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Abstract. New representations of affine Lie algebras are constructed using
symplectic bosons of the sort that occur naturally in the BRST treatment of
fermionic string theories. These representations are shown to have analogous
properties to the current algebra representations in terms of free fermion fields,
though they do not act in a positive space. In particular, the condition for the
Sugawara construction of the Virasoro algebra to equal the free one is the
existence of a superalgebra with a quadratic Casimir operator, paralleling the
symmetric space theorem for fermionic field constructions. Both results are seen
to be particular cases of a more general super-symmetric space theorem, which
arises from considering an affinisation of the superalgebras. These algebras are
realised in terms of free fermions and symplectic bosons and lead to a super-
Sugawara construction of the Virasoro algebra. The conditions for this to equal
a Virasoro algebra obtained from the free fields are provided by the super-
symmetric space theorem.

1. Introduction

The "quark model current algebra construction" provides the simplest way of
obtaining representations of affine Kac-Moody algebras. (For a review see [1].)
Given an orthogonal representation of a finite-dimensional compact Lie algebra, g,

[ta,tb] = if*tc , (1.1)

described by real antisymmetric matrices, Ma(ta-^iMa), we can obtain a represen-
tation of the untwisted affine algebra, 0, associated with 0, by introducing fermi
fields, ί^J(z), 1 gj gdim M, defined on the unit circle |z| = 1 in the complex plane and
setting

Ta(z)=l-Mt^(z)^(z) . (1.2)
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UK



592 P. Goddard, D. Olive, and G. Waterson

The fermi fields can be either all periodic or all antiperiodic and we shall refer to
these as the Ramond (R) and Neveu-Schwarz (NS) cases respectively. Thus

ιl/J(z) = Σφίz-' > (1-3)
r

where the sum either runs over reZζ(Rcase) or over reZ + j ( N S case). In either
case Ta(z) is periodic,

, (1.4)
n

the sum being over neZ. Canonical anti-commutation relations for ψj'(z),

{Ψi,Ψi}=δr,-sδ
ίJ , (i.5)

imply the defining commutation relations for g,

[T^TΪ} = ifc

abrm+n+kmδm,-nδ°» , (1.6)

with the central charge k = κ /2, where

Ίr(MaMb)=-κδab . (1.7)

We impose the hermiticity conditions ψ} f t = ψL r and, in consequence, Γn

flt = T-n.
(The terms involving k and K in (1.6) and "(1.7) can be taken to be diagonal, i.e.
proportional to δab, if g is compact and simple.) From (1.7) it follows that

gMdimM=7cdim# , (1.8)

where QM is the value of the quadratic Casimir operator tata in the representa-
tion M.

Directly from #, we can obtain a Virasoro algebra using Sugawara's con-
struction [2] for the energy-momentum tensor in terms of currents,

5 T"(z)T"(z) 5 , (1.9)

where the crosses denote normal ordering with respect to 7^α,

Ϊ7ΪΪ?Ϊ=7ΪI?, m<0

(1.10)

and Qg denotes the value of the quadratic Casimir operator in the adjoint
representation. Then we have the Virasoro algebra,

!(m2-l)(5w,_M , (1.11)
1Z

with
9 k Him n

(1.12a)
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There is also a construction of the Virasoro algebra based on the free fermion
energy-momentum tensor,

, (1.13)

where ε = 0 (NS case) or 1 (R case). This satisfies the Virasoro algebra with
c = jdimM. Here the colons denote fermionic normal ordering,

:b\bί\=b\bj

s , r<0

= -b}bl , r>0 . (1.14)
The difference

K(z) = Σ Knz-» = L*(z}-3>(z) (1.15)
n

also defines a Virasoro algebra [3]. This difference vanishes if

MΐjMb + MiMfj + MSM^Q . (1.16)

It was shown in [3] that this condition is equivalent to the single equation

. (1.17)

In [4] it was established that a necessary and sufficient condition for this, i.e. for
jS?(z) = Z^(z) is that the representation M should be a representation given by the
tangent space to a symmetric space. That is, it should be possible to enlarge g to an
algebra g' by the addition of generators τ 7, 1 ̂ 7^ dim M, satisfying (with suitable
normalisation),

[ t a

9 τ j ] = iMiji* , (1.1 8a)

[ τ \ τ j ] = iM*ita . (1.1 8b)

One instance where this occurs is for fermions in the adjoint representation of g,
corresponding to the type II symmetric space g x g/g. In this case it is possible to
construct super- Virasoro generators, G(z), out of the same fermi fields [3]. If we
take

ψc(z) , (1.19)

then together with L?(z) (or &(z)\ they form the superalgebra given by (1.11) and

(1.20a)

>-s , (1.20b)
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where c = j dim g and Ln denotes L* or «£?„. G(z) has the same periodicity properties
(R or NS) as its constituent fermi fields and the indices r and s in (1.20)
correspondingly take integer or half integer values.

In this paper we first establish analogous results to (1 . 1 -1 8) for bosons instead of
fermi fields. The usual construction of g in terms of boson fields is the vertex
operator construction [5], which is transcendental. The one we shall discuss is
bilinear in boson fields. Particular cases have been considered before [6, 7] but in
Sect. 2 of this paper we shall give a more general treatment to parallel that for
fermions. The boson fields used must act in a Hubert space with an indefinite metric.
They are associated with a symplectic form, Jaβ, in the same way that the fermions
we have considered are associated with the symmetric form δ lj. We introduce In real
boson fields

where again we can take all the fields to be periodic, s e Z (R case) or all antίperiodic,
,seZ + j(NScase), subject to the hermiticity condition ξ^ = ξ-s. They satisfy the
commutation relations

[ ξ ϊ , ξ l ] = iJ*βδr,-8 , (1.22)

where J=Jaβ is a non-singular real antisymmetric matrix, Jl = —J. (Without loss of
generality, we could choose a basis for the boson fields so that / is block diagonal
with n copies of

ΐ ί)
along the diagonal and zeros elsewhere.) A pair of such boson fields occurs in the
system of BRST ghost fields in the conformally covariant discussion of the
fermionic emission vertex [8]. We take the fields to act in a space with vacuum
satisfying

ξr

β|0> = 0 , r>0 . (1.24)

In the NS case, this vacuum will be unique, but in the R case there will have to be a
continuum of such vacua (naturally isomorphic to the space of quantum states of a
particle moving in n dimensions).

Just as we can build representations of g, for compact g, out of real orthogonal
representations using fermi fields, so we can form representations of g for suitable,
possible noncompact, g out of real symplectic representations using boson fields.
Having such a representation of g, we can perform the Sugawara construction and
ask under what circumstances this is equal to the free Virasoro algebra we can form
from the symplectic boson fields,

L f ( z ) = L j :z^.ξβ(z):-^n> (1.25)
Δ ttZ O

where, again, ε = 0 (NS case) or 1 (R case),

V = V , (1.26)
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and normal ordering is defined analogously to (1.14),

(1.27)

The analogue of the "symmetric space theorem" (1.18) is a "superalgebra
theorem" proved in Sect. 3: &(z) = Lξ(z) if and only if the representation is that
given by the fermionic generators {s*} of a superalgebra, α, containing g as its
bosonic part and possessing a quadratic Casimir operator,

«sβ , (1.28)

where ηab is the symmetric invariant form on g, used to construct J?(z). We may not
just take ηab = δab, as in (1.9), because, as shown in Sect. 3, g may have to be non-
compact.

The simple superalgebras [9,10] with such a Casimir operator are su(m\n\
osp(m\ή), d(2|l;α), 0(3) and /(4), and for these choices of a, g is su(m)
φsu(n)®u(l) (mή=ri), so(m)@sp(n\ so(4)@sp(\\ g2®sp(l) and so(7)φsp(l),
respectively. (For su(n\ri), g = su(n) ®su(ri).) These examples of the "superalgebra
theorem" are discussed in Sect. 4. The cases su(n\n), osp(2n + 2\ri) and d(2\l α) are
in a sense critical. In these cases, the Sugawara construction fails because 2k + Qg

= 0, and it is not possible to renormalise

J^(z) = Σ &nz~n=\ nab £ T°(z)Tb(z) x

x (1.29)
n *•

so that 2?n satisfy the Virasoro algebra. In fact

[&,,&m] = 0 . (1.30)

In this way, we obtain a natural construction of representations of su(n), 30(2/2
and sp(ri) of critical level — hg, where hg is the dual Coxeter number of the Lie
algebra concerned.

The Virasoro algebra (1.25) has a central term c= — n so that each of the 2/2
symplectic bosons contributes —1/2, exactly the negative of the contribution of a
fermi field (1.3). Similarly, in (1 .25), the term giving the vacuum expectation value to
LO is —1/16 for each Ramond symplectic boson field, again the reverse of a Ramond
fermion contribution.

We can understand these relationships, and much else besides, by extending all
of our constructions to superalgebras, or more precisely, superalgebras, a,
possessing a quadratic Casimir operator (1.28). In Sect. 5 we extend the Sugawara
construction to affine superalgebras, a, of this sort, and in Sect. 6 we discuss the
construction of representations of such affine superalgebras using orthosymplectic
representations of α together with fermion and symplectic boson fields. This then
subsumes the construction of representations of affine Lie algebras, g, using
fermion or symplectic boson fields as special cases. When the fermion and boson
fields lie in the adjoint representation of the superalgebra, it is also possible to
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construct super-Virasoro generators from these fields. In Sect. 7 we discuss the
equivalence of the super-Sugawara construction of Sect. 5 to the "free" expres-
sion for the Virasoro algebra in terms of fermion and symplectic boson fields,
L^(z) + Lξ(z). The condition for this equivalence is given by a "super-symmetric
space theorem," which contains the "symmetric space theorem" and the "super-
algebra theorem" as special cases. The complete classification of such super-
symmetric spaces does not appear to be fully clarified in the mathematics literature
as yet, although it has been done for "type I" superalgebras [11,12]. Consequently,
we limit ourselves to discussing a few illustrative examples of the super-symmetric
space theorem in Sect. 8. Conclusions are given in Sect. 9 and possible develop-
ments are discussed.

2. Symplectic Representations

We consider 2n symplectic boson fields £α(z), 1 ̂ a^2n, defined by the expansion
(1 .21) and commutation relations (1 .22) acting in a space generated from a vacuum
satisfying (1.24). With normal ordering defined by (1.27), we have the operator
product relation,

ξ ( z ) ξ f i ( ζ ) = : ξ * ( z ) ξ ' ( ζ ) : + i J ° i ί Δ ( z , ζ ) , 1*1 > If I (2.1)

with the propagator function

^(z'0 = ̂ 7 - FΛ ' periodic (R) case , (2.2a)

antiperiodic (NS) case . (2.2b)

From these equations it is possible to deduce that L% defined by

L«(z) = £l&-"=;i/*:*^ £'(*): -*-n (2.3)
„ Z uZ o

satisfies the Virasoro algebra with c= —n.
Now suppose we have a real symplectic representation of a (possibly non-

compact) Lie algebra, g, specified by commutation relations (1 . 1). By this we mean a
map ta-^ίNa, where (7Vα)£e]R,

[Na,Nb]=fc

abNc , (2.4)

and the matrices Na preserve the symplectic form J=(J)Λβ. This last statement is
equivalent to

JNa = - (NaJJ= (JNaJ (2.5)

that is Ra = JNa is a symmetric matrix. We can use Na to obtain a representation of g
by setting,
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The argument to show that the T% defined by (2.6) satisfy the algebra g parallels
the contour deformation argument, reviewed in Subsect. 5.2 of [1], used to
establish the corresponding result for the current algebra representation in terms of
fermion fields. From (2.1) it follows that

Ta(z)Tb(ζ) = : Γβ(z)Γb(ζ): -i(JNaN\β : ξ " ( z ) ξ β ( ζ ) : Δ ( z , ζ )

ζ)2 . (2.7)

Since

(JN"Nb\β : r(z)^(C): =4 W. N"ΐ>«β Γ<X>ξ"(0 : , (2-8)

the usual arguments lead to

nt-n , (2.9)

where
b) = κηab . (2.10)

Equation (2.10) does not provide as explicit a normalisation as Eq. (1.7) did in
the fermionic case. We have replaced δab by the less specific ηab to cater to the fact
that we shall be considering possibly non-compact algebras. If g is simple, we can fix
the normalisation of ηab by requiring it to have eigenvalues ± 1 and to be (equivalent
to) δab on the maximal compact subalgebra of g. The change of sign between (1.7)
and (2.10) ensures the central charge, k, of g is given by κ/2 for both fermion and
symplectic boson constructions, and will be seen to be entirely natural in the context
of the more general supersymmetric construction given in Sect. 6. In any case the
level of the representation (2.9) is given by

κ/ψ2 , (2.11)

where ψ2 is the squared length of a long root of g, calculated using the metric ηab with

ηatη
ac=δb

c , (2.12)

and is independent of the choice of normalisation.
Whether or not g is simple, we can consider the quadratic Casimir operator

— ηabN
aNb, which will have to be a multiple of the identity if N is irreducible,

-ηabN
aNb = QNϊ2n . (2.13)

From (2.10) and (2.13), it follows that

κdimg= -QNάimN , (2.14)

paralleling (1.8) but with a sign difference we shall understand better in Sect. 6.

3. The Sugawara Construction and a Superalgebra Theorem

We now consider the application of the Sugawara construction to the symplectic
boson representation of g discussed in Sect. 2 and the circumstances under which
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the Virasoro algebra it produces equals the "free" Virasoro algebra (2.3). We define

~ nab x T\z}T\z) ϊ , (3.1)

where Qg denotes the value of the quadratic Casimir operator for g in the adjoint
representation, with the normalisation implied by η,

rac fbd f\ ^ab (*} o\
Jd Jc — ~\lgy] \AA)

(for the moment we shall assume g to be simple) and the crosses denote normal
ordering as defined in (1.10). Then it follows directly from the algebra (2.9) that the
Virasoro algebra (1.11) holds with

κdimg xdimg (

' ( j

where hg = Qg/ψ2 is the dual Coxeter number of g: Note that we are assuming
implicitly that K φ — Qg or, equivalently, that the level x of our representation is
different from the critical value of — hg [13].

To compare (3.1) and (2.3), we can again follow the arguments used in the
fermionic case (see e.g. Subsect. 5.4 of [1]). We can obtain two expressions for
Γα(z)Γα(ζ) by normal ordering in two ways:

Γ"(z) Γα(C) = ϊ Γ«(z) Γβ(ζ) 5 +| dim g -^^ (3.4a)

r

Λ β : ξ Λ ( z ) ξ β ( ζ ) : A ( z 9 ζ )

(3.4b)

^
where (3.4a) has been derived exactly as in [1], and (3.4b) follows from (2.7).
(We are using ηab, η

ab to lower and raise indices on Ta etc.) Now

and from (2.3),

Um^Jaβ:ξ«(z}ξβ(ζ):A(zΛ)}=Lξ(z)+^-dimN . (3.6)

Consequently, we can suitably rearrange Eqs. (3.4), using (2.14), and take the limit
z-»C to obtain, just as in the fermionic case,

^ ϊ T*(z)Ta(z) ϊ=^ : T(z)Ta(z): + QNL*(z) . (3.7)

We can see immediately from comparing the values of the central charges of
Lξ(z) and JSf(z), given by c= -jdimA^ and (3.3) respectively, that a necessary
condition for Lξ(z) = ̂ (z) is that

. (3.8)
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Then from (3.1) and (3.7), we see that we require

. (3.9)

This condition is equivalent to

Raβγ = Q (3.10)

Equation (3.10) is also easily seen to be sufficient for Lξ(z) = ££(z). In the fermionic
case, the analogues of (3.8) and (3.10), namely (1.17) and (1.16), were equivalent
conditions, but this is no longer the case here because we are dealing with algebras
possessing an indefinite invariant form, ηab. For both fermionic and bosonic
constructions, we can construct a third Virasoro algebra, K(z) = LΫ'i*(z)—£?(z\
where $£(z) is given by (1.9) or (3.1) respectively, which has vanishing central
charge. When K(z) acts on a positive space, it can be shown [14] that only the trivial
representation is possible, i.e. K(z) can be consistently taken to vanish. However,
for the symplectic bosons, we no longer have the positive space necessary for this
argument to hold and equality of c-values for 2?(z) and Lξ(z) by itself no longer
guarantees equivalence.

Just as (1.16) is equivalent to the statement that the fermionic representation is
one given by the tangent space to a symmetric space [4], so (3.10) is equivalent to the
statement that Na is given by the fermionic generators of a superalgebra, α, but a
superalgebra with the special property that it possesses a quadratic Casimir
operator. To be more explicit, if Eqs. (2.4), (2.5), and (3.10) hold, then

[ta

9t
b] = if*btc , (3-.Ha)

[ta

9sa] = iNafi

Λsβ , (3. l ib)

{sΛ9sβ}=RSβηabt
b , (3.11c)

define a superalgebra, a, with quadratic Casimir operator

sΛsβ . (3.12)

(In checking this it is useful to note that the Jacobi identity forf?b implies the total
antisymmetry of fabc=f^bηdc.} Conversely, given a superalgebra (3.11) with
quadratic Casimir operator (3.12), it follows from the Jacobi identities that Na

defines a representation of #, the bosonic part of a, and that (3.10) holds; the
symmetry of Ra = JNa follows from the fact that Qa commutes with a. Thus the
cases in which 5£(z) = ]J*(z) are in one-to-one correspondence with the super-
algebras (3.11) possessing Casimir operators (3.12).

For cases where this equivalence holds, g has to be noncompact, or at least
possess an indefinite invariant form ηab (g may be the direct sum of compact
algebras with the sign of the invariant form of some of the factors taken negative).
To show this, define

Xa = Rϊβx«xβ , (3.13)

and multiply (3.10) by x*xβxyxδ to obtain 3ηabX
aXb = Q. If ηab were positive (or

negative) definite this would imply Xa = 0 for all xa, xβ, and hence R£β = 0, which is
not the case. Thus we conclude that ηab has to be an indefinite form.



600 P. Goddard, D. Olive, and G. Waterson

In order to fully establish these results, we ought to explicitly allow for the
possibility that g is not simple, because this is typically the case for the bosonic part
of a superalgebra. Let us suppose that g is the direct product of a semisimple algebra
and an abelian algebra (i. e. that it is reductive),

9=®9A , (3.14)
A

where each gA is either simple or a w(l) factor. The invariant symmetric form, ηab, we
use in (3.1) is no longer unique up to an overall constant, but rather has one free
parameter for each factor gA of g. Equation (3.2) now has to be modified to

facfbd _ s\AMab /o 1 CΛ
Jd Jc - ~\lg n > (3.15)

where we sum the structure constants over each factor gA separately. (They do not in
any case connect different factors.) Correspondingly,

Ύτ(N*Nb) = κAηab , (3.16a)

-ηabN
aNb = QAϊ2n , (3.16b)

and
κAdimgA= -QAdimN , (3.16c)

the sums over a, b in (3.16b) being over those values corresponding to gA; It then
follows that we can establish (3.7) more generally with

QN = ΣQN . (3-17)
A

If the superalgebra (3.11) exists and the ηab we have chosen is one for which we
have a Casimir operator (3.12), then evaluating it in the adjoint representation of a
shows that

(3.18)

for each A as will be seen in Sect. 6. (Here we are assuming that the Casimir operator
takes a unique value in the adjoint representation, but if this is not so we can write a
as a direct sum of superalgebras, corresponding to different eigenspaces, and
consider these separately.) Thus the quantity by which we divide in (3.1) to
construct J^(z), is common to the different factors gA and the argument goes
through as before to show <£ (z)~Lξ(z). Conversely, if these Virasoro algebras are
the same, κA + QA must have a common value, that is we must choose the
parameters in η so this is so, in order that (3.1) makes sense. Then (3.18) has to hold
and the argument proceeds as before. Hence the "superalgebra theorem" has been
established independently of whether or not g is simple. Note that although η has a
number of free parameters, a priori, their relative size is fixed by the requirement
that (3.12) commutes with the superalgebra a. We shall see how this works in
practice when we illustrate the result by specific examples in the next section.

4. Examples of the Superalgebra Theorem and Critical Levels

It is possible to list the simple superalgebras (i.e. those with no non-trivial ideals)
possessing quadratic Casimir operators [9,10]. They are su(p\q\ osp(p\q), 0(3),
/(4), and d(2|l;α). For each of these, the fermionic generators will provide a
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symplectic representation of the bosonic part of a as in (3.11) and the corresponding
symplectic boson field representation of g will be such that the Sugawara
construction of the Virasoro algebra is equivalent to the free symplectic boson
construction. It would be good if we could conclude that all cases in which this
happens are direct sums of the cases on this list but, for one thing, the structure of
superalgebras in terms of simple superalgebras is more complicated than it is for
(compact) Lie algebras [9]. So we are not sure that our list of examples is in any sense
complete.

To illustrate the way the theorem works, we shall calculate the form ηab in each
case and determine the various quantities in Eq. (3.18). To define ηab, we introduce
invariant forms ήA

b, which we take to have eigenvalues ±1, again being equal to δab

on the maximal compact subgroup of each factor gA. We fix the normalisation of the
generators so that, for gA,

fd

acfc

bd=-h9Aήab , (4.1)

where hgA is the dual Coxeter number of gA. Then, restricted to gA,

ηab = λAήab , (4.2)

where hgA=λAQA ana the level of the representation of gA provided by N is

xA = λAκA . (4.3)

So, using (3.16-18),

(xA + hβΛ)/λA = 2ΣQ% , (4.4)
B

where

If/is the number of factors gA of #, Eqs. (4.4-5) constitute/homogeneous equations
in the / parameters λB. Thus they constitute a non-trivial constraint.

We consider the cases in turn:

(a) su(p\q)9p=tq: g=su(p)@su(q)®u(\), dimN=2pq,

hsu(p}=P , xl=-l2'2q , λl = l , Qk = q(p2

hsu(q}=q , x2 = -b'2p , λ2= -1 , Q2

N= -p(q2-l)/2pq ,

(b) su(ρ\p): g=su(p)®su(p\ dimN=2p?9

hsu(P)=P , έ=-± 2p , λl = \ ,

hsu(p)=P , x2=-^ 2p , λ2=-l ,

(c) osp(p\q): g = so(p) ®sp(q\ dim N=2pq

hso(p}=p~2 , x*=-2q , λl = \ ,

X2= - λ2= -
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(d)

hn =4 , ^ = l (-2) , λl=4 ,

hspil) = 2 , x2=-k l , A 2 =-3

(e)

A ϊp(1) = 2 , *2=-^ 8, A 2 = - 2 , β$=-f

(f) ί/(2|l;α): ^=5M(2)φίM(2)Θsp(l), dimΛΓ=8 ,

A»a> = 2 , ^ = l (-2), A 1 , βλ=~^,

su , , , ,
I — μ f̂

hsp(\) = 2 , x = — 2" 4 , λ = — 1 , β]v= ~4 •

(In cases (a) and (f), μ is an arbitrary constant.)
The cases su(p\p\ osp(2q + 2\q), and d(2\ 1 α) deserve special attention because

for them QN = Q, and so the level of the representation of each factor gA is equal to
the critical value — hgΛ . In this case, as we mentioned in Sect. 1, it is not possible to
renormalise (1.29) so that we obtain an J5f (z) satisfying the Virasoro algebra, but
instead the "unrenormalised" operators

05 , (4.6)

defined by summing over the indices α, b corresponding to a given factor gA,
commute:

and, from (3.7), we have instead of Z4 = J2?Π,

Σ^ = 0 (4.8)
A

5. The Super-Sugawara Construction

To see the symmetric space theorem of [4] and the superalgebra theorem of Sect. 3
as particular cases of a more general result, we need to work in the context of
affine superalgebras, in particular those obtained by affinisation of the super-
algebras that occurred naturally in the results of Sect. 3. Associated with the
superalgebra, a, of (3.11), with quadratic Casimir operator Qa as in (3.12), we have
an affine superalgebra, α, defined by the relations

(S .lc)
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where m.neΈ and either r, s e TL (R case) or r, s e Z + j (NS case), and we have raised
and lowered certain indices according to

Nf = JβyJ«δN^d , R^ = J^Nb

y

βηab (5.2)

for notational convenience. As usual k is a central element; the relative normali-
sations of its occurrences in (5. la) and (5.1c) are dictated by the Jacobi identities.

As we explained in Sect. 3, we might as well assume that the quadratic Casimir
operator for α,

Qa = 1abtatb + iJ*βfsβ , (5.3)

takes a unique value, 2 QN, in the adjoint representation of a becuase a can always be
written as the direct sum of the superalgebras on which Qa takes different values.

The first result we wish to extend from affine algebras to affine superalgebras is
the Sugawara construction this section is devoted to this objective. The existence of
the quadratic Casimir operator (5.3) is, of course, crucial for this. Proceeding as in
the familiar affine algebra case, we first define "unrenormalised" Virasoro
generators by

where

S τ(z) = Σ&?z-"=t ΊΛ ϊ T°(z) T»(z) ϊ , (5.5a)
n

and

^s(z) = Σ 2>ϊz-»=l- Jap ϊ S"(*)S'(z) ϊ +fi , (5.5b)
n ^

where the normal ordering implied by the crosses in (5.5b) is defined in an exactly
analogous way to (1.10) and ε = 0 or -k dim N/16 according to whether Sα(z) is of
R or NS form respectively.

It is easiest to calculate the algebra of the 3?n in stages. The usual construction
for g implies that

[J?m

r, Tn°]= -n(k + 1

T ρ/)Γ«+n (5.6a)

if T" is a generator of the factor gA of g. A similar calculation yields

[&£,S?]=-±rQNSZ+r, (5.6b)

where we have used (2.13). The corresponding results for 3?^* obtained in the same
way, are

[5£,7?]=-4«icx7S+I> , (5.7a)
and

S"m+r . (5.7b)

Putting (5.6) and (5.7) together and using (3.18), we see that we get a single
number k + QN by which we need to renormalise 3?n :

, (5.8a)

. (5.8b)
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So we define ,

"' (5'9)

and we can then verify that £βn satisfies the Virasoro algebra with

k
(dim g- dim N) (5.10a)

where the superdimension, sdim a = dim g —dim N, is defined in the usual way, and
gα = 2gN is the value of the quadratic Casimir of a in the adjoint representation as
will be seen in the next section. This constitutes a very natural generalisation of
(1 . 1 2a), and we shall see that other formulae generalise similarly. Again we can have
critical representations for which 2k + Qa = 0, where it is not possible to renormalise
the Virasoro generators (5.4); examples of this will be given in Sect. 8.

6. Representations of Affine Superalgebras

In this section we describe the construction of representations of the affine
superalgebra, a, defined by (5.1). This construction, in terms of fermion and
symplectic boson fields, generalises the fermionic current algebra construction of
representations of an affine Lie algebra, g. Just as in that case we start with a real
orthogonal representation, as in (1.2), we now start with an orthosymplectic
representation of a. The new construction will also subsume the symplectic boson
construction of Sect. 2. Particular cases of it occur in [6].

By an orthosymplectic representation of α, we mean a superalgebra homo-
morphism a-*osp(m\n), or, more precisely, osp(mι, m2\n) because the bosonic part,
g, could have any signature, i.e. w(m1,m2)0^/7(«), m1+m2 = m. We can define
osp(ml, m2\ή) to be the superalgebra which preserves, in a suitable sense, the form

where ή is a symmetric w-dimensional form of signature (w1?m2) and J is a
symplectic form of dimension 2n. Then a representation of a takes the form

MΛ ~ ' -" (6.2a)

Xα , (6.2b)

where Mfl, Ka, X*, Y* are real matrices and /Mβ, z'Xα satisfy (3.11) and also the
conditions

ήXΛ = (Ya)tJ , (6.3)
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in order that they should preserve (6.1). Then, if we define

T"(z) =l- ψ(zyήM°ψ(z) - 1 ξ(zJJK ξ(z) , (6.4)

s«(z)=* ψ(z)'ήx«ξ(z)-k ξ(zyjγ«ψ(z)
= ψ(z)'ήX ξ(z) , (6.5)

where ψj(z), 1 ̂ j ^m, and ζλ(z), l^λ^2n are respectively fermion and boson fields
satisfying

{#,^ = tfy*,,-, , {ξr

λ,ξ?] = iJλμδr,-s , (6.6)

we obtain a representation of a: (Note there is no need to explicitly normal order the
expressions in (6.4) and (6.5).) This representation has k = κ/2, where now

Str (MβMb) = Tr (MaMb) - Tr (KaKb) = - κηab , (6. 7a)

Str (XαX^) = i Tr (Xβ 7α) - i Tr (Xa Yβ}= ~2 i Tr (X* Yβ) = - iκJ"β . (6.7b)

(Here Str (M) denotes the supertrace of the matrix M defined in the conventional
way.) To be sure that Eqs. (6.7) will necessarily hold for some κ9 we need that (5.3) is
the unique quadratic Casimir operator for a, up to a scale, and that the
representation (6.2) of a is irreducible.

Following familiar arguments, we can relate K to the value of gM of the
quadratic Casimir operator for a in the representation (6.2) by using

, (6.8a)

ηabK*Kb + JaβY*χiί = -Q^2n , (6.8b)

together with (6.7), to obtain

K sdim a = QM sdim M , (6.9)

where sdim M = ra — 2n. In the context of the general Eqs. (6.7) and (6.9), the sign
difference between (1.7) and (2.10), and between (1.8) and (2.14), respectively,
appear natural.

We can take each of the two fields ψ(z) and ξ(z) to be either Ramond or Neveu-
Schwarz independently. If we make the same choice in each case we obtain the R
form of a and if we make different choices we obtain the NS form.

A particular and important case of this construction is provided by the adjoint
representation of a. This corresponds to taking

Mf = -ff , Ka\ = -Na

μ

λ , X«\ = N[« (6.10)

and identifying η and ή, J and J. In this case, K = QM = Qα = 2 QN . The proof of Eq.
(3.18) follows from inserting (6.10) into Eqs. (6.8a,b).

For a general orthosymplectic representation of ά, we can write the central
charge (5.10) as

K sdim α QM sdim M
c — - = - - (6.11)

K + Qα
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and for the adjoint representation this becomes j sdim a, which is also the value of c
for L*(z) + Lξ(z), where L*(z) is given by (1.13) and Lξ(z) by (1.25), consistent with
3? (z) = L*(z) + Lξ (z) holding for this representation. In the next section we shall see
that this is indeed the case for the adjoint representation, as we would expect from
previous results, and find the general condition for this identification to obtain.

The adjoint representation is of special interest because in this case it is also
possible to construct super-Virasoro generators out of the same fermi and
symplectic boson fields, analogous to the result (1.19). We find that by defining

(6.12)

then together with L(z) = L?(z) + Lξ (z), these operators obey the super algebra given
by (1.11) and (1.20) with c = j sdim a. G(z) has the same Ramond or Neveu-Schwarz
properties as its constituent fermion fields, independent of the periodicity properties
of the symplectic bosons.

7. A Super-Symmetric Space Theorem

We have seen in the last two sections how results on the Sugawara construction, and
on the fermionic and symplectic boson representations of affine Lie algebras fit
neatly into a supersymmetric framework. To extend this process, we shall generalise
the symmetric space theorem [4] and the superalgebra theorem of Sect. 3 into a
super-symmetric space theorem. This will give the conditions under which the
super-Sugawara construction of the Virasoro algebra, applied to the orthosym-
plectic representations of.the affine superalgebra, α, constructed in Sect. 5, equals
the sum of the Virasoro algebras associated with the free fermion and symplectic
boson fields used in the construction, i.e.

Jί?(z) = L*(z) + L*(z) . (7.1)

To state the result, we need to generalise certain concepts from Lie algebras to
superalgebras. Firstly, suppose the superalgebra a = g + s is contained in a larger
superalgebra a' =g' + s' (g and g' being the bosonic parts of a and a' respectively,
and s and s' being their fermionic parts). Suppose that the quadratic Casimir
operator Qa for a extends to one Qa> for a'. Then we can write

g'=g + y , s' = s + σ , (7.2)

where y, σ are orthogonal to g, s respectively, with respect to the quadratic form on
a' corresponding to Qa> . It then follows that

[θ,y]<=y , [^,σ]c:σ , (7.3a)

[s,γ]<=σ , (s,σ}c=y , (7.3b)
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and so y + σ provides a representation space for #; this is the representation
associated with a' /a. Secondly, suppose that a' has an automorphism, ρ, of order 2,
which commutes with Qa>, and such that a is the subalgebra on which ρ = 1. Then
γ + σ is the subspace on which ρ = — 1 and

[y,y]<=9 , [y,σ]<=s , [σ,σ}^g . (7.4)

This is the natural generalisation to superalgebras of the concept of a symmetric
space for Lie algebras; we shall call a' /a a super-symmetric space if (7.4) holds.

The main result of this section is that (7.1) holds if and only if the
orthosymplectic representation of a used is one associated with a super-symmetric
space a1 1 a.

Generalising (3.7) we have

&(z)= ηab ' T*(z)T\z) : + - J«β : S"(z)S'(z) :+QmL(z) , (7.5)

where L (z) = Lφ (z) + Lξ (z) . Again, comparing the value (6 . 1 1 ) of c f or & (z) with the
value j sdim M for L(z), we see that a necessary condition for JS?(z) = L(z) is that

(7.6)

and also, from (7.5) and (5.9), that

l- ηab : T\z) T\z) :+^J«β: S "(z)S'(z) : = 0 . (7.7)

Equation (7.7) by itself is sufficient for JS?(z) = L(z) and is equivalent to the
conditions

ejk = Q , (7.8a)

aQμ = Q , (7.8b)

J^XTXμ

j + JaβX^Xβ

λ

j-Ka

λμM^ = U , (7.8c)

where K"μ = JλvK
av

μ, and we use η, ήto raise and lower indices. Equations (7.8) are
precisely the conditions that allow us to extend a to a superalgebra a'9 in such a way
that a'ja is a super-symmetric space, through the addition of generators τj, 1 ̂ j ^ m,
and σλ, l^λ^2n satisfying

[f α ,τ j ] = /M£J'τk [ t a , σ λ ] = iKa

μ

λσμ , (7.9a)

[H s«] = iX*Sλσ
λ , (sα, σλ} =JλμX}μτ* , (7.9b)

[τί,τ/] = /Mίί/β , {σλ,σμ}=KΪμta , (7.10a)

[τ3, σλ] = iJβJ
λμXβJμs« . (7. lOb)

This completes the proof of our super- symmetric space theorem.
A common feature of symmetric spaces and superalgebras is a TL2 grading, and

this is a crucial aspect of their role in the analogy between fermion and symplectic
boson representations of affine Lie algebras. A super-symmetric space has a richer
TL2 x TL2 grading (because we can define one involution by reversing the sign of the
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fermionic generators and another by reversing the sign of γ + σ). Corresponding to
the three 7L2 subgroups of ΊL2 x TL2, we have three structures: the superalgebra g + σ,
the symmetric space g '/g and the superalgebra a = g + s. Of these, g + σ is associated
with (7.8b) and g'/g with (7.8a). In consequence, we have that L?(z) and Lξ(z) equal
the Sugawara constructions for the fermionic and symplectic boson representations
of g given by γ and σ, respectively, as well as the more complex result (7.1).

The classification of automorphisms of order 2 of simple Lie superalgebras has
been given in [11,12]. The corresponding super-symmetric spaces are the analogues
of type I symmetric spaces, but it is not clear how a general supersymmetric space is
related to these. Consequently, we restrict ourselves to a few illustrative examples in
the next section.

8. Examples of the Super-Symmetric Space Theorem

As was shown in Sect. 6, the super-Sugawara construction of the Virasoro algebra
gives a c-value equal to the free field value of j sdim a when the fields are taken in the
adjoint representation of a. Also, the conditions (7.8) are satisfied by the quantities
given in (6.10), thus establishing the equality of the two constructions. This is related
to a super-symmetric space ax a/a analogous to the type II symmetric spaces
discussed in [4]. The analogues of type I symmetric spaces provide further examples
of the super-symmetric space theorem.

As a first example, consider the superalgebra osp(m\ri). The construction of the
corresponding affine superalgebra from fields in the adjoint representation involves
2-m(m — l)+n(2n + 1) fermions and 2mn symplectic bosons, giving rise to a super-
Sugawara Virasoro algebra with

c = ̂ (m-2n)(m-2n-l)=^sdimosp(m\ή) , (8.1)

as in Sect. 6. Another possibility is to take m fermions and 2n symplectic bosons and
construct the first j m(m — 1) Ta(z) generators appearing in (6.4) out of the fermions
alone, with the remaining n (2n +1) generators being constructed from the bosons as
in Sect. 2. The 2nmS(*(z) generators of Eq. (6.5) are formed from all possible
bilinear products of the fermion and boson fields. Using (4.3) and the normalisation
of roots implied by Sect. 4, we find the corresponding Γπ

fl, S" obey (5.1) with k = 1/2.
Combining this with the value of Qa = 2QN = (m—2—2ri), we find the super-
Sugawara construction has a c-value given by (6.11) of

lπ) 1
2

which is the same as the free field value for m fermions and 2n symplectic bosons.
This suggests that we may have an equivalence of the two Virasoro algebras, 5£(z)
and L(z\ but the proof requires that we can find an appropriate super-symmetric
space. The relevant space in this case turns out to be osp(m + l\ri)/osp(m\n): We can
check that this yields the right number of bosons and fermions required for the
construction. The number of fermions is given by the difference in the number of
Ta(z) generators of a' = osp (m +1 \ri) and a = osp(m\ή) (i. e. by dim g' —dim g), which
is just m. Similarly, the number of symplectic bosons is given by the difference in the
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number of fermionic generators, Sa(z\ of the two superalgebras, which here
is 2ft(ra+l) — 2nm = 2n. In [6], the particular case of m = l was discussed.
Note that k + QN = Q when m = 2n + i, giving rise to critical representations of

Another, slightly more complicated, example involves the super-symmetric
space su(m\2n)/osp(m\n). Using the same counting arguments as above, we find this
space provides us with j(ra — l)(m + 2) + (2n + !)(« — 1) + 1 fermions (assuming
mφ2τ? for simplicity) and 2mn symplectic bosons with which to construct an
6sp(m\n) representation. The Ta(z) generators are constructed out of a sum of
fermionic and bosonic parts, where the bosonic part involves symplectic bosons in
the adjoint representation. The first jm(m — 1) Ta(z) generators have a fermionic
part constructed from fermions in a j (m — 1) (m + 2) dimensional representation of
so(m), while the remaining n(2n -f 1) generators involve fermions in a (2n + !)(« — 1)
dimensional representation of sp(ri). The value of A: obtained is j (ra + 2 — 2n) and
the super- Sugawara construction gives

ksdimosp(m\n) 1 ̂  ^ ,„ A^c = - }= (2κ-m-2)(2κ-m + l) , (8.3)

which again is the same as the value obtained by a free field construction.
As a final example, consider the super-symmetric space su(m + l\ri)/su(m\ri)

xu(l) (assuming nή=morm + l for simplicity), which provides us with 2m fermions
and 2n symplectic bosons. As discussed in [1], when constructing affine Lie
algebras from fermions in the m dimensional defining representation of su(m), it is
necessary to double the number of fermions and consider a 2m dimensional real
representation. This results in an extra ύ(\) Kac-Moody algebra, commuting with
the su(m) one and the corresponding u(l) Sugawara construction has to be taken
into account when discussing equality with free field constructions. The same thing
occurs here, where the first (m2 — 1) Ta(z) generators are constructed using fermions
in a 2m dimensional real representation of su(m\ with the remainder formed from
the 2n bosons. The super-Sugawara construction for §u(m\ri) with k = 1/2 then gives

ksdimsu(m\ri)
=m-n-l . (8.4)

This is 1 less than the free field value, but, as noted above, the extra contribution to
the super-Sugawara construction of the u(\) factor has to be added to (8.4) and this
does indeed contribute c = 1 .

The classification of "type I" super-symmetric spaces is given in [1 1, 12], but the
above examples embody the general features.

9. Conclusions and Discussion

By using symplectic bosons to construct affine Lie algebras and related Virasoro
algebras, we have obtained results analogous to the fermi field constructions given
in [3, 4]. The analogue of the symmetric space theorem is a "superalgebra theo-
rem." We have a complete list of examples of this theorem for simple super-
algebras with quadratic Casimir operator given by (3.12) since these have been
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classified in [9]. Unfortunately, it is more complicated to write an arbitrary
super algebra in terms of simple superalgebras than it is to decompose a compact Lie
algebra into simple ones. Thus there may be more instances where the theorem
applies than those cases obtained by simply taking direct products of the simple
superalgebras for which the result holds.

Combining the symplectic boson and fermion constructions led to realisations
of affine superalgebras. The starting point for fermionic realisations of affine
algebras was an orthogonal representation of the corresponding Lie algebra.
Similarly, for the affine superalgebras, the construction involves an orthosym-
plectic representation of the corresponding superalgebra. Constructing super-
Sugawara Virasoro generators as described in Sect. 5 enabled us to prove a ^super-
symmetric space theorem," which contains the symmetric space and superalgebra
theorems as special cases. Again, although the "type I" super-symmetric spaces
have been classified, the complete classification remains to be clarified.

We have defined critical representations of affine Lie algebras to be those
representations for which the Sugawara construction fails because the candidate
Virasoro generators cannot be renormalised to give the correct algebra. As we
found in Sect. 4, in these cases instead of establishing the equivalence of the
Sugawara and free field constructions, the superalgebra theorem gave Eq. (4.8),
which must be interpreted as meaning £ 3?* annihilate highest weight states of the

A
corresponding affine algebra. These are states \ψy satisfying

T£\ψy = 0 , n>0 . (9.1)

There are now many extra null states (i.e. states satisfying (9.1) and being
orthogonal to any solution of these equations) of the form

(e^Γ)
w'...(j^?1)'ll|*ί> (9.2)

The occurrence of such an unexpectedly large set of such null states is one of the
prime characteristics of the "no ghost theorem" [15] of string theory, which suggests
we may have an analogous result for affine Lie algebras. The condition for the
existence of a critical representation is that the level of the representation should be
the negative of the dual Coxeter number of the algebra. The more recent approaches
to the "no ghost theorem" involve the construction of a nilpotent BRST charge,
which defines an equivalence relation between physical states. However, when these
methods are applied to the affine Lie algebra, the nilpotency condition requires the
level of the representation to be the negative of twice the dual Coxeter number [16].
A similar discrepancy of a factor of 2 occurs in comparing the condition for the
existence of critical representations of the affine superalgebras with the condition
for a corresponding nilpotent BRST charge. These discrepancies have caused
certain confusion in the literature [17] and require further investigation.

Another speculative idea is to consider whether vertex operators have a role to
play in the framework of symplectic bosons we have established. They do arise in
constructing the superconformal ghosts of fermionic string theories [8], which are
the simplest examples of the symplectic boson fields we have considered.

It is also interesting to note that as well as the superconformal ghosts of string
theory, our formalism also naturally includes the conformal ghosts. This is because
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the fermionic anti-commutation relations given in Eq. (6.6) involve ήlj, rather
than δij, which can be of indefinite signature. In particular, choosing ij= 1,2 and
fy = diag(l, —1) gives rise to fields obeying the same anti-commutation relations
as the conformal ghosts. Both bosonic and fermionic ghosts are thus naturally
incorporated into the framework of representations of affine superalgebras
discussed in Sect. 6. However, the Virasoro algebras we have discussed are different
from the ones normally used in string theory, where derivatives of u(l) ghost
currents are added to the Sugawara Virasoro generators in order to give the ghost
fields their usual conformal weights. The precise connection between our con-
structions and those occurring in the ghost sector of string theories remains to be
established.
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