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Abstract. The Sturm-Liouville theory is generalized to Dirac-equation-like
systems of ordinary differential equations. It is shown how the comparison
theorem and conversion to integral equations can be generalized.

1. Introduction

Some time ago [1] it was found necessary to generalize the Sturm-Liouville type of
comparison theorems to coupled equations with a Dirac-like spectrum. The
Sturm-Liouville theory deals with Schrόdinger-like equations whose eigenvalues
are bounded from below, i.e., equations which follow from a variational principle:

δ$(ψ,Hxp)dx = 0

for normalized ψ's, where the integral is positive definite. Elegant comparison
theorems in the Sturm-Liouville theory allow one to have powerful information on
the number of eigenvalues, on the nodes of the wave functions and on the meaning
of Levinson's theorem. Furthermore by converting the Sturm-Liouville problem
to that of an integral operator with a symmetrical kernel, one has powerful control
over properties of the eigenfunctions and eigenvalues.

In the present paper we shall show that all these can be generalized for a large
class of Dirac-type equations in one variable, for which the eigenvalues extend to
both + oo and - oo. Use has already been made [1,2] of these generalizations. The
detail of the generalizations is published here for the first time.

The results of the present paper can be easily further generalized. E.g., one
could deal with an Hermitian potential V(x) rather than a real symmetrical one.
One could generalize the matrix ω of (2.2), etc. No such generalizations are
attempted in the present paper.
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2. Differential Equation and Boundary Condition

We consider the ordinary differential equation in matrix form

[_ωdx+Vψ]=E\p, (O^x^a), (2.1)

where all quantities are real, ψ is a IN x 1 column matrix, V= V(x) is a real
symmetrical 2N x IN matrix. We assume V(x) to be continuous in the closed
interval (0, α), and

is an antisymmetrical 2N x 2N matrix in which 1 = N x N unit matrix.
We remark that a 4 x 4 Dirac eigenvalue equation is of the form (2.1) if we

assume ψ{xyz) to be independent of y and z. Furthermore the radial equation
discussed in [1] for a Dirac electron in a Dirac monopole field is also of the form
(2.1).

We shall write

(J) (2-3)
where ξ and η are JV x 1 column matrices. The boundary conditions at x = 0 and
x = a are:

at χ = 0, (2.4)

ξ = Kaη at χ = a, (2.5)

where Ko and Ka are real symmetrical N xN matrices.

3. Solution Set \p Satisfying Boundary Condition at x = 0

There are A/" linearly independent solutions of (2.1) satisfying the boundary
condition (2.4). These solutions can be successively defined by first, taking at

x = 0,

etc.; second, obtaining the corresponding <fs at x = 0 from (2.4); and third,
integrating (2.1) from x = 0 to x = a. We write these N solutions, side by side,
together as a 2N x N real matrix ψ. Then

ωδxtp + Fιp = £:\p. (3.1)

Write
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Then

ξ = K 0 , η = l at x = 0. (3.3)

The most general solution of (2.1) satisfying the boundary condition (2.4) is
thus a linear combination of the columns of ψ, i.e. ψζ, where ζ is a N x 1 column
matrix.

Lemma 1. ψωψ = 0 at all x.

Proof. At x = 0, ψωψ = — ξη + ήξ = — Ko + Ko = 0. Furthermore

— (ψωψ) = ψ(£ — F)ψ — ψ(£ — F)ψ = 0.

Lemma 2. ξη is symmetrical.

Proof. This lemma is an obvious consequence of Lemma 1.

dw x

Lemma 3. xpω — = J φ ψ d x > 0 for x>0.
cE o

Proof. Consider two neighboring £'s: Eί and £ 2 .

, (3.4)

. (3-5)

Multiplying the transposed of (3.4) by tp(£2)
 o n t n e right a n d multiplying (3.5) by

x) on the left we obtain by subtraction

Or

δx[ψ(JE1)ωtp(£2)] = (£ 2 - £ 1 )ψ(£ 1 )ψ(£ 2 ) .

Or

X

ψ(E1)ωtp(E2) = (£ 2 - £ x ) j ip(£!)ip(£2)dx.
o

Differentiate both sides with respect to E2 and put E2 = Eί=E. The result is
Lemma 3.

4. Properties of ξη ι and the Phase Angles Θt

The matrices ξ and η are functions of E and x. They are what roughly correspond
to dxψ and ψ for an ordinary Schrόdinger equation integrated from x = 0, with the
boundary condition dxψ = K, ψ = ί at x = 0. What roughly corresponds to the
notion of a node is the value of x where detη = 0 (at some E). What roughly
correspond to the logarithmic derivative xp~ ιdx\p (which is so useful in elementary
quantum mechanics) are the eigenvalues of the operator ξ η " 1 . In this section we
shall develop this last point in detail.
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Where detηφO, ξη~ 1=ή~ 1(ήξ)η~ 1 is obviously real symmetrical, by Lem-
ma 2. It has N real eigenvalues λuλ2 ... λN.Ύo study their variation with E, we first
prove

Theorem 1. Where detηφO,

Proof. Using (3.2) and Lemma 3 we have

By Lemma 2 ξη = ήξ. T h u s ξ ^ ή ξ η 1 . Hence

Thus we have proved Theorem 1.
Thus the eigenvalues of ξ η 1 \λuλ2, ---AN a r e a ^ nionotonically increasing

differentiable functions of E, provided detη Φ 0, and x > 0. (This is true even if some
of the λ's may be degenerate.)

We now investigate what happens at the point Eo where detη = 0. We first
observe that λuλ2, ...,λN are solutions of the polynomial equation

det(ξ-λη) = O, (4.2)

which has degree N when detη φ0. At Eo where detη = 0, the equation misses the
highest degree term whose coefficient is det( —η) which vanishes. It may miss the
next few highest degree terms as well. Thus one or more of the solutions, say λγ and
λ2, may -> oo as E-*E0. The rest of the solutions of (4.2) approach (λ3, /l4,..., λN)Eo.
If detξ φ θ at Eo we can consider ηξ~ 1 = (ξη" 1 ) ~ x and proceed similarly as above.
However to take into consideration the possibility that detξ may be =0, we
proceed instead as follows. Let A be a real number different from the values of
/l3,/l4, ...,λN at Eo. Then at Eo,

det(ξ-ylη) = (const)(A-λ3)(A-λ4) ...(A-λN)ή=0.

We now consider the eigenvalues of (ξ — ^4η)η~1 = ξ η ~ 1 — A in the neighborhood
of Eo. They are λt — A, which approach oo, oo, λ3 — A, λ4 — A,...,λN — A9 none of
which is zero. Thus we consider the inverse of ξ η " 1 — A, i.e.

r\(ξ-Ar\)~ι, (4.3)

which exists in the neighborhood of Eo. The eigenvalues of (4.3) are (Xt~ A)~ι.
Now we can prove, in the same way that we proved Theorem 1,

- - [ η ( ξ - ^ η ) 1] = - ( ξ - ^ η ) x fψψdx ( ξ -
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Thus near E = E0 where detη = 0, (λi — A)'1 are all monotonically decreasing
differentiable functions of £, provided x > 0. If follows from this trivially that

λ3,λ4, ...,λN are all differentiable at E = E0. So are — and —-.

The results above can be summarized as the following theorem.

Theorem 2. The eigenvalues of ξ η " 1 can be written as /,f = tan0 ί5 z = l->JV, w/zere

We remark here that at θt= — (modπ), λt= ± oo, but 0f remains a continuous

and differentiable function of E. Obviously the function

θi(E,x), (4.4)

can be changed by adding to it, for a fixed x, an integral multiple of π. To eliminate
this freedom we require Θ^E, x) to be continuous with respect to x, and take

θi(E, 0) = t a n " ι [i t h eigenvalue of K o ] , (4.5)

| | . (4.6)

With this convention, Θ^E.x) is continuous in both E and x, and is further
differentiable with respect to £, with dO/dE > 0 for all x > 0. We shall call the 0's the
phase angles. Later on we shall show that for x > 0, as £-• + oo, all θ^ + oo, and as
£-• — oo, all 0f-> — oo.

It is instructive to think of 0t (modπ) in the form of a ring as illustrated in Fig. 1.
As E increases, each 0f winds around the cylinder in a left-handed spiral. Can
spirals ί and j (z Φj) cross? They can. To construct an example of this one takes two
independent problems each defined by (2.1) and (2.4), with ψ9s of sizes 2Nγ x 1 and
2N2 x 1? and puts them together to make a single problem with a ψ of size
2(N1 + N2) x 1. The two sets of independent spirals can of course be made to cross.
But as soon as coupling between these two independent problems are introduced,
the crossing disappears in the usual way as illustrated in Fig. 2. In general,
therefore, the different spirals do not cross.

D

B

Fig. 1 Fig. 2

Fig. 1. θuθ2,θ3, vs. E as left handed spirals. Notice that dθJdE is always positive

Fig. 2. Noncrossing of θt and Oj. Without coupling one could have 0, following AC and θj following
BD, which cross each other. A small coupling would in general switch the θb θj trajectories to the
solid curves AD and BC which avoid crossing
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As an example we consider the case where F = 0 . Equation (3.1) becomes

— dxί\ = £ ξ, dxζ = Ex\. (4.7)

The solution of (4.7) satisfying (3.3) is

ξ = (cos Ex)K0 + (sin£x)l,

η = - (sin Ex)K0 + (cos Ex)\ .

Thus

If the diagonal form of Ko is

then

(4.8)

l }

(4.10)

\Ά. (4.11)

Thus

(4.12)

5. Eigenvalues E{ and Eigenfunctions φέ

In Sects. 3 and 4 we have not imposed the boundary condition (2.5) at x = a.
Imposing this boundary condition leads to the eigenvalues of the problem, a
development that we shall pursue in this section. In order to emphasize the
symmetry of the two boundary conditions we adopt a procedure already familiar
in the usual [4] Sturm-Liouville theory: Consider a solution set ψ x of the equation

ωθx 'ψ1 + F ψ 1 = E φ 1 , (5.1)

just like Eq. (3.1), but with ψ x satisfying the boundary condition (2.5) at x = a,
rather than (2.4) at x = 0. I.e.

(5.2)

(5.3)

We integrate (5.1) from x = a backwards towards x = 0, and define
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It is trivially clear that one has the following lemmas:

Lemma 4.

-^-W(x) = 0. (5.4)

dx

Lemma 5.

W=(-KΛ + Q\x=a. (5.5)

In Sect. 3 we have seen that the most general solution of (3.1) satisfying the
boundary condition at x = 0 is

For this solution to also satisfy the boundary condition (2.5) at x = a means

By (5.5) this implies Wζ = 0. Thus one has

Lemma 6. A necessary and sufficient condition that there is a nonvanίshing solution
of (2.1), satisfying both boundary conditions (2.4) and (2.5), is dett^=O. Such a
solution is called an eigenfunction and the corresponding value of E an eigenvalue.
For a given eigenvalue the number of linearly independent eigenfunctions is equal to
the number of linearly independent ζ's satisfying Wζ = 0.

The number of independent eigenfunctions for a given eigenvalue is called the
latter's degeneracy. An eigenvalue is nondegenerate if its degeneracy is unity.

Lemma 7. // \p€ and ψm are eigenfunctions belonging to two different eigenvalues E£

and Em, then

dx = 0, (5.6)
o

and we say that ψ^ and ψm are orthogonal.

The proof is entirely similar to the usual one and will be omitted.

Lemma 8. All eigenvalues are real

Proof If eigenvalue E€ is not real and \pe is an eigenfunction belonging to E^ then
E* = Em is also an eigenvalue and ψf one of its eigenfunctions. Equation (5.6) then
states

which implies ip, = 0, a contradiction.
For a degenerate eigenvalue E^ we can choose the eigenfunctions at E^ to be

mutually orthogonal. We thus have
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Theorem 3. The problem (2.1) with boundary conditions (2.4) and (2.5) have
eigenvalues E€ which are all real. The corresponding eigenfunctions φs can be and will
be chosen to be mutually orthogonal.

Furthermore we shall always normalize the eigenfunctions φ£.

6. Density of Eigenvalues

For the case V—0, ξ η 1 is periodic in E with period π/a, according to (4.11). The
eigenvalues are values of £, where det (ξη ~1 — Ka) = 0. Thus the eigenvalues form N
series, in each of which the eigenvalues are equally spaced with spacing = π/a.

If V{x) = Bl, where B is a numerical constant and 1 the 2N x 2N unit matrix,
then in Eq. (2.1) the term Vxp can be moved to the right-hand side of the equation,
resulting in changing EioE — B. Thus the eigenvalues again form N series, in each
of which the eigenvalues are equally spaced with spacing = π/a.

For the general case F(x) + 0, consider for each x the lowest eigenvalue Vιh(x)
of the real symmetrical matrix V(x). Let VLLh be the lower bound of VLh(x) in the
interval 0 ̂  x ̂  α. We write

V0(x)=VLLhl, (6.1)

Vί(x)=V(x)-Vί(x). (6.2)

Obviously V^x) is a positive matrix for all x in 0 g x ̂  a, and its largest eigenvalue
is bounded from above by a number, to be denoted by K.

Now consider the problem

[ωex + (V0 + λV1)^ψ = Eψ (6.3)

with the boundary conditions (2.4) and (2.5). We shall denote the eigenvalues of the
problem by

EM), (6.4)

= eigenvalues for problem with V= V(x), (6.5)

) = eigenvalues for problem with V= Vo. (6.6)

According to what we had proved above, E (̂0) form N series of equally spaced
eigenvalues. We shall so define E^λ) that they are continuous in λ. According to
perturbation theory,

dλ

Thus

dλ

Integrate with respect to λ from λ = 0 to λ = ί. We obtain

(6.7)



Sturm-Liouville Theory 213

Consider any interval (ot,β) of energy a<E^β: Let M(α,/?) be the number of
eigenvalues in this interval for the problem V= V(x), and M0(α, β) that for the
problem V= Vo. Equation (6.7) implies that

Now

M0(α, β-K) = M0(α, β) - M0(β -K,β),

M0(a -KJ) = M0(α, β) + M0(α - X, α),

and M0(β — K,β) is ^ a number y which is independent of β, because the
eigenvalues ϋ (̂O) form a periodic pattern. Similarly

Thus

M0(α, /?) + y ^ M(α, j8) ^ M0(α, 0) - y. (6.8)

Now in each interval of length π/a there are exactly N states for Vo. I.e.

M o ^ α + π α " 1 ) ^ ^ .

Thus

\M0((x,β)-(β-a)π-1Na\SN. (6.9)

Combining (6.8) and (6.9) we obtain

Theorem 4.

ί (6.10)

Notice that N + y is independent of α and /?. Equation (6.10) implies that the
average density of eigenvalues in a large interval is »iVα/π.

7. Conversion to Integral Equation with Symmetrical Kernel

The usual Sturm-Liouville theory has been converted into a linear integral
equation with a symmetrical kernel by Hubert, Dixon and others (see [4]). We
shall show in the present section that this development can be generalized to the
problem studied in the present paper, i.e. Eqs. (2.1), (2.4), and (2.5) which have a
Dirac spectrum.

Let ε be any real number which is not an eigenvalue of (2.1), (2.4), and (2.5). We
write, for E = ε, the solutions ψ of (3.2), ψ t of (5.1) and the W matrix of (5.3) as

ψ(x, ε), tp x (x, ε), and W(x, ε).

W(x,ε) is actually independent of x. Notice that detWφO. We now define
a (2N x 2iV) matrix-integral operator Ω such that when it operates on a 2N x 1
column f(y), a new column Φ(x) results:

Φ(x) = ](x\Ω\y}f(g)dy.
o
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or

0 x

We assume here that f(y) is piecewise continuous. The explicit expression of Ω is a
matrix:

for x ^ y,

<ίx|Ω|/» - <i|ipΛx, ε)|6> <c| W H*, <#> OΊΨCV, ε)|c>, (7.2)

for x < y,

<ix\Ω\jy} = <i|ψ(χ, ε)|fe> <ft |^" ^x, Φ > OΊVi^ e)k> (73)

Notice that indices i and j run from 1 to 2./V while indices b and c run from 1 to JV.
Notice that Ω is symmetrical:

We shall write (7.1) symbolically as Φ = Ωf

Lemma 9. / / / is piecewise continuous, then (a) Eq. (7.1) defines a continuous Φ(x)
which is piecewise differentiable and satisfies

(ε-H)Φ=f, (7.4)

where

H = ωδx+V. (7.5)

(b) Φ(x) satisfies the boundary conditions (2.4) and (2.5) for ψatx = 0 and x — a.
(c) Φ(x) is the only solution of (7.4) satisfying the boundary conditions mentioned

above.

Proof (a) By straight forward differentiation, we obtain from (7.1)

Now write the three matrices inbetween ω and / on the right-hand side of (7.6) as
Bu B2, and Bv By Lemma 1 and definition (5.3),

Thus

5 1ωB l JB 2 =

I.e.

ωBίB2Bί =

which leads to (7.4).
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(b) At x = 0, Φ = ip(0,ε) [column matrix], by (7.1). Equation (3.3) then shows
that Φ(x) at x = 0 satisfies the correct boundary condition. Similarly one can prove
that Φ(x) also satisfies the boundary condition at x = a.

(c) If there were another solution of (7.4) satisfying the same boundary
conditions, denote it by Φ x. Then (ε — H)(Φ — Φ1) = 0. Since ε is not an eigenvalue,
this implies that Φ = ΦV

This completes the proof of Lemma 9.
Thus the operation (7.1) symbolically written as

Φ = Ωf (7.1)

has the inverse operation

(s-H)Φ=f, (7.4)

if one starts with a piecewise continuous /.

Lemma 10. Every eigenfunction [5] φe of H with eigenvalue Ee is also an
eigenfunction of Ω, with eigenvalue (ε — E^)'1, so that

Ωφj = (ε — El,)~1φtf. (7.7)

Proof

We shall write both sides as /:

(ε-H)φ,=f, (7.9)

(ε-£,)<?,=/. (7.10)

Equation (7.10) shows that / is continuous. Define, as in (7.1)

Φ = Ωf. (7.11)

Then Φ satisfies the boundary conditions and

f=(ε-H)Φ. (7.12)

Eliminating / from (7.12) and (7.9), we obtain

Since φ^—Φ satisfy the correct boundary conditions and ε is not an eigenvalue of
if, we have

Ψ, = Φ (7.13)

Operate with Ω on (7.10) and use (7.11) and (7.13);

This proves the lemma.

Lemma 11. Ω does not have zero as an eigenvalue. Every eigenfunction ge of Ω with
eigenvalue μ^ is also an eigenfunction [5] of H with eigenvalue

ε-μj1.
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Proof. The eigenfunctions of Ω are [6] piecewise continuous. Now Ωge

Lemma 9 states that (ε — H) (Ωg/) = g{. Thus

g,. (7.14)

It follows from this that μ£ Φ 0. Hence g{ = μj ι(Ωg^). Lemma 9 then shows that g£ is

continuous, piecewise differentiable and satisfies the boundary conditions at x = 0

and x = a.

Now (7.14) implies

which proves the lemma.

Lemmas 10 and 11 identify the eigenfunctions of H with those of the integral

operator Ω. We can then use the powerful results [6] on expansion theorems for

integral operators for the differential operator H.
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