most of our technical machinery on the geometry of the light-cone in
Minkowski space. In Sect. 3, the decorated Teichmuller space is defined and several
parametrizations of it are developed. For completeness, we work through the
"convex hull construction" of [EP] (tailored to our needs) in Sect. 4. Section 5 is
devoted to the cell decomposition ^g oϊ3Γs

g. Section 6 introduces centers of cells and
indicates some connections with plane Euclidean geometry. The rational
representation of MCs

g is discussed in Sect. 7, and the addendum traces through our
various constructions and results for the Teichmuller space .Tg (as opposed to the
decorated Teichmuller space ,Tg). Furthermore, the addendum describes rational
representations of planar braid groups mod centers.

1. Minkowski Space and Hyperbolic Geometry

Let V be a real vector space of dimension three with a non-degenerate quadratic
form <•, •> of type (2,1) so that there is a two-dimensional positive definite subspace
and a one-dimensional negative definite subspace. We may choose an orthonormal
basis (eo,elie2) for Kwith <<?; ' e7 > = 0 for /φ/and — <eo,eo> = <e1,e1> = (e2, e2)
= 1. The corresponding metric on V admits an expression

- CIXQ + dx\ + dx\ ,

and we define Minkowski three-space JM to be V equipped with this metric. The
coordinate x0 on M will be called the height, and a subset of M will be called
horizontal if it lies at constant height.

The hyperboloid

{veV: O, v) = - 1} = {xeM: -x2

Q + x\+x\ = - 1}

has two components, and the upper sheet IH (of positive height) is a model for the
hyperbolic plane: the form <(•,*> restricts to a Riemannian metric on tangent spaces
to the hyperboloid. An explicit isometry of IH with the Poincare disk model of the
hyperbolic plane is given by radial projection from (-1,0,0) to the unit disk ID
about the origin in the plane at height zero. Explicitly, if x, y e IH and d denotes the
Poincare distance between the projections of x and y to ID, then

cosh2 d=(x, v>2.
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The light-cone Lc=M is defined to be

L={υeV:(υ\v} = 0} = {xeM: x2

0 = x\ + x\} ,

and the positive light-cone is

L+ = {xeL: xo>0).

We say a point x eMlies k Όn" L+ if x e L + , and we say x lies "inside" LΓ if x lies in
the component of (1,0,0) of M —L; otherwise x lies "outside" L+. Radial
projection from IH to ID extends to a map

where 5^ = Frontier ΪD (in the plane x0 = 0) is the "circle at infinity" of the
hyperbolic plane; the fiber of T over a point of 5^ is a ray on L+ from the origin of
M. A point w = (w0, u j

l 5 vr2) G L + corresponds to the horocycle

the center of Λ is the point w e 5^, and a computation shows that the Euclidean
radius of/? in ID is (1 + wo)~1. Thus, as the height of w e L+ increases, h contracts to
its center, and 7 induces a canonical identification of L+ with the bundle of
horocycles over 5^.

The group of linear isomorphisms of M preserving the quadratic form is the Lie
group O(V) = O(l,ri). We denote the component of the identity in 0(1,2) by
SO* (1,2); this subgroup preserves the orientation of V and the sheet IH of the
hyperboloid. 5 0 + (1,2) (sometimes called the "Mόbius group") consists of the
orientation-preserving isometries of the hyperbolic plane, and its action on L+

describes the action of the Mόbius group on horocycles. SO + (1,2) is isomorphic to
the group P5L2IR of invertible two-by-two matrices over IR modulo ± 1 .
Explicitly, the corresponding action of PSL2 IR on M is given as follows. Represent
x — (x0, xγ, x2) E M by the symmetric bi-linear form

x0 - x1

and notice that Q is degenerate if and only if x eL+, Q is indefinite if and only if x
and —x lie outside L+, and Q is positive (negative) definite if and only if x ( — x,
respectively) lies inside L+. The action of A ePSL2JR on M is given by the usual
action on quadratic forms, namely

A: Q^ΆQA.

Hyperbolic elements of SO + (1,2) are those with an eigenvalue λ so that | λ | =j= 1.
It follows that λ is real and positive with corresponding simple eigenvector (ray) on
L+. There is one other eigenvector on L+ with eigenvalue A"1 and a third
eigenvector outside L+ with eigenvalue 1. Using the usual correspondence between
a point v on the hyperboloid

{VEM: <ι;,ι;> = l}
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of one sheet and the (oriented) geodesic IH n u1, the third eigenvector of a
hyperbolic motion corresponds to the invariant geodesic. Parabolic transfor-
mations have a unique eigenvector on L+ with eigenvalue 1 and no eigenvector
inside L+. Elliptic transformations have all their eigenvalues on the unit circle and
one eigenvector inside L+ (so they have a fixed point in IH). A Mόbius
transformation which is not the identity is hyperbolic (parabolic, elliptic) if and
only if the absolute value of the trace of the corresponding element oϊPSL2 IR is > 2
( = 2, <2, respectively).

Suppose that S is an affine plane in M. We say that S is elliptic (parabolic,
hyperbolic) if the conic section SnL has the corresponding attribute. The
restriction of the form <•, •> to S may be definite, degenerate or of type (1,1). If

S={xeM: (x,s} = ξ}

for some O Φ ^ G M and c e R , then these cases correspond to <s, s) < 0 (elliptic),
(s, s} = 0 (parabolic), and <X s} > 0 (hyperbolic), respectively. In the definite case,
S has an induced Euclidean structure, and in particular if S is horizontal, then the
induced metric is ]/2 times the usual Euclidean metric. It follows that if S is elliptic,
then S r\ L is a round circle in the induced structure. An isometry I φ g e SO + (1,2)
preserves an elliptic (parabolic, hyperbolic) affine plane in M if and only if g is itself
elliptic (parabolic, hyperbolic, respectively).

2. The Geometry of the Light-Cone

We begin with a geometric interpretation of the restriction of the pairing
< , ) | r x r ί o L + x L + c M x M .

Lemma 2.1. Suppose that u, u' eL4' are non-collίnear, and let h, h' a H, respectively,
denote the corresponding horoeyeles. If δ denotes the signed Poineare distance along
the geodesic from ΰ to W between h and h', taken with positive sign if h r\ h' = 0 and
with negative sign if h nh' + 0, then

Proof To begin, we homogenize two formulas from Sect. 1. Namely, if x and y lie
inside L+, then the rays from the origin through x,y intersect IH in points x\ y\
respectively, and the Poineare distance d between x' and y' satisfies

Furthermore, if t e / / , then the cone from the origin over the horocycle in IH
corresponding to v is the locus

h (v) = {x inside V : <u, x>2 - - <x, x)}.

Now, write

x = su + (l-s)u' eh(u),

v = tu + (l -t)u' eh(u').
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Solving for s, t using the conditions xeh(u), yeh(u') gives

t= -

It follows that

cosh2 δ = <x, v>2/<x, x> <y, j > = [ ~

whence

Finally, — <•, •> is continuous on L+ x L+ and tends to infinity (zero, respectively)
as the heights of its arguments tend to infinity (zero, respectively). The result
follows. Γ

If x, v, z are distinct points in M, then let π(x, j , z) denote the affine plane
through x, v, and z, and define IR+ = {ίeIR: / > 0}. We next show that if x, j \

z G L + , then ellipticity of π(x, >\ z)is a linear condition on ]/ — <*, °> I v XL+ Indeed,
it will evolve that this restriction is a geometrically more natural quantity than the
restriction of the pairing itself.

Lemma 2.2. Let {wJJc/Λ and {/H)X<ZL1SL+ be given so that
Λ 2 / \ 1' ( • 7 Ί f Ί O O )

-Λ;~ = <Wj, Wj>, ./or {z, y, /c) = {1,2, 3 } ,

and let S =π(uι' u2, u3). S is elliptic if and only if the three strict triangle inequalities
hold amongst Λ 1 ? λ2, λ3, S is parabolic if and only if

λ{ = λj + λk, for some i, j , k with {i\j, k) = {1,2, 3},

and S is hyperbolic if and only if some non-strict triangle inequality fails amongst λγ,
λ2, λ3.

Proof The tangent space to S is spanned by v1 = u1— u3 and v2 = u2 — u3.
Furthermore,

(ui,vi} = 2λj, for {/,;} = {1,2},

The determinant of this form is

= (λί + λ2 - λ3) (λ1 + λ3 ~ λ2) (λ2 + λ3 - λi) (λγ + λ2 + Λ3) .

At most one of these factors is not strictly positive, and the lemma follows. Z

The next lemma provides the induction step for our basic parametrization
theorem.

Lemma 2.3. If uu u2eL+ and λ1, λ2, 2 3 e I R + with (u1,u2) = -λj, then there
exists a unique u3 e L+ on each side of π (0, ιι1, u2) so that
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As a consequence, there exists a unique ray r on L+ on either side ofπ (0, u1, u2) so that
(su1, w) = iu2, u) for each uer.

Proof. The space Wspanned by uί and u2 has type (1,1) (consider the basis ux + u2,
ux — u2), and so W1 has type (1,0). Let e be a vector in W with (e, e} = 1 and solve
for

u3 = a1u1 + oί2u2 + βe,

where α 1 ? α2, β are unknowns. We find that

Furthermore, the condition that <w3, w3> = 0 gives

)8=± 1 /2λ 1 ; . 2 A3- 1 .

To see that u3 e L^ (instead of — L+), note that (u1 + u2)
L is of type (2,0) separating

L+ from - L + . The condition for a vector x to lie on L+ is <x, uι + w2) < 0 and
<x, x> = 0, and we have

<w3, ux + w2) = — λ\ — λ\ < 0 .

Finally, the sign of β determines which side ofπ (0, uλ, u2) the vector u3 lies on. D

Lemma 2.4. Cwe/? ί/?rê  distinct rays r 1 ? r2, r3 from the origin on L+, //?βr<? αr^
unique u{ e r i ? z = 1,2,3, ΛΌ

o/ Choose ^ e r , , / = 1, 2, 3. We seek o^, α 2, ^3 eIR + so that

( o i ' i v i , o c ' j v j y = -ί, f o r / Φ 7 .

These equalities give

^ocj= -<vi9Vjy-\ for i + j ,

and the unique positive solution is given by

αj= / T — % ^ - v , where{ί,7,fc} = {l,2,3}. •

Corollary 2.5» 5O + ( l ,2) αc/Λ1 transitively on positively oriented triples of distinct
rays on L+. •

Corollary 2.5 is our analogue of the familiar "three-effectiveness" of the action
of the Mόbius group on S^. The next result is of fundamental importance to what
follows; it will evolve that part (a) describes the action of the mapping class group
on our coordinates, and part (b) describes the faces of cells of a complex on which
the mapping class group acts cellularly.

Suppose that S is an affine plane in M which does not contain the origin, so that
S= {xeM\ (χfs}= — 1} for some Oφ.veM. We say that yeM lies above S if S
separates >' from 0 (i.e., <v,s> < —1).
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Proposition 2.6. Suppose that {ui]\^L+ are so that any three are linearly
independent, ux and u4 lie on different sides of π(0,u2,u3), and let

-Λ.§ = <Mi>Mj>> for ί<J-

(a) We have the equality

^14^2 3 = λl2^34 + ^13^24

(b) u4 lies above π (uί, u2, u3) if and only if

^23(^24^34 + ^12^13) < ^14(^13^34 + ^12^24)-

Furthermore, equality holds if and only if {u^\\ are coplanar.

Remark. The reader will recognize the similarity between part (a) and the classical
Theorem of Ptolemy: a Euclidean quadrilateral of consecutive side lengths A, B, C,
D and diagonal lengths E, F inscribes in a circle if and only if

EF=AC+BD.

Since the restriction of <•, •> to an elliptic plane S is Euclidean and S Γ\ L is a round
circle in this structure, Ptolemy's theorem corresponds to the case that {wjί are
coplanar lying in an elliptic plane. Furthermore, Morin has pointed out that the
equality in (a) is invariant under scaling each u{ EL+ independently; this gives a
quick proof of (a) from the classical Ptolemy Theorem.

Proof As before, the space ^spanned by u2, u3 has type (1,1), and we let e be a
vector in W1 with <e, e) — 1. We write

uγ = βe + OL2U2 + ^3^3,

where

β=± ]/2λ12λ13λ2i.

Similarly, we have

u4 = β'e + ot2 u2 + α 3 u3,

where

^ 2 3 2 :

i T - 1
^ 3 4 Λ 2 3

Notice that ββ' < 0, since u1 and u4 lie on different sides of the plane π (0, u2,u3).
Now, compute

λ2

14 = - < M l , u4} = ri2^λ2

23 + y:2a3λ
2

23 + ^J8'

_ ; 2 ; 2 ; - 2 , ; 2 τ2 - 2 , 9 ; - 2
— / Ί 3 / | 2 4 Λ 2 3 + Λ 1 2 Λ 3 4 λ 2 3 + Z Λ 2 4 Λ 3 4 Λ 1 2 Λ l 3 Λ 2 3 ?
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SO

proving part (a).

For part (b), we may write

π(uι,u2,u3) = { i

for some O Φ ^ e M , since {uJJ are linearly independant. We write

s = ae + bu2 + cu3,

so that

-l=(s, ur) = aβ- bx3λ
2

23 -

whence

The condition

- 1 > O, w4> = <z/?' - λ\3 (cc/J2

that uA lie above π(uί,u2,u3) becomes

^23 (^12^1 3 + ^24^34/ < ^23 (/Ί2^34"^" ^13^24/ V°l 3 / L 34 "+" ̂ 1 2 ̂ 24)

= ^14(^13^34+^12^24) J

as desired. •

The next fact is technical and is used to give coordinates on the putative cells of
our complex.

Proposition 2.7. Suppose that {WJ}"(/?^4) satisfy the following conditions for
k=l, . . . , n-3:

(i) Any three of {uk + i}f=0 are linearly independent.
(ii) uk9 uk + 3 lie on different sides ofπ(09uk + 1,uk + 2 ) .

(iii) uk + 3 lies above π(uk,uk + ί,uk + 2 ) .
(iv) π (wk, uk+1, uk + 2) is either elliptic or parabolic.
In this case, un lies above π (uί, w2? u3).

Proof We proceed by induction on n, the case n = 4 being trivial. For the inductive
step, we simply remove un _ i from the sequence and must show that un lies above the
plane π (un__ 4 , un _ 3 , wΠ _ 2 ), the other conditions being trivially satisfied. [Notice that
the hypotheses do not assert the non-hyperbolicity of π(wn_2,Mn_1?Mn).]

Adopt the notation of Fig. 2.1, where a symbol next to an edge indicates the
square root of the negative of the corresponding inner product of points on L+. By
Lemma 2.2 and Proposition 2.6, we have

(1) The triple [a, b, e] satisfies all (weak) triangle inequalities, and so does the
triple {c,d,e}.
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(2) (ac + bd) {be + ad) > e2 (ab + cd).
(3) ec(f2 + g2-d2)>fg(d2-c2-e2).
Now, it follows from repeated application of Proposition 2.6 that it is sufficient

to show

g2 (ac + bd) {be + ad) + labcefg - cde2g2

+ e2 ab (f2 - d2) + defg (a2 + b2-e2)>0.

The inequality (2) gives a lower bound on the first term, so it suffices to show that

abe2 (f2 + g2- d2) + defg (a2 + b2- e2) + labcefg ^ 0 .

The inequality (3) then gives a lower bound on the new first term, so it remains to
show that

cd(a + b-e)

which follows from (1).

e) + ab(c + d- e) (c + d+e) ^ 0 ,

We close this section with a geometric interpretation of the quantities OL[ , i = 1, 2,
3, which were computed in Lemma 2.4. If x and y are distinct points of S^, let
y{x,y} denote the (unoriented) Poincare geodesic IHn [π(0,x, y)].

Proposition 2.8. Suppose that {wJ^c:L+ are linearly independent, and define

-λf = <uj,uk>, αf = - ? - - , for {ij,k} = {1,2,3}.

Then 2αf is the hyperbolic length along the horocycle h(u^) between
y{ΰi,ak},{i,j,k} = {1,2,3}.

and

Proof We first remark that an elementary computation shows that if H is a
horocyclic segment of hyperbolic length ε, and ό denotes the hyperbolic distance
between the endpoints of H, then

ε/2 - sinh δβ.

We concentrate on computing the hyperbolic distance between

ξ+ = A ( M 1 ) O " / { M 1 , ύ2} and ξ^ = h(u1)ny{ΰ1, w3}.
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To this end and in light of Corollary 2.5, we may conjugate in SO + (1,2) so that

/ ΐ j - 1 (2,0,2),

If we identify a point v on the hyperboloid of one sheet with the geodesic IH r\ υ1 in
the standard way, then γ {u1, u2} (y {u1, w3}, respectively) corresponds to (1, — 1,1)
((1,1,1), respectively. A routine computation gives

Thus, if δ denotes the hyperbolic distance between ξ+ and ξ_, and ε the length
along h(uγ), then

cosh δ = 1 + αf, so c/2 = sinh (5/2 = a1.

The computations involving α 2 , α 3 are similar, and the proposition is
proved. Π

3. Coordinates on the Decorated Teichmuller Space

Consider the compact surface Fg of genus g with a subset P = {x1,x2, . . . , x J of
distinguished points, where 2g — 2 + s > 0. Let ^ denote the Teichmuller space of
Fg = Fg — P, corresponding to the space of marked complete hyperbolic structures
of finite area on F*. We restrict attention to the case where s^.1. Each point
x , i = 1, . . . , s, gives rise to a cusp of Fs

g.
A point of 3Γs

g gives rise to an isomorphism πίF*->Γ < SO + (1,2), where Γ is a
marked discrete group defined up to conjugacy in SO + (1,2). We will denote a
marking on Γ by Γm. There is a corresponding covering map M-+Fg = H/Γw. We
will also consider the corresponding group acting on the Poincare disk ID with
covering map D-^F^. The Poincare metric on ID projects to a metric on Fg,
which we refer to as the cT-Poincare" metric on Fg. We refer to geodesies for the
Γ-Poincare metric as cT-geodesics'\ etc..

Represent a point in ^ by Γm< SO+ (1,2) and choose a distinguished
Γ-horocycle h( about each cusp xt. The specification of ht determines a correspond-
ing Γ-orbit Bx of points on L+. Explicitly, choose a parabolic yt eΓm corresponding
to x{, let z{eL+ be fixed by yt and correspond to h{, and take Bt = Fz{. Each point of
B( has a stabilizer in Γ which is parabolic and infinite-cyclic; different stabilizers for
different points of Bx are conjugate in Γ. The stabilizer of zieBι corresponds to a
group H(i) < πγ Fs

g of homotopy classes of loops generated by a loop which circles
xt exactly once.

Thus, a specification of Γm e 3Γs

g together with a choice hi of horocycle about
each cusp xi9 i = 1, . . . , s, determines an SO + (1,2)-orbit of (s + 1 )-tuple
(JΓW, Bl9B2, . , Bs), where B{^L+ is a Γ-orbit of points corresponding to the
Γ-horocycle hi about xt. To formalize this notion into an object of our basic
interest, we define the decorated Teichmuller space,

Tl = {{Γm,Bu..., B,): Γm e rfi/SO + (1,2).
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The "forgetful" map φ: .Tg-^^~g induced by (Γm,Bl9 . . . , Bs) ^ Γm is a principal
fibration with group IR+: IR + acts on the fiber (B1, . . . , Bs) by componentwise
homothety of points in L+. .Tg is thus a cell of real dimension 6g — 6 + 3s.

The (full) mapping class group MCs

g of isotopy classes of (orientation-
preserving) homeomorphisms (which may permute the punctures) acts on ^g in the
natural way by change of marking; the fibration φ is MC^-equivariant.
Furthermore, there is a MC^-invariant foliation ^ of <Tg defined as follows. Let
Qi(fm) denote the Γ-Poincare length of the horocycle λ ί? where Γme^g satisfies
Φ(^m) = Γm Each Qι: >!?~g—> IR+ is clearly invariant under the MQ-action, and we
consider the foliation -^ of 3~s

g by level sets of F = X ρt: 3~s

q-^ IR + . In particular,
the level set F=\ ί is MQ-invariant and gives rise to a canonical equivariant
section of φ.

Fix Γm = (Γm, B1,..., Bs) E iTg. Let c be a homotopy class of path, not necessarily
simple, running from xt to x^ where we may have i=j\ and straighten c to a
Γ-geodesic C. Such a homotopy class in Fg is called an ideal arc. If z e 5 ί ? orient C
and lift it to a geodesic in ID starting from z and ending, say, at a point w eS^ with
w E Bj. (There is only one point of Bj in the fiber of T over H\) We define the
λ-length of c (relative to fm) by

λ (c; Γm) = λ (c; ΓnOBι,...,Bs)=y'- <z, w> .

Let us now examine how this quantity depends on our choices. The group Γm can
be changed by conjugating by an isometry g eSO + (1,2). The corresponding B( is
transformed to gBi9 z, w are transformed to gz, gw, and the lift to ID of C is
transformed by g. Since Λ-lengths are a metric quantity in M, the value of λ is
unchanged; similarly, choosing z to be another element of Bt does not change the
value of λ. Ifw' e S^ with w' eBj is the endpoint of the lift to ID of — C starting from
z, then there exists y EΓ with y w' = z, yz= vv, so the choice of orientation on C does
not affect the value of A.

For each ideal arcc, the Λ-length gives a continuous positive real-valued
function λ (c) defined on 3~*g. We next fix an appropriate finite number of ideal arcs
cx, . . . , cq to obtain a map

X λ(c . ) : ^ - > I R * + ,
i - 1

which will be shown to be a surjective homeomorphism. An appropriate set of ideal
arcs A is defined by taking a maximal family of disjointly embedded simple arcs in
Fg running between distinguished points subject to the condition that no
complementary region of A in Fg is a mono-gon or bi-gon. It follows that each
component of Fg-Δ is a triangle. Such a family is called and ideal triangulation, and
Euler characteristic considerations show that there are q = 6g — 6 + 3 s ideal arcs in
an ideal triangulation of Fg.

Theorem 3.1. If A = (cx, ..., cq) is an ideal triangulation of Fg then

X λ(Ci):.r^J&%
i = 1

is a homeomorphism.
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Proof. We must find the inverse map, so suppose that we are given (λx,..., λq) e JR.\
and wish to construct a surface. A universal cover of Fs

g is homeomorphic to the
Poincare disk ID, which is tesselated by ideal triangles with sides arising from the lifts
of the ideal arcs c1, . . . , cq. We will map this tesselation into M so that the vertices
map to L+.

Fix attention on one triangular region in the universal cover, and suppose that
its edges correspond to ideal arcs c/(1), c/(2), c/(3) (not necessarily distinct). Fix a tuple
i\, r2, r3 of distinct rays on L+. By Lemma 2.4, there exist points zz e r, , i = 1, 2, 3,
with

<zi,ziy=-λ}kk), for {/, ;,*:} = {1,2, 3}.

We now inductively map further triangles into M. Each triangle has one side
already mapped in, say with vertices u1,u2εL+. The third vertex u3 of the triangle is
mapped in using Lemma 2.3. The lemma gives two choices of points with the
required inner products, and the choice is resolved by the fact that we want the
tesselation of the universal cover to map homeomorphically to a tesselation of ID.
Since one side of π(0, u 1 ? u2) already contains points of the lifted tesselation by
induction, u3 must lie on the other side of π (0, u1, w2). This determines u3 uniquely.

Each element β eπxFg acts on the tesselation of the universal cover. Let T be
one triangular region in the universal cover, and let τ1 and τ 2 be the triangles in M
which are the images of Γand β T. There is a unique g (β) e SO + (1,2) taking τί to τ 2

mapping vertices correctly. From the inductive construction of triangles in M, we
see that the definition of g (β) is independent of the choice of T. The same reasoning
shows that

is a homomorphism.
To see that g is injective with a discrete image, note that the inductive

construction above guarantees that the tesselation of the universal cover of Fs

g is
mapped injectively to a tesselation of ID. Injectivity of g follows immediately. If the
image Γm ofg were not discrete, then there would be a non-trivial element arbitrarily
near the identity, and then triangles in ID would overlap.

To complete the discussion of the tesselation and group Γm, we claim that the
image tesselation ΊΓ actually covers all of ID. To this end, note first that the
inductive definition of TΓ guarantees that TΓis open in ID. We show also that ΊΓcz ID
is closed. Each triangle τ in ΊΓ is provided with three horocycles centered at the
vertices of τ. Furthermore, by Proposition 2.8, there is some ε > 0 so that each
horocyclic segment inside τ has length at least ε. It follows easily that ΊΓ is closed, so
connectivity of ID guarantees that ΊΓ= ID, as was asserted.

The quotient of the image tesselation by Γm is a marked complete hyperbolic
surface of finite area. This gives our map from ΊRq

+ to ^"J. The map to the fiber of
<Th is given by taking the natural Γ-orbits of parabolic fixed points arising as the
vertices of the triangles in M. The maps between #"* and IR9+ are clearly inverse to
each other, and the theorem is proved. •

Remark. The maps in Theorem3.1 between 3~s

g and IRg

+ are linear with respect
to scalar multiplication on IR'+ and IR\, giving a homeomorphism between
3~s

q x Interior (σs~1) and Interior (σq~A), where σ" denotes the /2-simplex.
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One can remove the factor Interior (σΛ ~ ί ) to get a homeomorphism between $~s

g

itself and Interior (σq~s) (see Theorem A.I). We also give an interpretation of
A-lengths in terms of the matrix entries of a discrete subgroup of PSL2IR
representing a point of <Tg (see the remark after Theorem A.I).

Recall that MCs

g acts on # * , and if φeMC*, let φ^: ,Ts

g !) denote the
corresponding homeomorphism. Since φ admits a representative which respects
Poincare metrics and /.-lengths are a Poincare metric quantity by Lemma 2.1, we
have

Theorem 3.2. λ-lengths are natural for the action ofMCs

g in the sense that ifφ e MCg,
rc in Fg, th

λ(c\Γ) = λ

Γm e ^g, and c is an ideal arc in Fg, then

Corollary 3.3. Suppose that A is an ideal triangulation of Fg and A is an assignment
of positive real numbers to the ideal arcs of A so that {A, A) determines the point
Γ e -Ts

q. Ifφ eMCg, then φ induces a one-to-one correspondence between components
of A and components ofφ ~1A. If A' denotes the assignment of numbers to components
ofφ'ιA induced from A by φ, then (φ ~x A, A') determines the point φ^Γ e ZFs

g.
 !_J

Remark. The action of MCg on <Tg with respect to a fixed ideal triangulation is
computed in Sect. 7. See also the Addendum.

We close this section with yet another parametrization of -Tg. Fix an assignment
A of/.-lengths on the ideal arcs of an ideal triangulation A of Fg, and let Γm e .T*
correspond to (A, A). Let π: JD-+Fg denote the universal cover with group Γ.
Suppose that Γc: F is a triangle in A with geodesic sides and choose a lift Γof Γ to
ID. By an end of Tin F£, we mean the Γ-orbit of an end (in the usual sense) of the
closed convex hull of Γin ID. The collection of such ends is denoted S = $(Δ). The
end E e $ abuts on the puncture x{ of Fg if π (E) is asymptotic to x{. Two ends are
said to be equivalent if they have a common abutment xi9 and the class is denoted

Suppose, now, that Γhas sides {c, d, e) cz A. The orientation on Fg IDTinduces
both a cyclic ordering (c, d, e) on {c, d, e] and an orientation c, d: [0,1 ] -> d, e on each
side of T (see Fig. 3.1). Consider the end EG $ of T which meets the tail 3 [0,^] of d.
The end E is said to be opposite the ideal arc e, and <iis said to abut on the end E. We
also let T1 denote reversal of paths, so, for instance, d and c - 1 have a common
abutment.

Since Γm e ,Tg is a decorated group, there are well-defined horocycles Ac, hd, he in
ID centered at the vertices of the lift T of T\ see Fig. 3.1. The sector of the end EoϊT
is the horocyclic segment π(her\T)cz Fg. Of course, the sector depends on both
EeS and fme-Tg.

We define a map

/: 3Ts

g « JR.%. « WLA

+ -+ IR 2 / « I R ^

and develop the corresponding parametrization of 3~s

q. To compute the coordinate
entries in the target, suppose that Tis a triangle with edges (c, d, e) and the end E of
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Fig. 3.1

T is opposite e. The h-length (for "half horocyclic length") of e for (Δ, A) = Γm e 3?~s

g

is defined by

, = A(e)
"m) A(c)A(d)'

This defines the map /.
The terminology is motivated by our next result, which follows immediately

from the definitions and Proposition 2.8.

Corollary 3.4. If (A, A) = Γm e i ^ and E e S(A\ thenh(E,Γm) is half the Poincare
length of the sector of E. LJ

Remark. It follows that the functions ρ; : ̂  —> IR+ , / = 1, . . . , s, used to define the
foliation J* of Ts

g are easily computed as

ρi(fw) = 2 Σ h^E,fj.
Ee[Xi\

Returning to the map /: ^ - > I R ^ , we first observe that

so / is an embedding. Moreover, if eeA, then e "abuts" on four ends A, B, C,
D E S(Λ) as in Fig. 3.2. The condition

h {A, Γm) h (£, Γm) = h (C, Γm) h ( A Γn)

is called the coupling equation of e. We summarize with

Fig. 3.2
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Proposition 3.5. /: Tg-^JR% is an embedding of ^~s

g onto an intersection of
homogeneous quadrίcs. Explicitly, / ( ^ ) c z I R ^ is characterized by the coupling
equations. LJ

Several of our subsequent arguments will depend on the w7?-length para-
metrization" of ,Tg given by Proposition 3.5. As a final parenthetical note, we
simultaneously diagonalize the quadratic forms by assigning a complex coordinate
Ct e (C to each of the orientations e one G A as follows. The orientation of Fg induces
a canonical orientation on horocycles (as in Fig. 3.1), and if the tail of e separates
the sectors of adjacent ends £, E' in the induced order (E, £"), then we define the
"strand coordinate",

This assignment defines an IR-linear embedding J\ IR + cz C s\ The coupling
equation on e is equivalent to the condition that

Arg ζg= ArgζΓi.

(Arg denotes the principal value of the argument.) Of course, we introduce some
further coupling equations: in case Γis a triangle in A with (canonically) oriented
edges (c, d, e), then

For convenience, we may write

Jo I: # s

and consider the map (£2q-+ (£2q induced by the following linear coordinate change
on each factor

In general, if ξ, //e(C, then Arg ξ = Arg// if and only if | c — ]/ — 1 //1 = | η

— ]/ — 1 c I in this way, one imagines the variety determined by the coupling
equations as a product C ί /cz(C2)g, where C={(z,ω)e(C 2 : \z\ = \ω\}.

Remarks. 1) The functions ρt in the definition of the foliation J^ of .Ts

g are easily
computed in strand coordinates as

2

where the sum is over all oriented edges e whose tails abut o n x i 5 / = 1 ί.
2) If h{ is the /th distinguished horocycle determined by ΓmE^gη then the
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"combinatorial length" of hi is defined as # {components of hi — A). Provided this
quantity is not equivalent to zero mod four, then one can easily C-linearly solve for
the /z-lengths of ends of A that abut on xt from the strand coordinates {ζ§: e abuts on
x , e E A}. In particular, when s = 1, q = 6g — 3, so the combinatorial length of hί is
2q = 2(4). Thus, /7-lengths are IR-valued (C-linear functions of strand coordinates
in case s = 1. See Remark 4 after Corollary 7.4.

4. The Convex Hull Construction

Lemma 4.1. Suppose Γm e 3~h

q, and let ueL+. The orbit Γu is discrete in L+ u{0} if
and only ifu is a fixed point of some parabolic transformation in Γ. In particular, 0 is
an accumulation point of Γu if and only if u is not a parabolic fixed point.

Proof. First suppose that u is a parabolic fixed point and choose an embedded
horocycle about the corresponding cusp of Fs

g. Since the horocycle is embedded, the
Euclidean radius of a lift to ID is bounded away from one. Since the height A of a
point h in L+ is related to the Euclidean radius r of the corresponding horocycle by
r = (1 + h)~ \ it follows that 0 is not an accumulation point oϊ Γu.

Conversely, suppose that 0 is not an accumulation point of Γu, and let Kbe the
complement in Fs

g of a union of disjointly embedded horoballs, one about each
cusp. Choose β > 0, so that if the height of a point on L+ exceeds /?, then the
corresponding horocycle in ID is disjoint from a fixed lift of K. Now, choose a e IR +,
so the height of any point of Γau exceeds β. It follows that the horocycle on Fg

corresponding to αw lies inside Fg — K, which implies that u is a parabolic fixed
point.

It remains to show that if Γu accumulates at a point, say v, on L+, then Γu
accumulates at 0. To see this, choose a sequence {yj of hyperbolic elements of Γ so
that the contracting eigenvector (ray) of yf on L+ tends to the ray from 0 through v.
If {w, } <= Γu is a sequence which accumulates at ι\ then {y,^} accumulates at 0. D

Remarks. 1) In fact, the action of Γ on L+ is ergodic; see [EP].
2) Another proof of discreteness of Γu for u a parabolic fixed point comes from

the fact that the hyperbolic length spectrum of Fg is discrete [Ab] with an
application of Lemma 2.1.

If fm = (Γm,B1, . . . , Bs) e # ] (see Sect. 2), then we define ^ = ̂  u . . . u2?& and
let C be the closed convex (Euclidean) hull of ^ in M.

Lemma 4.2. L+ r\C is the set of points of the form αz, where α ^ 1 ύwd Z G J .

Proof. If M G L+ is not of the stated form, then we may choose α > 1 so that α u is also
not of the stated form. Let T be the tangent plane to L+ at αw, and let ̂ 4 cz T be the
horizontal line through <xu. We may rotate T slightly about A so that the rotated
plane separates u from J*, since there are only finitely many point of & below the
height of au by Lemma4.1. Therefore, wφC.

Conversely, \ϊue$ and α > 1, choose a sequence {yj of hyperbolic elements of
Γ whose expanding eigenvectors on L+ tend to the ray from the origin through u.
Since M is discrete, the height of ytu tends to infinity, so au is in the closed convex
hull of {yiu}. D

Lemma 4.3. Each ray r from the origin inside L+ meets dC exactly once.
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Proof. Since the projection & a S1^ of & is dense, the projection to ID of the point
rnJH lies in the hyperbolic convex hull of a finite set {zx, . . . , zk} c ^ . It follows
that r meets the convex hull of {z1, . . . , zk} cz $ and so meets C. By discreteness of
£%, there are points {w\, . . . , wk) cz ̂  of arbitrarily large height with wt arbitrarily
near zn i= 1, . . . , k. It follows that every point of r beyond the first intersection
with C lies in C. D

2,
Proposition 4.4. The boundary of C inside L+ consists of a countable set Φγ, Φ
of co dimension-one "'faces,'" each of which is the convex hull of a finite number of
points in &. Each face lies in an elliptic plane, and the set of faces is locally-finite inside
ZΛ

Proof Let zoedC — L+ and let S be a support plane for C at z 0. If S were
hyperbolic, then since 3$ is dense, we could find points of 3# on either side of S,
which is absurd. If 5 = { x e M : <x, s}=-l} were parabolic, then seL+ (since
<(z0,5 ) = — 1 and z0 lies inside L+), and s could not be a multiple of any point of $
(since (s, s} = 0 and d i e s above 5*); by Lemma 4.1, there are y7- G Γ S O that yjS tends
to 0, but

for ZE&, which is absurd. It follows that S is elliptic.
We claim that there is a support plane at z0 which contains three affίnely

independent points of &. Indeed, suppose some line A in the support plane S
contains S n M, and rotate S about A until a point of J* is encountered. (As before,
only a finite number of points of M lie below the elliptic plane S.) Performing at
most two such rotations, we arrive at such a support plane.

It remains to show that the set of faces is locally-finite inside L+. To this end,
suppose that K is a compactum lying inside L+ meeting the faces Φ 3 , Φ2, ... .
Choose xt e Φt n ^converging to x, so that the plane of Φx converges to a limit plane
J/J7 containing x. As a limit of support planes, Wis itself a support plane of C, whence
W is elliptic. By discreteness of ^ , the faces Φί, Φ 2 , . . . cannot all be distinct, as
desired. •

If Γm = (Γm, B1 . . . , Bs) e -Ts

g, let Λ (Γm) denote the collection of geodesies on Fs

g

arising from the edges of dC inside L+. Explicitly, if z, w e J*, then the geodesic in ID
connecting z, weS^ projects to a geodesic arc connecting cusps of Fs

g: Δ(Γm)
consists of the geodesic arcs that arise in this way from the endpoints of edges of dC
inside L+.

Theorem 4.5. A (Γm) consists of a finite collection of simple geodesic arcs disjointly
embedded in Fs

g connecting punctures. Furthermore, components ofFg — Δ(Γm) are
simply connected.

The isotopy class of such a decomposition is called an ideal cell decomposition

off;.

Proof Suppose that cx, c2 e A (Γm) (perhaps with c1 = c2) and c1 n c2 φ 0. There are
lifts e1, e2 of cx, c2 to M (with dex, de2 cz£%) so that the endpoints deί separate de2

on S^. Since the construction of C was Γ-equivariant, e1 and e2 are edges of dC
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inside L+. By discreteness of $ in L+, there is a point z e J whose height exceeds
that of de1 and de2 . It follows that eγ and e2 cannot both be edges of dC9 and this
contradiction shows that A (Γm) consists of disjointly embedded arcs.

If y G Γ leaves invariant a face of <3C, then y preserves the plane of the face since it
acts linearly. Since the plane of a face is elliptic by Proposition 4.4, y must be elliptic
(see Sect. 1), which is absurd for Γme^~g. It follows that complementary
components of A (Γm) are simply connected, and the theorem is proved. D

Remarks. 1) The ideal cell decomposition A (Γm) depends on the choice of orbits
Bγ, . . . , Bs. There is thus an (s— l)-parameter family of ideal cell decompositions.
In particular, if s= 1, then the ideal cell decomposition is unique.

2) At the expense of choosing a distinguished cusp of Fg, we give a convex hull
construction for a kind of decomposition of Fg associated to a point of 2Γ*g (see
Theorem A.2).

3) Many of the arguments in this section generalize readily to the setting of
finite-volume hyperbolic w-manifolds with cusps, n ^ 3 (see [EP]).

4) The inner product on M induces a Euclidean structure on each face since the
plane of each face is elliptic (see Sect. 1). These combine to give a canonical (non-
complete) Euclidean structure on Fg associated to Γm £$~\.

5. The Cell Decomposition of the Decorated Teichmϋller Space

Suppose that Γme Tg. The convex hull construction of Sect. 4 determines a
canonical ideal cell decomposition (i.c.d.) A(Γm)cFg. Conversely, if A is a fixed
i.c.d. of Fg, then we define

By definition, #'(A x) r\^{A 2) φ 0, if and only if A1 r\A2 is an i.c.d. ofi7*, and in this
case, ^{Aγ) r\(€(A2) = <$(A1 r\A2). Our immediate goal is to characterize ^(zl),
Φ(A)in terms of Λ-lengths on A in the special case that A is an ideal triangulation
( i . t . )of^ .

To establish notation, fix an arc e in the i.t. zl, and consider a lift e of e to ID. e
separates two triangles S, T of the lift A of A to ID, and we adopt the notation of
Fig. 5.1 (0) for the arcs in d§, df. It may be that πS=πf, where π: ID-> Fg is the
canonical projection, and a' — π(α), . . . , d' — π(d) need not be distinct; see Fig. 5.1,
where we enumerate the various cases. In any case, if A e IR + = {/I: zi—>IR + }5

then we say A satisfies the (strict) face condition one eA if the following inequality
holds:

A (a1) A (bf) [A2(c') + A2{d') - A2(e')]

+ A (cf) A (df) [A2{a') + A2(£>') - A2(e1)} > 0 .

The strict face condition on e is indicated in Fig. 5.1 in the various cases (where
we identify an arc with its /1-value for convenience). We will also refer to "face
equality" (corresponding to equality above) and the "weak" face condition
(corresponding to the weak inequality ^ above) on e for A. Furthermore, if zΓczl,



318 R.C. Penner
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Fig. 5.1 (continued)

2 α b ( α 2 + b 2 - e 2 ) > 0

( V I I I )

then we will say that A e IR^ satisfies the "'face relations on A rel A' " if the strict
face conditions hold for A on each e G A' a A, and the face equalities hold on each
e EA - A'. In particular, we say simply that the "face relations" hold for A if the
strict face conditions hold on each eeA.

Theorem 5.1. Suppose that A is an i.t. of Fs

g, and let IR^ 3A = Γme^'g. Then a
necessary and sufficient condition for Tme(^\A) is that A satisfy the face relations
for A. Furthermore, if A'a A is an i.c.d., then a necessary and sufficient condition
for fme(i(A/)(^^(A) is that A satisfy the face relation for ArdA'.

Proof of Necessity. Fix fm e 3~s

g, recall the construction of A (fm) from Γm (in Sect. 4),
and let 38ciL+ denote the discrete subset corresponding to the decoration of
horocycles. A lifts to a collection of Euclidean geodesies in M connecting points of
&. If e is such a lift of e e A separating triangles S, T in the lift, then e is extremal in
the hull of J* and so in particular in the hull of SuT. Comparison of the face
condition with Proposition 2.6b thus guarantees necessity. The proof of necessity
in the second assertion is analogous. LJ

Before we undertake a proof of sufficiency, we develop some generalities. Fix an
i.t. A of Fg. Suppose that (7])" is a cycle of triangles in the sense that TjίΛTj+1 = e; ,
for ally, where we henceforth regard the index,/ as cyclic, so for instance, Tn + ί = T1.
If the edges of Ύj are {ê  _ x, e p bj}j' = 1, ...,/?, then the collection {bj}l a A is called
the boundary of the cycle {Tj)\.

Lemma 5.2. Suppose the (weak) face conditions hold for IR^ 3 A = fm e 3~s

g on each
eeA. Then all three strict triangle inequalities on {A (c), A (d), A (e)} hold whenever
there is a triangle in A with sides c, d, e.

Proof To get a contradiction, we suppose for instance that A(e)^A (c) + A (d),
and adopt the usual notation for the edges adjacent to e (see Fig. 5.1). Thus,

A2(c) + A2(d)-A2(e)^ -2Λ(c)Λ(d),

so the face condition on e gives

0SA(a)A (b) [(A (c) - A (d))2 - A2 (e)],
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and we find a second edge-triangle pair so that the triangle inequality fails. It
follows that there is a cycle (7})" of triangles in A so that a strict triangle inequality
fails at the edge-triangle pair (T), e}), for ally. As before, let {bj}" denote the ideal
arcs of A in the boundary of the cycle. We have

Upon summing these inequalities and cancelling like terms, we obtain

which is absurd for Γm e , D

Proof of Sufficiency in Theorem 6.1. To prove sufficiency in the first claim, we
suppose that ΛeΊRΔ

+ satisfies the face relation on A (and hence the "triangle
inequality" condition of Lemma 6.2) and prove that Γm = (A,A)eci(Δ). To this
end, adopt the notation in the proof of necessity, so that $ c L+ arises from
A G IR +. By Proposition 2.2, the triangle inequality condition is equivalent to
ellipticity of the affine planes spanned by triples in $ arising as the vertices of a lift
of a triangle in A. Furthermore, we saw above that the face condition is equivalent
to "local extremality." Finally, from the inductive definition of l c [ + in
Theorem 3.1, it follows by induction and an appeal to Proposition 2.7 that
fme(i(A). The proof of sufficiency in the second assertion is analogous. •

Recall the //-length parametrization of #"* given in Proposition 3.5. A pleasant
algebraic fact relating /i-lengths and the face condition is the observation that the
face condition is linear in /z-length coordinates. Indeed, suppose first that e e A
separates two triangles S φ T in A with edges {a, b, e), (c, d, e), respectively, where
# {a, b, c, d) = 4, and let (α, β, ε) ((7, δ, φ), respectively) denote the //-lengths of the
ends of ^opposite (α, b, e) (of Γopposite (c, d, e), respectively); see Fig. 5.2a. We see
that the (strict) face condition on e is equivalent to

% + β + Y + δ> ε + φ ,

(α)
Fig. 5.2

(b)
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by dividing the former by Λ(a)Λ(b)Λ(c) Λ(d)Λ(e). Since the various cases
(indicated in Fig. 5.1) give rise to linear quotients, the claim follows.

For each eeA, we next define a pair of vectors Be, Cee IR/, where $ = 6° (A) is
the set of ends of A (see Sect. 3). Adopt the notation of Fig. 5.2 for the ends A, B, C,
D e $ on which e abuts. Be and Ce each lie in the coordinate subspace of IR/
corresponding to A, B, C, D (in this order), and Be (Ce, respectively) has entries
(1,1,1,1) ((1, - 1,1, - 1 ) , respectively) the ends A,B,C,D need not be distinct. See
Fig. 5.3a.

Lemma 5.3. {Be, Ce\ eeA} is a basis for IRΛ Furthermore, suppose

xe, ye e IR. Then z satisfies the face relation on AvelA' if and only if xe > Ofor eeA'
and xe — 0 for eeA — A'.

Proof. The span of {Be, Ce:eeA} is clearly identical with the span of the vectors

C'p = —-—-: eeA). Let us fix a triangle T in A, say with endsBe-~T ' - 2 j

(A,B,E). There are exactly three vectors among {B'e, C'e\ eeA} with a non-zero
projection into the subspace of IR/ corresponding to (A,B,E); namely, (1,1,0),
(0,1,1), and (1,0,1). See Fig. 5.3b. Insofar as these projections are linearly
independent, {B'e, C'e\ eeA}, and hence {Be, Ce: eeA} forms a linearly independent
set, proving the first part.

Fig. 5.3 (b)
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Since the face condition is linear, the second part follows at once from the fact
that the face equality oc + β + y + δ = ε + φ holds on every edge for any Ce,
eeA. •

Define the following subspaces of IR/:

X = {ΣxeBe: xeeJR],

Y = {ΣyeCe:yeelR},

X = {ΣxeBe:xe^0],

X={ΣxeBe:xe>0},

and remark that X has a natural structure as a cone on a simplex. Indeed, the (open)
faces ofX correspond to subsets A' c A, where the face relation holds on A rel A'. A
face Foϊ X is said to be finite if the corresponding subset A' = {e: x e φ 0} of A is an
i.c.d., and we define

X + =Xu{faces FofX: F is finite}-X.

We regard -Ts

g as the subset of R ^ c IR/ determined by the coupling equations
(as in Proposition 3.5), and consider the projection Π of IR/ along Y onto X.

Theorem 5.4. For each i.t. A of Fs

g, the projection Π induces a homeomorphism

Π: <&(Δ)-+X +

which maps $ (A) to X. If A' a A is an i. c. d., then Π maps $ (A') to the corresponding
(open) finite face ofX + .

The argument involves an "energy functional"

K: I R i ^ R

where the sum is over Me E A and α, β, γ, δ denote the Λ-lengths of the ends of A on
which e abuts (see Fig. 5.2). Clearly, ^ i s non-negative, homogeneous, and smooth;
furthermore, K(z) = 0 if and only if z satisfies the coupling equations.

Suppose z e IR4 and consider the affme subspace Yz = {y + z: y GY and
V + Γ G I R + } . The gradient VK restricts to a vector-field, denoted VK\Y, on Yz;
consider the negative-time flow zt = (VK\Y)_t(z), so energy is decreasing along
trajectories (the system is "dissipative").

Claim 1. Fix ze IR^. If /7zeX + , then limz ί = z.x exists, where z x e IR^ .

Proof Since A'is homogeneous, the limit [z x] ePJR^ exists projectively, and there
are two cases: either [ z J e P R i , or perhaps [ z j eP[( !R + u{0})^- ΊRS

+]. To
prove the claim, we show that the second case is absurd for Πz eX + . To this end,
suppose [zt] ePJR.'i are normalized by the condition sup{z f(£)} = 1. Notice that
Πzt = ΠzeX^ by definition. Eei

Suppose zt(A)-^0 for some avceeA with adjacent ends A, B, C, D (as in
Fig. 5.2). Since zt is dissipative, in case (a), we must have zr(C)—>0 or zt(D)^0; in
case (b), zt (D) -• 0. There is thus a cycle of triangles (7})" with boundary (by)ϊ so that
zt(Bj)^>0, j = 1, . . . , /7, where B} is the end of A which is opposite bj in 7}.
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Now, for any ze lR^ with Πz = ΣxeBe, we easily compute that

in case (a), and xe = \β in case (b). In particular, if z vanishes on the ends opposite a
cycle of triangles (7})" as above, then the sum

telescopes.
Finally, since Σz^Z^-^O, it follows that Σxe vanishes, which contradicts

ΠzeX + . •

Claim 2. If xeX+, then Yχ φ 0.

The proof is by induction on the number N of vanishing coordinates, and
the basis step N = 0 is trivial. For the induction, suppose first that e separates two
triangles of A and adopt the notation of Fig. 5.2a for the nearby ends and Λ-lengths.
If, for instance, α = 0 and yδ φ 0, then it is easy to deform z along Y and decrease N
by at least one. Similarly, if e does not separate and we adopt the notation of
Fig. 5.2b, then if α φ 0, δ = 0 or α = 0, δ Φ 0, we can again easily decrease N. We are
led to a cycle of triangles so that x vanishes on the boundary of the cycle, and this
contradiction as before establishes the claim, u

Let us enumerate the arcs el9 e2, . . . , eqe A once and for all, and define

( α

nΨi - nψei ~ y n

 }

to be the corresponding term of K; suppose z = x + Σye Ce, x eX + , and let y\ — ye.,

Claim 3. z e IR+ is a zero of K if and only if z is a fixed point of (VK\γ)t.

Proof. We compute

o _ " 2 dψi

dyj " f t Ί ψ. Π Ψi) cyj '

so a zero of K is automatically a zero of VK\γ.
Conversely, suppose K(z) φ 0 for z e ΊRi. Thus, ψe(z) Φ 1 for some eeA, and

we may choose an arcβ so that (lnι//e)
2 is greatest. Suppose first that e does not

separate two triangles of A, and adopt the notation of Fig. 5.2b for the nearby ends
and /^-lengths. Let us make the convention that Ce has projection (1, — 1) into the
(α, (5)-subspace. Compute

1 oK 1 2

= I

so if e does not separate triangles of A, then VK\γ(z) φ 0.
In case e does separate triangles of A, adopt the notation of Fig. 5.2 a for nearby

ends and /?-lengths. Let us suppose first that all the ends pictured in the figure
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are distinct [case (i) of Fig. 5.1] and make the convention that Ce has projection
(1,1,-1,-1) into the («, β, γ, d)-subspace. We compute

ot

+ In

i n

- - ] +

(j8+

+ In
φ(δ-t)

v } ' ' ' 7 yd ' α β,β2

1 εjβ 1 φy 1 φ<>
+ -- In In ̂ ^ - I n -—-.

p α 1 α 2 }' ^i°2 o Ί\Ίi

Since (In φe)
2 = I In —- I is greatest, we must have dK/dye (z) φ 0 unless

ΨI = ΨI = ψ2

c =ψ2

d = ΨI .
Furthermore, we may suppose <χβ > yδ, and it follows that

α 1 α 2 >/^ε, Ί\Ίi>ϊ>φ,

β1β2>otε, διδ2>yφ.

Finally, if/ e {α, 6, c\ rf}, then these inequalities are asymmetric in e and/; it follows
easily that if / is of type (i), then dK/dyf(z) φ 0.

Armed with this computation, we can handle the various cases of Fig. 5.1
(iii)-(viii) in turn. For instance, if e is of type (iii), then α2 = ε = β1,a1 = α, β2 = β,
and

2 dy

δλδ2 ΊiΊi

so -—(z) φ 0 in this case. We leave the analogous routine computations in cases

(iv)-(viii) to the untiring reader. Π

Claim 4. Each zero z e 1R^ of VK\Y withΠzeX+ is non-degenerate with index one.

Proof. Suppose that ze lR^ satisfies VK\γ(z) = 0, so K(z) — 0 by Claim 3.
Compute

1 6 K

2 θj'^j^

and define the matrix

Ψi
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The Hessian of K at z is therefore 2 A1 A, and the claim follows provided A is non-
singular.

Adopting the notation of Fig. 5.2, define

Άu =
α β, if e = et is type (a)

a , if <? = e{ is type (b)

for / = 1, . . . , a, set

and remark that invertίbility of A' implies the desired invertibility of A. To see that
A' is non-singular, we suppose that

is a relation amongst the rows, where ξi e IR. Fix an arc e e zl we show below that
ςp = 0, and there are several cases (those of Fig. 5.1) depending on the topology
of Δ near e. These cases are considered in turn.

Cases (ii) and (iii). Adopt the notation of case (iii) and define

Q = Q = (— 1> 1) in (α,/^-coordinates

Cc = (1,1, — 1,-1) in (7, φ, (^^-coordinates ,

Q = (1,1, — 1, — 1) in (δ, φ, yί9 72)-coordinates,

with Ce as before. Compute the four-by-four minor of A' corresponding to
(a, c, d, e) to be

B =

0 0

—φ

In particular, the two-by-two minor corresponding to (a, e) is non-singular. Since
the only non-zero entries of (dψjdyj |2)J= x lie in this subspace, we conclude that the
coefficient ξa = 0 if a is of type (ii).

Furthermore, the three-by-three minor corresponding to the (1,1) entry of B
row-reduces to

0

Finally, each diagonal entry is positive since Πz e X + and z e ]RJ expanding by
minors along the first row, each term is positive; and one concludes that the matrix
is non-singular. It follows as before that ξe = 0 if e is of type (iii).



326 R.C. Penner

Case (iv). Adopt the notation of case (iv), and define

Ca = Cd = (1,1, — 1, — 1) in (y, φ, β, ε)-coordinates,

Cb = (1,1, - 1 , - 1 ) in ( β l 5 β 2 , α , ^-coordinates,

Cc = (1,1, — 1, — 1) in ( ,̂ φ,y1,72)-coordinates.

The four-by-four minor of A' corresponding to {a, b, c, e) is computed to be

-β

— α

δ

δ-a

which row-reduces to

-y + φ-δ

— oc

δ

0

fi - φ

ε

0

-β

0

a + ε + βί+β2-β

0

-β

ε

Again the diagonal is positive, and one concludes (after expanding by minors along

the first row) that ξe = 0 if e is of type (iv).

Case (v). This case is computationally identical with the previous one.

Case (i). Adopt the notation of case (i), and define

Ca = (1,1, — 1, - 1 ) in (α 1 ,α 2 ,β ,ε)-coord inates ,

Cb = (1,1, - 1 , - 1 ) in ( j8 l s j8 2 ,α,^-coordinates,

Cc = (1,1, — 1, — 1) in (d, φ, y 1 ; y 2)-coordinates,

Cd = (1,1, - 1 , - 1 ) in (y, φ, (51,<52)-coordinates.

The five-by-five minor of A' corresponding to (a, b, c, d, e) is

! + α 2 + /] + £: -j8 0 0 ε

— a j 6 1 + ^ 2 + α + ε 0 0 ε

0 0 7i+72 + ^ + Φ <5 "~Φ

0 0 y (3^^2 + y + φ —φ

7

which row-reduces to

— α

0

0

0

δ — φ —

φ + y-

0

0

y — (5 j — δ

4-<5i + <52

s

0

ε

2 0

- φ

α + jβ + vH
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Expanding by minors on the first row, one easily concludes that each term is
positive; as before, we find that ζe = 0 if e is of type (i).

Cases (vi)-(viii). These are left as easy exercises. D

Proof of Theorem 5.4. Fix x eX+ and consider the flow VK\Ύ on Yλ; Yx φ 0 by
Claim 2. The cycle of triangles argument in Claim 1 shows that the direction field of
VK\Y extends continuously to

Ϋλ = {>'eY: .r + j>e(IR+u{0})*}

in such a way that the extension points into Yx at the ideal points Yλ. — Yx. Insofar as
Yx is convex, Claim 3 together with the Poincare-Hopf index theorem imply that
VK\Y has a unique attracting zero in Yγ.

We define a map

where x — x' eY and x' > 0. By Claims 1-4, σ is well-defined; moreover, σ is clearly
continuous, and 77© σ is the identity on X + by construction. To finish the proof, we
show that σ is onto. To this end, suppose z e R ^ , K{z) = 0, x=/7zeX + , and define
z' = σx. It follows that K(z') = 0 from Claim 3 and z 'e R ^ from Claim 1. Claim 4
finally gives z = z', so σx = z' = z, as desired. •

Remark. Because of the formal similarity with classical mechanics, it would be
interesting if the dissipative flow on IR+ were Hamiltonian for some reasonable
extension to R f of the (known; see [P2]) Weil-Petersson Kahler form on the
variety V <zi R ^ .

As an immediate consequence of Theorem 5.4 and Corollary 3.3, we find

Theorem 5.5. If Δ is an i.c.d. of Fs

g, then %> (A) is an open cell of dimension
#zί {^(Δ): Δ is an i.c.d. of Fs

g) is a MCg-ίnυariant cell decomposition of'&~%

g itself.
Furthermore, the isotropy group of^ (Δ) in MCg is isomorphic to the (finite) group of
mapping classes of Fg leaving Δ invariant. U

By definition, the complex

Δ is an i.c.d. of Fs

g}

is isomorphic to the poset of i.c.d.'s of Fg with the relation of inclusion. Following
Harer [Ha], we define the arc complex ^s

g of Fg to be the simplicial complex whose
/7-simplices correspond to collections Δ of disjointly embedded families of (p + 1)
ideal arcs in Fg so that no arc, nor any pair of arcs, in Δ bounds a disc in Fg. Of
course, MCg acts on stfs

g in the natural way.
Now, the cell-decomposition ^g of 3Γ*g induces a cell-decomposition ^ / R + oΐ

Tg/JK+, and we identify cells of ^ / R + with corresponding cells of stfg in the
natural way. Clearly, s#g — ̂ / R + is a subcomplex of J / ^ , and the identification of
cells in ^ί/ΊR+ with cells of . ^ induces a MQ-equivariant inclusion # i / R + -> stfs

a.
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6. Centers of Cells, Cyclic Euclidean Polygons, and the Construction of Matrix
Groups

Suppose that A is an i.t. of Fg. The assignment A = 1 of /l-lengths to each eeA
determines a point fm(A), called the center ofΦ(A). It follows immediately from
naturality (Corollary 3.3) that if φeMCs

g, then φ+Γm(A) = Γm(φ~1Δ). Thus, the
conformal symmetry group of Γm(A) (preserving the decoration) is naturally
isomorphic to the topological symmetry group of mapping classes leaving A
invariant, which is itself naturally isomorphic to the isotropy group of $(A) in
MCI

Proposition 6.1. Suppose that A is an i.t. ofFs

g. Then the point Γm(A) = φΓm(A) e ,Tg

is arithmetic, where φ: 3~l -» ^ is the canonicalfibration (see Sect. 2). That is, Γm (A)
is conjugate in PSL2JR. to a subgroup of finite index in PSL2Έ.

Proof. Since Γm = Γm(A) is finite co-area, it suffices to show that Γm is conjugate to a
subgroup of PSL2Z. To this end, let T be the triangle in JM with vertices
2~1/2(1,1,O), 2 ~ 1 / 2 ( - l , - l , 0 ) , 2" 1 / 2 (2,0 5 2). If w, υ, weL+ are the vertices of a
triangle in PST27L (Γ), then <w, v} = (ι\ w> = <w, υ}=—\. The projection of edges
of triangles in PSL2Z(T) to ID gives the usual PSL2Z-invariant tesselation of ID.

Now, the center fm of ^(A) arises from 1 = ΛeJR.Δ

+, and we recall the
construction of $ cz L+ from A given in Theorem 2.1. In fact, $ is exactly the set of
vertices of triangles in PSL2Z(T), and the construction furthermore determines a
representation of Γm = φΓm as a group of motions preserving & setwise and
mapping triangles in PSL2Z(T) to triangles in PSL2Z(T). The proposition
follows. Π

The argument indicates the fact that the proof of Theorem 2.1 is constructive in
the sense that if A e IR + , for A an i.t. of Fs

g, and (A,A) = Tm e ^ g , then one can
algorithmically compute a matrix group corresponding to φ Γm e -Ts

g of course, one
can also compute the decoration @ cz L+ from A. For instance, taking the triangle T
above together with its reflection in the plane x2 — 0 as a fundamental domain for
the action of πx (F\), one computes that the corresponding matrix group is
generated by (_J ~\) and (\ \).

We wish to extend this to a construction of (decorated and marked) matrix
groups from the λ-length data {λ(e;fm): eeA'} in case A' is an i.c.d. of F*; our
approach also leads to the notion of the "center" oίΦ(Ar). We begin with some
definitions.

Let P denote an oriented convex Euclidean n-gon in the plane for n ^ 3. The
orientation of P will be used to enumerate the edges in their clockwise order starting
from some fixed vertex. We say P is r-cyclic if P inscribes in a circle of radius r, and
we say P is simply cyclic if it is r-cyclic for some r > 0. A cyclic polygon is on-center if
its interior intersects every diameter of the circumscribing circle; otherwise P is off-
center. An on-center cyclic polygon has a unique edge which shares an endpoint (or
perhaps coincides) with an otherwise disjoint diameter; this edge is said to be long.

If a, b, C G I R + satisfy all three strict triangle inequalities, then we define

:(a,b,c)=
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Lemma 6.1. Suppose that P is a triangle with edges (in order) of lengths a, b, c. P is
1-cyclic if and only ifΣ(a, b, c) = l. Furthermore, P is off-center with first edge long
if and only if a2 ^b2 + c2.

Proof The classical formula of Heron gives a relation between the semi-perimeter
s = ^(aJrbJ

Γc) and the area A of P, namely

A = ]/s(s — a)(s — b) (s — c ) .

ΐt is an exercise to verify that A = abcjAr, where r is the radius of the circle which
circumscribes P. Equating the two expressions for A and solving for Σ = 7 proves
the first part. The second part follows from the law of cosines. D

Theorem 6.2. Suppose that (Z?l5 . . . ,/?„), n^3, is a tuple of positive numbers
satisfying the strict triangle inequalities

bι<Σbj> for i=l, ...,n.

There exists a unique r > 0 and a unique (up to congruence) r-cy die polygon P whose
edge lengths (in order starting from some fixed vertex of P) are δ l 9 . . . , bn.

Remark. The uniqueness part of the theorem is a version of Cauchy's Theorem on
rigidity of convex surfaces for cyclic planar polygons. The existence part further
gives the tuple (b^[ as a complete modulus for congruence classes of cyclic
polygons.

Proof. Suppose without loss that bγ ^ &,-, i = 1, . . . , n. The idea of the proof is to
inscribe in a circle C,.c= IR2 of radius r ^ \bx a broken arc whose component line
segments (i.e., chords of Cr) have respective lengths bγ,...,&„. We then let r vary
and apply the Mean Value Theorem to prove existence. In fact, if r > y i l 5 there are
two ways to inscribe the first arc (of length bx) in C, so that the arc has (r, 0) e IR2 as
an endpoint: the two possibilities correspond to the on- and off-center cases.

In fact, we proceed somewhat more analytically and let

be half the angle subtended by a chord of length b{ in Cr each βt (r) is a strictly
monotone decreasing function of r. We define

There is thus an r-cyclic n-gon realizing the tuple (fef)" if and only if

where ω(r) = μ(r) gives an on-center and ω(r) = v(r) gives an off-center polygon,
respectively. Meanwhile, β — μ (r) and β — v (r) are the upper and lower sheets of
r — \bx escβ, respectively.

To prove existence, notice that ω(r) (μ(r), v(r), respectively) is a strictly
monotone decreasing (increasing, decreasing, respectively) function of r, and
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/ n

l i m v ( r )/ω (r) = b1l £ bx < 1 ,
r -» x / i = 2

lim μ (r)/ω (r) = oo .
κ-» oo

Thus, for r large

on the other hand, for r = jb1, either

[and we conclude that ω(ro) = μ(ro) for some unique r0 ^ i^iL o r perhaps

[and we conclude that ω(r 1) = v(r1) for at least one i\ ^ | 6 J . This completes the
proof of existence.

To prove uniqueness, we first claim that v (r) — ω (r) is a strictly monotone
decreasing function whenever it is non-negative. To this end, compute

dβi 1
dr r

Thus,

However, an easy induction proves that if θ2 + . . . + θm ^ θ1 ^ - , (9 > 0, for

z = 1, . . . , m, m ^ 3, then

t a n 0 2 + . . . + t a n 0 m < t a n 0 1 .

The claim follows.
A final application of the Mean Value Theorem shows that ω(r) equals one of

μ(r), v(r) exactly once, as desired. G

If (^!, . . . , bn) is a tuple satisfying all strict triangle inequalities, then we define
the scaling function Σ (b1, . . . , bn) to be the reciprocal of the radius of the circle
which circumscribes the cyclic polygon with edge lengths {bγ, . . . , bn). Σ is a smooth
homogeneous function (of degree one) which is invariant under cyclic permutation
of its arguments. The expression for Σ when n = 3 is given before Lemma 6.1. When
n — 4, one can explicitly write down an (unpleasant) expression for Σ using the
result for n = 3 and Ptolemy's Theorem. For n ^ 5, it seems difficult to write down Σ
explicitly.

Let P be the cyclic polygon realizing the tuple (£>;)", and suppose that P has
corresponding edges (e^Ί. We associate a sign to (P, ̂  ), / = 1, ...,/?, by

— 1, if P is off-center with β; long

0, if e{ is a diameter of the circumscribing circle

1, else
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Consider the triangle TczP with edges e^ ej +1, e^, where e^ is a diagonal of P (and
the subscript j is cyclic). If e^. has length μ, then

by Lemma 6.1 [where sgn(O) = 0 by convention].

Now, suppose that A' is an i.c.d. of Fg and Γm e !Ts

g. There is then an induced

Λfm e IRi''

where Λpm(e) = λ(e}\Γm).
~~ o

Theorem 6.3. If A is an i.c.d. of Fs

g and Fmeci{A), then Apm uniquely determines
Γm. Furthermore, $ (A) is parametrized by all A e 1R+ so that the following conditions
hold.

(i) If R is a component of Fg — A with (consecutive) edges (e^aA, then

A (et) < X A (ejl for / = 1 , . . . , « .

(ii) Suppose that eeA separates a n-gon component N ofFs

g — A with consecutive
edges (fiYlfrom an m-gon component M of Fg — A with consecutive edges (β/)"\ Then

ε(M,e)Σ(Λ(e1),

Proof We begin with necessity of the conditions and suppose that A = Λ?m e IR | for
some Fm e $ (A). If R is as in condition (i), then R lifts to a face Φ of the hull of ^*,
where Γm — Γm x $. Since the plane of Φ is elliptic by Proposition 4.4, the ordinary
triangle inequality holds in this plane in the induced structure. It follows easily that
condition (i) is necessary.

To finish the proof of necessity, suppose that e e A is as in the statement of
condition (ii); we may assume that e = eί =f . Consider triangles Γ c 7Vand SczM
with edges (eλ f2,f%) and (eί e2, e^), respectively. Tand Slift to triangles in M which
lie in adjacent faces of the hull of ^ . As in the proof of necessity in Theorem 5.1, we
must have

0 < Λ(e2) A(ej (Λ2(f2) + /12(/J - Λ2(<?))

+ Λ (f2) A (Q (A2 (e2) + A2 (ej - A2 (e)).

It requires only arithmetic to check that this is equivalent to

0<e.(T,e)Σ2(Λ{e),Λtf2),ΛU*))

+ e,(S,e)Σ2{A(e),A{e2),Λ{e^.

Finally, we have

Σ (A (e), A (J2), A (fj) = Σ(Λ (£

and

c(T,e) = ε(N,e), ε (S, e) = ε (M, e).
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The first pair of equalities holds because if the vertices of a Euclidean triangle τ
are in fact (some of) the vertices of an r-cyclic polygon P, then τ is r-cyclic as well.
The second pair of equalities holds because if e is a common edge of τ and P, then
t: (τ, e) — — 1 if and only if τ is off-center with e long; this, in turn, is equivalent to the
condition that P is off-center with e long. Necessity of the conditions is therefore
established.

To see that Λ^ uniquely determines Γm if Γm e$(A), suppose that R is an n-gon
as in condition (i). R lifts to a face Φ of the hull of & in M, where Γm = Γm x M. Since
Φ lies in an elliptic plane and L+ intersects this plane in a round circle in the induced
structure (see Sect. 1), Φ is a cyclic n-gon with edge lengths (/Ifm(<?;))" in the induced
structure. This n-gon is uniquely determined (up to congruence) by Λ^ as in
Theorem6.2. Thus, Ap uniquely determines Fmeci{A).

To prove the conditions are sufficient, suppose that A e IR+ satisfies the
conditions and extend A to an i.t. A' ^A of Fg. A' induces a triangulation of each
component of Fg — A. We extend A to A' e IR+ in the natural way: suppose that R is
a component of Fg — A and e eA' — A is contained in R; A \dR uniquely determines a
cyclic Euclidean polygon by Theorem 6.2, and we define A' (e) to be the Euclidean
length of the diagonal of this polygon corresponding to e. The assignment A' e IRi
determines fm £$~s

g by Theorem2.1, and Ay restricts to A on A, as desired. G

Remarks. 1) Since the function Σ is not explicitly known, we are not able to
algorithmically construct matrix groups from elements of IR^ for A an arbitrary
i.c.d. of Fg. However, since the scaling function Σ is known for quadrilaterals, all
elements of codimension-one or -zero (and many high-codimension) cells are
amenable to algorithmic construction.

2) If Zl is an i.c.d. of Fs

g so that there is 1 φ ψ eMC* with φ(e) = e for all eezl,
then we say A is "hyperelliptic." It is easy to see that "most" i.c.d.'s are not
hyperelliptic: indeed, a hyperelliptic i.c.d. A has the property that either Fg — A is
connected or consists of exactly two n-gons, for some n^3; for instance, any i.c.d.
of F\ is hyperelliptic. In case A is not hyperelliptic, it follows from the theorem and
Corollary 3.3 that {ΓmeΦ(A): there is no 1 φ φ eMCs

g with φ* ( f j = Fj is a set of
full measure (with respect to Lebesgue measure on Λ-lengths) in Φ(A).

3) It follows from the theorem and Corollary 3.3 that the map

J ^ - > { I R i : A is an i.c.d. of 2̂ '}

Γm~(Δ(fm),Λfm)

is a MQ-equivariant embedding.
4) It may be of interest to use the interior angles of cyclic polygons to give

coordinates on $(A), for A an i.c.d.
If zl is an i.c.d. of Fg, then we define the center Fm(A) e 3~s

g oίci(A) to be the point
of # £ determined by the assignment 1= A e IR^ notice that A satisfies conditions (i)
and (ii) of the theorem, so in fact, Γm(Δ) eΦ(A). Just as before, we have

Proposition 6.4. If A is an i.c.d. of F* and φ eMCs

g, then

In particular, the conformal symmetry group of Fm(A) is isomorphic to the isotropy
group of $ (A) in MCg. ^
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7. The Representation of the Mapping Class Group

Suppose that a,b,c,d,eeA, so that (a, b, e) and (c, d, e) are (distinct) triangles in A,
and adopt the (usual) notation of Fig. 7.1 i for nearby ends. Consider the operation
(called an elementary move) on A indicated in Fig. 7.1 ii, and let Ae denote the
resulting i.t..

d'=d

b' = b

Fig. 7.1 ( ι ι )

We define the Ptolemy groupoid of Fg to be the groupoid Πg generated by
elementary moves. Thus, an element of Ug is an equivalence class of sequence
(A J)Q (called a "chain") of i.t.'s so that Aj+ι arises from Aj by an elementary move,
/ = 0, . . . , m. — 1 two chains (AJ)Q and (A /)J are regarded as equivalent if A 0 = A '0
and Am = A'n. There is a natural correspondence between arcs of Aj and Aj+1, and
hence an induced correspondence between arcs in any A{, Aj, 0 g ijύ m Notice
that there may be a pair eeAj, e' eAJ+ί of corresponding arcs so that e separates
triangles of Aj, yet e' does not separate triangles of A] + 1; see Fig. 7.2.

Fig. 7.2

Proposition 7.1. Πg acts transitively on i.t.'s ofFg. That is, given i.t.'s A, A' there is
a chain (Aj)'$ o/"i.t.'s with A = Ao, A' = Am.

Proof. Given two i.t.'s A and A' of Fg, consider the corresponding centers (see
Sect. 6) Γm, Γn[ 6 .Ts

g respectively. Since 2Γ*g is connected, we may join fm to Γn[ by a
path in -β~s

g. By general position, we may choose a path which meets only the
codimension-zero and codimension-one faces of our cell-decomposition ^g of 3Γg.
Since two top-dimensional cells ^ {Aγ) and ̂ (A2) share a codimension-one face if
and only if A1 and A2 differ by an elementary move, the proposition follows.

Lemma 7.2. Given e e A separating triangles of A, adopt the notation above for Ae.
f

λa = /. (α. f m ) , . . . , λe. = / (c'; Γm),

y. = h(Arm), ..., φ' = h{F';fm)
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denote the corresponding λ- and h-lengths. Then

and

ε' = β + 7 , φ' = oί-\- δ ,

φ ε

ε' ' φ'

Proof The first assertion is simply a restatement of the "ideal Ptolemy theorem"
Proposition2.6a. Furthermore, Corollary 3.4 has the immediate consequences

and by definition

One easily derives the asserted formulas by direct computation, ϋ

Proposition 7.3. Πs

θ admits a faithful rational representation. That is, if A, A are i. t.'s
of F*, then there exists a q-tuple of homogeneous (of degree one) integral rational
maps

so that
(i) For alli.irs Au A2, A3 of Fs

g

(ii) RΔfΔ is the identity if and only if A — A'.

Proof. Suppose that A is an i.t. of Fs

g and consider A' — Ae for some eeA. If
A G IR4, then Lemma 7.2 describes the rational computation of A' e ]RΔ

+ , so that
(A, A) and (A\Ar) represent the same point of ^ s ; say A1 = RΔiΔ.(A).

Now, given arbitary i.t/s A, A' of F* choose a chain (Aj)% so that A0 = A
and Am — A', and define

the independence of RΔΔ, on the choice of chain and property (ii) each follows
directly from the fact that /-lengths give coordinates on -Ts

g\ property (i) holds by
definition. G

Corollary 7.4. Fix an i. t. A of Fg. The natural action ofMCs

g on λ-length coordinates
with respect to A is by rational maps.

Proof As in Corollary 3.3, if ψ eMCg, then φ ~λ induces a correspondence between
A a n d φ ' 1 A, and hence a natural map JRJ+ ->IR^1 ( z J ). Composing with Rφ{

ι

Δ),Δ gives
our rational representation of φ eMCg. G
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Remarks. 1) As in [Mo], one might think of MCs

g as a subgroup of finite-index
in 77*.

2) Since only the projective class of /-lengths is needed to compute the
underlying conformal types (see Remark 1 after Theorem 3.1), we can clear
denominators in the tuple of rational maps to obtain a faithful representation of
MCg as a tuple of integral polynomials.

3) An interesting and important problem is to discover computable conjugacy
invariants of a mapping class from its representing polynomials.

4) Of course, the second part of Lemma 7.1 gives the action of MCs

g on /z-length
parameters for # J . Since /?-lengths are (IR-valued) (C-analytic functions of strand
coordinates on Ts

q (see the end of Sect. 3), we derive a faithful representation of the
action of MCs

g on strand coordinates as a group of analytic motions of <£2q

preserving the variety determined by the coupling equations.

Example. Let c1, c2, c3, c4 be the ideal arcs in F\ corresponding to the meridian,
longitude, one-one, and one-(minus one) curves, respectively, and let A be the ideal
triangulation of F[ corresponding to {cι}\. Let τm and τέ denote the right Dehn
twists along the meridian and longitude, respectively. We have

If Γm e .T\ and λ{ = λ (c, f J , / - 1, . . . , 4, then

It follows that the action of τm on the coordinates (/H)\ forT\ with respect to A is
given by

Tm. (Λ 1 ,2 2 ,/ 3 )-(Λ 1 ,Λ 3 - 1 μ?+^2) 5 ^2)

One similarly computes that

τ " 1 : {λλλ^^ψλλ^iλl + λl))

describing a faithful rational representation of MC\. The underlying projective-
linear structure of our representation of MC\ ^PSL2Έ is not understood.

We comment briefly on the action of MC\ on the set {Γm(A)\ A is an ideal
triangulation of F{). Recall Markov's diophantine equation

m2 + ml — ml — 3 mmί m2 ,

which arises in diophantine approximation (see [Ca]). As a quadratic in m, one
computes the other root to be

m' = 3m 1 m 2 — m = m"λ (m\ — m\).

It is well-known that any Markov triple (i.e., diophantine solution to Markov's
equation) arises from the Markov triple (1,1,1) by a finite sequence of
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transformations of the form (ra, m 1 ? m2) '-* (m\ mί, m2). Comparison of the
previous equation with our formula for the action of MC\ shows that the set of
Markov triples is exactly the set of coordinates on T\ so that the corresponding
point is of the form Γm(Δ) for A an ideal triangulation of F\.

Remarks. 1) There is a quadratic form classically associated with a Markov triple.
It turns out that the quadratic form corresponding to f (Δ') for A' an ideal
triangulation of F\ is an eigenvector of a certain hyperbolic transformation in the
group of Mδbius transformations underlying fm{A').

2) Further examples of such representations are pursued in the addendum.

Addendum. Surfaces with Distinguished Cusps and the Braid Groups

Given the surface Fg with s ̂  1, we choose a cusp x of Fg once and for all. We say an
ideal arc c in Fs

g is based at x if c runs from x to x. The ̂ -length of c depends on
Γnι e 3Γs

g and a choice of orbit of parabolic fixed points corresponding to x alone,
and so ratios of Λ-lengths of ideal arcs based at x depend only on Γm. We denote the
Λ-length of c with respect to some fixed choice of horocycle about x by λ{c\ Γm). An
ideal triangulation Ax of Fg based at x is (the isotopy class of) a maximal family of
disjointly embedded essential ideal arcs based at x. Components of Fg- Ax are
either triangles or once-punctured mono-gons. There are (£— 1) components of the
latter type and q = 6g — 5 + s components of Ax itself.

Theorem A. 1. Fix an ideal triangulation Ax ofFg based at x. λ-lengths of edges of A x

give projective coordinates on -Tg. That is, given a projective tuple in IR^+, there is a
unique Γm G -Tg realizing the tuple as λ-lengths on ideal arcs in Ax.

Proof. Ax extends in a unique way to an ideal triangulation A of Fg by adjoining to
Ax one ideal arc in each of the punctured mono-gons. The 2-lengths of the ideal arcs
in A — Ax (relative to some choice of orbit of parabolic fixed point for cusps of
Fg) can be chosen independently of the other Λ-lengths and can be ignored. (The
Λ-lengths on A—Ax serve only to fix the orbits for cusps other than x.) The
argument of Theorem 3.1 applies to prove the theorem. G

Remark. Suppose that z = 1 / ]/2 (1,1,0) e L+ is a point in the orbit corresponding
to the distinguished cusp x, a condition we can always arrange by conjugating Γm

inside SO+ (1,2) and re-scaling. If (a

c

 b

d)ePSL2ΊK corresponds to yeΓm with
y (z) = w φ z5 then

Thus, if c a Fg is the ideal arc arising from the geodesic in ID running from z to w,
then λ(c;Γm)= \b\.

λ-lengths of ideal arcs based at x are natural for the action of the subgroup
MCs

q{x) of MCg which leaves x invariant.
Suppose Γm e Ts

g. Let B^LΛ be a choice of Γ-orbit of parabolic fixed point for x,
and let C be the convex hull of B in M. The arguments of Sect. 4 go through to show
that the faces of dC inside L+ lie in either elliptic or parabolic planes, and in the
parabolic case, the face is the convex hull of infinitely many points of B lying in the
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orbit of a parabolic subgroup of Γm. The set of faces is still locally-finite inside L+.
Let Ax(Γm) be the set of ideal arcs in Fg arising from edges of dC inside L+.

Theorem A.2. If Γme <3~g, then Ax(Γm) consists of a finite collection of disjointly
embedded ideal arcs based at x so that components of Fs

g — Ax(Γm) are either simply
connected or once-punctured. •

Such a decomposition Ax(Γm) is called an ideal cell decomposition based at x.
As before, we define

the arguments in Sect. 5 apply to show that each ^(Ax) is a cell. Moreover,
Theorem 6.3 holds verbatim, where the conditions (i) and (ii) are interpreted as
constraints on projective assignments of positive numbers to the arcs in an ideal cell
decomposition based at x.

Theorem A.3. {%y{Ax): Ax is an ideal cell decomposition based at x} is a
MCg(x)-inυariant cell decomposition of\Tg. ^(Ax) is a face of^(A'x) if and only if
AX^A'X. LJ

Remark. If Ax is an ideal cell decomposition of Fg based at x, then we define
Γm(Ax) e <Tg by the assignment Λ = l of/'.-lengths to ideal arcs in Ax. The group of
topological symmetries of (Fg, Ax) is the group of conformal symmetries of Γm(Ax).

Theorem A.4. MCg(x) admits a faithful representation as a group of tuples of
rational maps.

Proof. If Ax is an ideal triangulation of Fg based at x, extend it to an ideal
triangulation A of Fg as before. We extend a projective assignment A of positive real
numbers to ideal arcs in A x to a projective assignment on A by setting A (c') = A (c) if
c' e A — Ax and {<:, c'} determine a triangle in Fg. Transitivity of the elementary
moves applies as before to give a sequence of elementary moves relating φ~ ί (A, A)
to (A, A"), for φ e MCg(x), where A" is a projective rational function of/I; we finally
simply ignore the values of A" on ideal arcs in A — Ax. Π

A move on ideal triangulations based at x which is useful in this context is
the following. If c1eAx decomposes a once-punctured bi-gon R in Fg with
cR = {c2,c3} czAx into a triangle and a once-punctured mono-gon, then we let c[
be the other such ideal arc in R and replace cι by c[ (see Fig. A.I).

Remark. We believe that the elementary move of Sect. 7 together with this new
move act transitively on ideal triangulations of Fg based at Λ\

Fig.Al
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Lemma A.5. In the notation above, if'Γme.Ts

g and

then

Proof. The new move is the result of two elementary moves, and the result follows
from two applications of Lemma 7.2. U

Since M Q (x) is isomorphic to the usual braid group on ($-1) strands modulo
its center, Theorem A.4 and Lemma A.5 are useful for giving a faithful
representation of the braid groups modulo centers. We pursue this in the

Example. Let {ct}\~1 be a collection of ideal arcs based at x disjointly embedded in
^o' s = 4? each bounding a once-punctured mono-gon. The complement of these
regions in Fs

g is an (s—l)-gon R, which we suppose has consecutive edges
(cΛ , . . . , cs_ι). Let {rfji"1 be diagonals of R, so that {dt} separates {ct, ci + 1} from
the other edges. (We regard indices as cyclic, so cs — c1, etc.)

Fix Γm e 3ΓSQ and define

Proposition A.6. In the notation above, the projective class of the tuple {λx,μ^)\~ 1

uniquely determines Γm e -Ts

0.

Proof. The proof is by induction, and the claim is trivial for s — 4, 5, 6, since in these
cases {Cj,^}!"1 contains an ideal triangulation of F^ based at x. Let e-} be the
diagonal of R separating {c-} _ λ, c; , cj + 1} from the rest of dR, j = 1, . . . , s — 1. An
application of Lemma 7.2 gives

v - λ {ep Γ) = ΛΓ 1 {μj_ί μ} - λ;_ ί λj+ί).

Cutting R along d1 yields (a triangle and) an (s — 2)-gon 5 whose edge lengths are
given. The diagonals of S required for the induction step are either given or among
the (ef}i~1, and the proposition follows. Π

Our approach is to keep track of the over-determined set (λ^μ^l'1 of
parameters on«fj under the action of M Q ( x ) . Let σ} denote the half right
Dehn twist along the non-trivial curve in FS

Q homotopic to d^\j{x} in F§ u{x},
j= L . . . , s— 1; the σ7- give generators for MCQ(X). The action of σfι on (λ^f1

is easily described. Indeed, only λ- and λj+i are affected, and

J v P j " + " 1 / V J - r 1 ' J V J + l ' r\// /

>y Lemma A.5. Similarly, the action of σf1 affects only the parameters μj_ί and
ι}Ύ ί among {//;}i~

ι. Neither e1 nor ej + 1 are affected by σf \ so the effect on μj_ί,
ίI+1 can be computed from the formula in Proposition A.6:

by
μ}

μ)
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σ ;

+ ι :

μ

Remark. It is hoped that a simplification of the representations would arise by
specialization of variables and/or a suitable deprojectivization of the coordinates.
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