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Abstract. Various estimates of the lower bound of the holomorphic invariant
α(M), defined in [T], are given here by using branched coverings, potential
estimates and Lelong numbers of positive, d-closed (1,1) currents of certain
type, etc. These estimates are then applied to produce Kahler-Einstein metrics
on complex surfaces with Cγ >0, in particular, we prove that there are Kahler-
Einstein structures with Cι>0 on any manifold of differential type

The question of finding gravitational instantons has been important in mathemat-
ical physics. In this paper, we restrict ourselves to Kahler-Einstein metrics. In 1976,
the second author solved Calabi's conjecture on the Kahler-Einstein metric.
However, an important related question has not been solved yet. When a compact
complex manifold has positive first Chern class, does it admit any Kahler-Einstein
metric?

The theorem of Matsushima says that if such a metric exists, the automorphism
group must be reductive. More recently, Futaki introduced more invariants
related to the automorphism group and he demonstrated that these invariants are
zero if the Kahler-Einstein metric exists. Some authors expressed the hope that if
the automorphism group is discrete, then the Kahler-Einstein metric exists.
However, there is another integrability condition, the tangent bundle of a Kahler-
Einstein manifold has to be stable unless reducible. (The work of Bogomolov,
Kobayashi, Lubke leads to such a conclusion.) Since the stability of the tangent
bundle is more related to the linearized version of the equation, it is likely that a
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more nonlinear concept of stability will be involved. Inspired by work in the study
of Yamabe's problem and harmonic mappings [Tr, SU, S], the first author
introduces a holomorphic invariant αG(M) on a compact Kahler manifold M with
C^M) > 0, where G is the maximal compact subgroup of the automorphism group
Aut(M). Such a αG(M) is an analogy of the best constant in the study of Yamabe's

equation. In [T], it is proved that αG(M) > implies that M admits a Kahler-

Einstein metric, where m is the dimension of M. In the case that M is a fermat

hypersurface of degree Ξ>m in CPm+\ αG(M) is indeed greater than

In the first part of this paper, we study the existence of the Kahler-Einstein
metric on a complex surface with C1 >0. By the classification theory of surfaces
[GH], if C x (M)>0, the surface M must be of the following form, i.e. either
CP1 x CP1, or CP2φnCP2, the surface obtained by blowing up CP2 at n generic
points, where 0 ^ n ̂  8, and "generic" means that no three points are colinear, and
no six points are in one quadratic curve in CP2. As symmetric spaces, CP1 x CP1

and CP2 have standard Kahler-Einstein metrics. For n = 1 or 2, CP2 # nCP2 has
no Kahler-Einstein metric, since its automorphism group is not reductive. For
n ̂  3, define Wln = {all complex structures with C1 > 0 on CP2 # nCP2}, then it is
known that 9Jtn is an analytic variety, and 9Jί3,9Jl4 contain only one point, dimc9Jl/J

^ (n — 4) for n ̂  5. By exploiting various methods to estimate αG(M) from below, we
prove the following

Theorem. For any MeUnC9Jiw for 3 ̂ n ^ 8, there is a Kahler-Einstein metric on M,
where Un are non-empty open subsets.

In particular, the tangent bundle of these surfaces are stable. Note that in [Bu],
Burns proves that any complex surface CP2 # nCP2 has a stable tangent bundle for
2^n^6. Also note that we actually prove that any complex surface
M^ CP2 # 8CP 2 with C^M) > 0 and nontrivial Aut(M) admits a Kahler-Einstein
metric.

Another theorem in this paper is the following

Theorem. When C 1(M)>0, M admits a Kάhler-metric with its Ricci curvature
representing C^M) and bounded from below by a positive constant depending only
on the dimension m and Cγ(M)m.

In the course of proving the above theorems, we also show various estimates of
α(M) in terms of different constructions of M. For example, if M is a branch cover
of another manifold N, we can relate α(M) and oc(N) under certain conditions.

Let us outline the contents of this paper. In Sect. 1, we first review Lelong
numbers and positive, d-closed currents. For latter use, we will confine ourselves to
positive currents of type (1,1). Then we give a potential estimate for plurisub-
harmonic functions, whose proof is essentially due to Skoda [Sk]. We also recall the
definition of the invariant αG(M) defined in [T] and the relation with existence of
Kahler-Einstein metrics (Theorem A). A lower bound of αG(M) is given in terms of
the upper bound of Lelong numbers of G-invariant, positive, d-closed (1,1)
currents, representing the cohomological class C^M). As applications, we provide
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certain explicit lower bounds for αG(M) in the case when M = CPm, Gc Aut(CPm).
In Sect. 2, we consider algebraic manifolds M that are branched covers of CPm.
Imposing certain symmetry conditions on M, we can give an estimate of αG(M) in
terms of an estimate of αG,(CPm), where G' is a group on CPm induced from G by the
projection. The latter quantity is computed when M is a certain complex surface
with C1 > 0 and diffeomorphic to CP2 # nCP2, n = 5,6,7. In particular, a Kahler-
Einstein metric exists on such an M. In Sect. 3, by studying the automorphism
group of M and the curves of a certain type with low degrees in M, we prove that
αG(M)^ 1 if M is CP2 #3CP 2 ; αG(M)^f if M is CP 2 #4CP 2 . Hence, such M also
admits a Kahler-Einstein metric. In Sect. 4, we study the existence of a Kahler-
Einstein metric on complex surfaces with Cί > 0 and differential type CP2 # 8CP2.
We prove that any such surface M has αG(M)^l and then admits a Kahler-
Einstein metric if its automorphism group is nontrivial. We also produce a family
of complex surfaces which fit our requirements. Such a family is parametrized by
an open set in CP2. Combining results proved in Sects. 2-4, the first main theorem
is proved. In Sect. 5, we apply the generalized Jensen formula for plurisub-
harmonic functions, once used by Demailly [De], or [Sk2], to our algebraic
manifolds. We obtain an inequality between the Lelong number of a positive,
d-closed current and its intersection number with hyperphase sections. We also
explain briefly how this theorem relates to a conjecture in algebraic geometry to
the problem of existence of certain Kahler metrics with Ricci curvatures bounded
uniformly from below on Kahler manifolds with positive first Chern class. The
conjecture is that there is a uniform bound for (— KM)m for any algebraic manifold
M with dimension m and ample anti-canonical line bundle.

In this paper, unless specified, M is always a compact Kahler manifold with
positive first Chern class and g is the Kahler metric on M, locally, g = gaβdzadzβ,
(gΛβ) is a positive hermitian matrix-valued function. Define the Kahler class

2τΓ
suppose that ωg be in the class C1(M)eH2(M,R), usually, we use the symbol
g~Cγ(M) to mean this.

There are two hopeful ways to improve our theorem. The first is to sharpen the
lower bound of the holomorphic invariant αG(M). In Sect. 1, by using a potential
estimate for plurisubharmonic functions, we give a lower bound of αG(M) in terms
of the upper bound of Lelong numbers of G-invariant, positive, d-closed (1,1)
currents representing Cγ(M) (Theorem 1.5). This bound is not optimal. The best

one should be aG(M)= where LG(M) = sup < LJu,z)\zeM, u is a
LG(M) [m-p

positive, d-closed (1, l)-current, G-invariant, coholomogical to CX(M) and the set

(zeM\Lg(u,z')^Lg(u,z)) has complex dimension p>, g is a Kahler metric on M,

ω = —.— £ ga~βdza A dzβ in local coordinates. It is globally defined. We also
2π

m = dimcM. The reason for our belief in such an equality is a prior estimate of
almost plurisubharmonic functions on a Kahler manifold (M, g), namely, for β < 1
there exists constants C, r, depending only on (M, g) and β, such that for any C2

function φ on M, satisfying ω 4- ~ — ddφ ̂  0, sup φ = 0 and
2π M
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where xeM. Then

J g J e~φdVg.
Br/4(x) Br(x)\Br/2(x)

We are not far away from verifying this estimate. Note that the condition

on M is crucial, since a local version of such an estimate is never true. On a Kahler
surface (M,g), diffeomorphic to one of CP2φnCP2, where n = 5, 6, 7, 8, for any
positive, d-closed, G-invariant (1,1) current u representing Cγ(M\ define
Eλ = {xe M\Lg(u, x)^ λ}, then Eλ is analytic [Si 1]. It can be shown that Eι +ε is a
O-dimensional variety and E3 _ ε is empty for ε small. Hence, in this case, Lg(M) ̂  1.
Another improvement will follow from an interior C°-estimate of certain complex
Monge-Ampere equations. Namely, consider the equation det(uo ) = F in the unit
ball 2^(0) of Cm, with F > 0 bounded from above and u plurisubharmonic. Is there a
positive number p > 0 such that for any solution u of the above equation,

J e-*"dV\
Bi(O) )

where C depends only on F9pl Note that in [T], by a standard L2-estimate, it is
proved that for any sequence of C2-functions {wj on (M,g) satisfying that

ωg+ *- ddu^O and sup 1̂  = 0, there are a subsequence {uik} and a subvariety

ScM such that in any compact set K of M\S, the integrals \e~pUlkdVg are

uniformly bounded. Combining this with the proposed interior C°-estimate, one
should be able to prove that either there is a Kahler-Einstein metric on (M, g), or
the degenerate Monge-Ampere equation det(g- + (pQ) = 0 has a solution u. The
solution u will be smooth outside an algebraic subvariety S of M and has
logarithmic growth near S. Such a u certainly imposes some constraints on the
manifold M. We expect that the understanding of those constraints will result in
the solution for the problem of existence of Kahler-Einstein metrics on Kahler
manifolds with C1>0. Also, the role of u here should resemble that of the Green
function of the conformal operator in the study of Yamabi's equation.

Finally, we would like to mention that Calabi claimed that he could show the
existence of a Kahler-Einstein metric over CP2 # 3 C P 2 by an almost explicit
construction. Siu [Si 2] also proves that CP2 # 3CP2 and the Fermat surface admit
Kahler-Einstein metrics by estimating the lower bound of bisectional curvatures of
some Kahler metrics constructed on these surfaces and studying the Green's
functions of holomorphic curves. A more effective estimate enables us to prove that
α(M)^f for any Kahler surface M^CP2φ8CP2 with Cl(M)>0. Since the
estimate is being applied to the general case and being studied further, we would
like to present it elsewhere.
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1. Positive Currents and Related Estimates

In this section, we study d-closed, positive currents. We shall give an estimate for
plurisubharmonic functions. The basic idea is due to Skoda [Sk 1]. While most of
the arguments work for arbitrary (p, p)-currents, we will confine ourselves to (1,1)-
current. At the end of this section, we will recall the definition of αG(M) in [T] and
the theorem on the existence of Kahler-Einstein metrics proved in [T]. The results
on (1, l)-current will then be used to estimate ocG(CPm) for Gc U(m +1).

Let M be a Kahler manifold with Kahler metric g. In local coordinates
(z l 5 . . ., zm), g is represented by a positive hermitian matrix (go ). The corresponding

Kahler form is given by ωg= ~—gijdz1 A dzj.

For the definition of positive current, we refer the readers to Siu [Si l ] or
Griffiths and Harris [GH]. Now we recall the definition of the Lelong number of a
positive, d-closed, (1, l)-current u in an open set ΩcM. We define the total
variation ||w|| of u to be the positive measure MΛCOJ1"1, where m = dim€M. For all
aeΩ,we define the Lelong number Lg(u, a) of u at a with respect to the metric g to
be the limit

^ ι=\πn^j\\u\\(Br(a)), (1.1)
0 T

^ 2 ί ^j\\\\(r()),
r~>0 V Br(a) r-+0 T

where Br(a) is the geodesic ball in M with radius r and center a. Such a limit exists.
Lelong [Le] shows this for Ω C Cn and g to be the standard metric. The general case
follows from this special case, since a Kahler metric can be approximated by the
standard Euclidean metric at one point up to second order.

Lemma 1.1. Suppose that we have a sequence of closed, positive (1,1)-currents {ut},
weakly converging to a d-closed, positive (l,l)-current u in Ω in the sense of
convergence of corresponding total measures. Suppose also that for all aeΩ,
Lg(u,d)< + oo. Then for all ε>0, and compact subset KcΩ, there exist r = r(ε,K),
N = JV(ε,K), such that for i>N, aeK,

ί ^Λω--^L>,α) + ε. (1.2)
Br(a)

Proof. Choose rx<dist(jK, dΩ), such that for aeK,

1
p2»-2 ί « Λ < - ' ί L 9 ( M ) + v (1.3)

For each aeK, let ρα(ί) be a cut-off function satisfying:
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Let ra(x) be the geodesic distance function on M from a, then near α, ra(x) is
smooth. Thus

lim J ρ i φ J K Λ O ) - ^ J ρ f l ( φ ) ) u Λ < - ^ 1 UΛCO™-1. (1.5)
ί ^ J ^ ) β() β (

By the compactness of K, it is easy to see that there exists N(ε, K) such that for
ί>N,

ί ρ i Φ ) K A < - ^ J M f i
() β ()r i (α) β r i (β) J

Hence

~ j uiA<-^L>,«)+^. (1.7)
Bri-ό(a) J

Let r = r(ε,X) = r 1 — δ with (5 small enough. Then we have

-J-Ϊ ί uiΛω™-1^LJu,a) + ε for i>N,aeK. (1.8)
^ Br(fl)

This finishes the proof of Lemma 1.1.
Before we state the next lemma, we need the following definition of slicing of a

d-closed positive (1, l)-current u. Suppose Ω = B is an open small ball in M, then by
the closedness of u, there exists a plurisubharmonic function φ on B such that

u = - ddφ. For an analytic curve L in M, LnB + 0, we define the slice u\L of u
2π

by L as
1^ (1.8)

when it is meaningful. It is easy to see that the definition is independent of the
particular choice of φ and dd(φ\L) is meaningful whenever φ\L is not identically

equal to — oo and L1-integrable. An important case is given by u = ωg + *—z— ddφ

on M. When u is defined on M, and φ ^ O , M|L is well-defined iff φ\L is not
identically equal to — oo. In this case, e~εφ is automatically integrable for ε
sufficiently small which follows from Proposition 2.1 in [T] .

Lemma 1.2 (Siu [Si 1, Lemma 7.5]). Suppose u is a positive, d-closed (1, \)-current
defined on Ω. Let aeΩ and Lbea smooth curve segment in Ω passing through a such
that u\L is well-defined, then

ι,d). (1.9)

Remark. The statement here is slightly different from that in Lemma 7.5 of Siu
[Si 1], but his proof still works.

The following proposition is essentially due to Skoda [Sk].

Proposition 1.3. Given (M, g), there exists a positive number R with the following
property. For any β,y>0, and β<l, there exist r = r(β, y, M), C = C(β, y, M) such that
for any plurisubharmonic function φeC2(BR(a)\ aeM, satisfying:

2π
ddφ J \φ\dVg^γ, (1.10)

dBR(a)
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and

BR(a)\ 2π

then

J e~φiz)dVg(z)^C. (1.12)
Br(a)

Proof The constant R will be chosen so that within the given complex coordinate
charts, the ratio of the geodesic distance to the Euclidean distance is close to one

and ωa is close to the Euclidean metric^-—dd\Z\2. In this case, (1.11) is valid with
2π

g replaced by the Euclidean metric with β replaced by a slightly larger constant.
Hence we shall assume the metric is Euclidean. For convenience, we also assume
the ball to have radius one.

By Green's formula (see Gilbarg and Trudinger [GT]), note that we write the
formula in complex coordinates,

2m-2

dd\ζ\2} . (1.13)
2π

In this proof, C will always denote constants depending only on β, γ, M,

+ (m-l)δlog|Z-C| 2 Ad\og\Z-ζ\2 A(ddlog\Z-ζ\2)m-2. (1.14)

Plugging this in the above Green formula, we have for \Z\Sh

1 1 |/^T

m-1 J ( 0 ) |Z-ί | 2 m ~ 2 2π

ί
o

2π

ί
( 0

+c

m —

2π Ύ \ 2π
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where p is a cut-off function satisfying: p(ί) = l for t^h P(t) = 0 for ί^|, and
\p'(t)\ ^4. Note also that in the last inequality, C has absorbed the integral cut by

Integrating the second term on the right by parts in the above inequality,

Bi(θ)

Λ

Bl(0)\Bi/2(0)

m~2

+C

g- ί (loge^Z-C|2)Λ
Λ ( 0 )

Put

2π
+C.

m - l

Λ
2π

(1.16)

_ \
θdφ . (1.17)

J
We have the following monotonicity formula (see Lelong [Le]), for 0^r<R< 1,

/—1

zπ

m - l

r βr(0 zπ
(1.18)

Then,

2π

m - l

2π

2π

, α s i

ί

+ 2 , z ,



Kahler-Einstein Metrics

Since φ is plurisubharmonic, (1.18) implies

ί
1+2|Z|/ 2π

dd\ζ\

Let βί=β + ί/29 then β<β1<ί. Take r small enough, s.t.

2m-2

then μ(Z)^βί for |Z |^r, by the concavity of log,

1 \βl/2(0)

ddlog\Z-ζ\
2 π

B i/2(0)

VΞλ

As ^ - ^ l o g | Z - C | 2 is dominated by

e~φiZ)dZ^C f

χ Γ l Z _

_
<9<3|CI2

183

+ 4 | Z | \ 2 m - 2 .
1 + 2 I Z I /

(1.20)

βi

This completes the proof of Proposition 1.3.
Consider a Kahler manifold M with C1(M)>0, let us recall the definition of

αG(M) introduced in [T], where G is a compact subgroup in Aut(M). To define
αG(M), we first pick up a G-invariant metric g~Cx(M).

Put PG(M,g)= \φeC2(M,R)\φ is G-invariant and ωg+ l ζ p ~

αG(M): =sup ία|there exists C such that f e ^ ^'dV <C VωePΛM e)\

It is easy to show that otG{M) is independent of the particular choice of g. α(M)
= αG(M) in case that G is trivial. In [T], the following theorem is proved. We will
use this theorem often.
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m
Theorem 1.4. For a compact Kahler manifold M with C1(M)>0, if αG(M)> ,

where m = dimcM, G is the maximal compact subgroup of Aut(M), then M admits a
Kahler-Einstein metric.

On the given manifold M, we also have the following natural invariant:

LG(M) = sup {Lg(u, z)\z e M, u is a d-closed, positive (1,1 )-current,
cohomological to C±{M), and u is G-invariant}, (1.24)

where g is a Kahler metric on M, g ~ C^M). As above, LG(M) is independent of the
choice of g. By Lemma 1.2, and the fact that M is actually algebraic, it can be
proven that LG(M) is bounded from above.

Theorem 1.5. αG(M)^ —-—-, whenever M is Kahler and Cl(M)>0.
LG{M)

Proof Fix an arbitrary λ < —-—-, we have to prove that αG(M) ^ λ. For that, it

suffices to show that for any sequence {φt } ePG(M, g), we can find a subsequence
{φik} and a constant C, such that

-λ(φι(z)-supφι)
\e ™ kdVg^C. (**)
M

By taking the subsequence, one may assume that, as measures, ut = ωg

]/— l
+ ι ddψi converges weakly to a ^-closed, positive (1, l)-current u, u is

2π
cohomological to C^M). By Lemma 1.1, there exists N>0, r > 0 such that for
i>N, and zeM,

1 m-i 1

v2m-2 J UiAωg = ~, ~ε > ε Small .

Note that - >Liu,z) for any zeM. Locally, ωa = *—— dδw for a certain
λ 2π

plurisubharmonic function, then ψ + ψi is plurisubharmonic for each i. Then
Proposition 1.3 implies (**) for i>N, i = ik. Hence, the theorem is proved.

Remark. As we mentioned in the introduction, αG(M) LG(M) = l, where LG(M)

= sup< Lg(u,z)\zeM, u is a positive, rf-closed (1, l)-current, G-invariant,

cohomological to C^M) and the set (z'eM\Lg(u,z')^Lg{u,z)) has complex

dimension p>. Note the set (zΈM\Lg(u,z')^.Lg(u,z)) is analytic, see Siu [Su 1].

Corollary 1.6. α ( C P m ) ^ —?—.
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Proof. Just take g as the (m+ l)-multiple of Fubini-Study metric, i.e.

ω, = ( m + l ) L A 5 3 i o g | Z | 2 ? w h e r e | Z | 2 = |Z 0 | 2 + . . . + | Z J 2 ,

[Zo, ...,Zm] is the homogeneous coordinate of CPm.
For any positive, d-closed (1, l)-current w, cohomological to G(M\ it can be

easily proved that the slice of u by lz is well-defined for each z e CPm and generic line
lx through z in CPm, so Lg(u, z)

since u is cohomological to C^M). Theorem 1.5 says that α(CPm)^ -. Π

Let G(p)cU(m + l) be the finite group generated by σi and permutations τ o

(O^f^m, 0^ί<jSm\ where, in the homogeneous coordinates [Zo, ...,Zm] of
CPm.

ί j , τ o : [ Z o , . . . , Z ι , . . .,Z J , . . . , Z m ] ^ [ Z o , . . . , Z 7 , . . . , Z / , . . . , Z m ] .

2
By a sophisticated argument, one can prove that ocG{p)(CPm) ̂  for p ̂  2.

Actually, one should be able to demonstrate the sharp estimate ocG{p)(CPm) ^ -.

However, for simplicity, we only prove the following special estimate, which is
sufficient for this paper.

Corollary 1.7. aG{p){CP2)^ for p^2.

Proof It suffices to show that for any positive, d-closed, G(p)-invariant, (1,1)-
current u~Cγ{M\ L (M,Z)^2, ZEM, where g^C^M), and

[Z0,Zι,Z2]=Z are the homogeneous coordinates of CP2.
For each zeM, the orbit G(p) z has at least three distinct points. It is easy to

check that three of G(p) z are not colinear, suppose they are z1=z, z2, z3 e CP2.
There is a family

\C[a,β,r]}[oc,β,r-\eCP2

of quadrics in CP2 passing through zι,z2, z3, and generic quadric is smooth. So one
can find a smooth quadric C on which the slice of u is well-defined, thus by



186 G. Tian and S.-T. Yau

Lemma 1.1 and G-invariance of u,

3Lg(u, z) = Lg(u, z1) + Lg(u, z2) + Lg(u, z 3)

c c

i.e. Liu

2. Kahler-Einstein Metrics on CP2φnCP2 for 5 ^ « g 7

In this section, we assume that the manifold M has been embedded into CPN,
m = dim c M, N>m, and the metric g is a multiple of the restriction of the Fubini-
Study metric of CPN to M. We also assume that the maximal compact subgroup G
of Aut(M) is a subgroup in U(N + 1), the maximal compact subgroup of Aut (CPN)
= PSL(N+1). In the homogeneous coordinates [Z0,...,ZN]=Z of CPN,

ω = 2π

μ is a positive integer. Obviously, g is G-invariant.
Choose a (N — m — l)-dimensional projective subspace F^CPN~m~1 in CPN,

such that FnM = 0. We project M onto a m-dimensional subspace FL^CPm

CCPN from F. Denote the projection by πF, then πF:M->Fλ is a branched
covering, its covering degree is the same as the degree of M in CPN. Take a function
φeC2(M,R), define φ F on F 1 as follows:

= ^ Σ
U geπF

 ι(x)

where d = deg(πF).

Lemma 2.1. F, F 1 , πF as above, then for each φ e C2(M, R), and an open set U C F 1 ,

J e~*?«*<">f J a c ( π F ( ) ; ) ) ^ ^ ) d K / y ) = d \ e ~ ^ x W g F ( x ) , (2.2)

where gF = the Fubini-Study metric of F 1 ^ CPm, i.e. the corresponding Kdhler form
is

Jac(πF) is the Jacobian of πF.

Proof. It follows from the transformation formula for integrals and the fact that π F

is a covering mapping outside the branched locus of complex codimension one.

Proposition 2.2. M, g, G as above, suppose that Fί9...,Fιbe(N — m— \)-subspaces in
CPN, such that F±n...oF,1 = 0, FtnM = 0 for i = 1,2,...,/, then we have projections
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πi =πFι\M-+Ff, i = l, 2,...,/. Furthermore, suppose that the group G contains all
deck transformations of the projections πt (i= 1,2,...,/), then

min α ^ 1 ) , (2.3)
l ^ ΐ ^ lμ 1 ^ 1

where Gt is the compact subgroup of Aut(F^) induced by πt from G, i.e. the group
generated by elements of G preserving the fibres of πf.

Proof First, we prove that for each z, there exists a constant Ch depending only in
i, λ, such that

-λ(φ(x)~supφ\ / fly (il.(χX\\
\ e [ M } Jac(π f )

 gFt )dV(x)SC- (2.4)
M \ dV(x) ) ι

for each φePG(M,g\ where λ< min aiG{Ff) and gF is the Fubini-Study

metric on i7^. Clearly we can assume supcp = 0.
M

For simplicity, we assume that i = l ,

Fl = {[ZO)...,Zm,0,...,0]eCPN}, F = {[0,...,0>Zm+1>...,ZJV]eCPJΪ}

and ^:[Z o , . . . ,Z w ]^[Z o , . . . ,Z m ) 0,. . . ,0]. Then

2 + ... + |ZJ2). (2.5)

Put

-... + | Z W | :

(2.6)
M

since MnJF X =0, such t/; is a smooth function on M.
Now for φ e PG(M, g),

μdd log(|Z 0 | 2 + ... + |Zm | 2) + dd(ψ + φ) = μdd log(|Z 0 | 2 + ... + \ZN\2) Λ-ddφ^O,

(2.7)

it follows that

μdd log( |Z 0 | 2 + ... + | Z J 2 ) + dd(xpFl + φFl)^0. (2.8)

Obviously, ψFι + φFί is Gi-invariant, moreover, since G contains all deck
transformations of πf and φ is G-invariant,

J = AΨF, + π?φ F l = φ + φ. (2.9)

Lemma 1.1 says:

(2.10)
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we have proved that ψFl-\-φFιePGί(F^,μgFί) = PGι{CPm,μ'gFl). The first Chern
class of F{^CPm is represented by (m + l)ωg F ,

— (ψFl + φFl) e PGι{CPm, Cγ{CP™)), (2.11)

now

λ< ^ ^ min aG(Ft)S : ^ ^ « G , ( ί ' ί ) , (2.12)
μ i ^ ΐ ^ ί ι μ

i.e. <α G l (F |) , hence, there exists a constant C'u depending only on λ, such

that

M m+1,

pL y pL " ' 1

1 1

> is a smooth function independent of φ, there exists a constant Cx such that

J e-λ^)(ίΆc{κι(x))dV<^ψ)dVg(x)^Ci. (2.14)

Once we have (*), we sum them up

-C. (2.15)

Because F}n...nF;L = 0, there exists a constant C">0, such that

Σ lzc{πlx))dVgF(π{x))^C"dVg(x). (2.16)
i = 1

Put C = C/C", then

J β ~ A ( φ ί x ) ~ S^P φ)d V(x) S C (2.17)
M

for each φ e PG(M, g). It implies that

: ' ^ m i n z α G ί ( F I

1 ) . (2.18)

Now we consider the existence of Kahler-Einstein metrics on CP2 # 5CP2. It is
known that the generic intersection of two quadrics in CP4 is CP2 blown up at five
generic points (see Griffiths and Harris [GH, p. 550]), consider smooth surfaces

where a{ + α,- for i # j , 0 ̂  /, ^ 4. M ^ CP 2 # 5CP2. We take g as the restriction of
Fubini-Study metric on CP4 to M, then

2π
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which is just C^M), so g^C^M). For i+j, 1 < '̂,;<;4,

Fy-{[0,...,Z....^0, O]eCP}, ( i i 9 )

F£. = {|_Z0,..., 0 , . . . , 0 , . . . , Z 4 J e C P 4 } ,

the corresponding projections π ι 7 :M-»F j , [Z o , . . . ,Z 4 ] to
Γ (0 a) Ί

Z 0 0 Z

FijΠM = {[0,...,Z i ?..., Z ; ,...,OJIZ? + Z 2 = 0, atZ
2 + α^Z2 = 0} = 0, (2.20)

and 4

n 4=0-

Let G be the maximal compact group in Aut(M), then G contains transformations

r ΓZ Z 1—*ΓZ — Z Z Ί

Since the deck transformations of πtj are τί9 τ7 , τiτj = τjτi, by Proposition 2.2,

) > 3 min αΛ..(F^),

where G^ is the group on Fjj induced from G by πtj. By Corollary 1.6, we obtain

O = 1 Hence

Theorem 2.3. Non-singular intersections

admit Kahler-Einstein metrics, where at φ a} for 0 S i <j S 4.

Remark. Based on the same arguments, one can show the existence of Kahler-
Einstein metrics on certain non-singular complete intersections, such as

Next, we suppose that M is diffeomorphic to CP2 # 7CP2, i.e. CP2 blown up at
seven generic points. By Riemann-Roch theorem and Kodaira vanishing theorem,
dimc/f°(M, — KM) = 3. It is known that this group gives a holomorphic branched
covering π:M^CP2, with degree equal to two. It has deck transformation σM

which exchanges two sheets over CP2. Let EcCP2 be the branch locus, then E is
smooth, as M is smooth. From ( — K M ) 2 = 2, it is easy to see that deg£ = 4.
Moreover, by applying the covering lemma to M — E^CP2 — E, one can easily
deduce that any transformation of CP2 preserving E can be lifted to be an
automorphism of M. Let Aut(E) be {τ e PSL(3)\τ(E) CE). Then Aut(E) is finite and
we can assume Aut(£)c£/(3). Also, Aut(£)cGcAut(M), where G is maximal
compact. Let g~Cλ(M) be a G-invariant metric on M and

2π
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be the Chern form of the hyperplane line bundle H on CP2. As Cί(M) = π*(Cϊ(H))

]/ — 1 —
= π*(ω0o), we have ωg — π*ωgo= *——ddψ for a smooth function ψeC2(M,R).

Obviously, we can assume that ψ is σM-invariant and Aut(£)-invariant. Therefore
in Lemma 2.1, where φePG(M,g). By Lemma 2.1,

M \ dVg J cp2

(2.21)

Let h be the global section of line bundle [ π " 1 ^ ) ] , defining π~x(E), then

d V ^ ] h\\x), (2.22)

where C1 is a constant and \h\2 is the norm of h with respect to certain fixed
hermitian metric for [π~ *(£)]. Since ψ is smooth, there exists a constant C2 such
that

f β M \h\2dV<C2 j e
M CP2

(2.23)

for every φ e PG{M, g).

π* ί ωgo + J ^ - δδ(ψF + φF) j = π*ωg + ^— ddψ + ^ - ddφ

9 2π

on the other hand, 3ωgo^C{{CP2\ so 3{ψF + φF)ePG{)(CP2,3g0), where
G0 = Aut(E). Thus the right-handed side of (2.23) is uniformly bounded indepen-
dent of φ, whenever /<3α G o (CP 2 ).

2

By Holder inequality and the fact that j \h\ a~1dVl' < + oc for α>2, we have
M

--(φ(x)-supφ) I --(φ(x)-supφ) •

M

M

ύ 3 \ e - ^ K g o ,
CF2

where C 3 is a constant depending only on λ, M, α. Thus we prove that

αG(M)^fαG o(CP 2) and α G ( M ) > |

whenever αG o(CP2)>f.

Now we take E such that the corresponding G0 = Aut(£) contains a G(p)
defined in Sect. 1 for certain p, for example, we can take E to be the Fermat quartic
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curve {ZQ + Z\ + Z\ = 0} in CP2 and in this case Aut(E) = G(4). For such a curve E,
Corollary 1.7 says that α G o ( C P 2 ) ^ , i.e. α G ( M ) ^ | , where M is the corresponding
double covering of CP2 branched along E. By Theorem 1.4, such an M admits
a Kahler-Einstein metric.

Theorem 2.4. For EC CP2, a quartic curve such that Aut(E) contains G(p), p^2, the
double covering M of CP2 branched along E admits a Kahler-Einstein metric. Note
such a M^CP2Φ7CP2.

Remark. If one can prove αG(M) LG(M) = 1 as stated in the remark after
Theorem 1.5, then α(M)^ 1 for M^CP2φ7CP2. This concludes that any such a
M admits a Kahler-Einstein metric.

Combining a result in [T], we have proved that there exists M ^ CP2 # nCP2

admitting a Kahler-Einstein metric for each n among 5,6,7. A standard argument
by using implicit function theorem shows the following

Theorem 2.5. There exist non-empty open sets Un C 9JΪM for n = 5,6,7, such that each
M in Un admits a Kahler-Einstein metric.

It is well-known that any algebraic manifold is a branched covering of the
projective space of same dimension. In many cases, the branched locus is smooth
and the pull-back of the anticanonical line bundle of the base manifold N is
proportional to that of the covering manifold M. Then one can estimate α(M) in
terms of α(JV), the covering degree and the ratio of two anticanonical line bundles,
precisely, one can prove the following proposition. The proof is based on the same
argument in the estimate of αG(M) above when M is diffeomorphic to CP2 # 1CP2.

Proposition 2.6. Suppose that M, N are two compact Kάhler manifolds with positive
first Chern classes, and suppose there exist ad-branched covering map π: M-^N such
that the branch locus B is simple; i.e. B= [x e N\π~ ι(x) consists of a single point} and

B is smooth. Then if π^C^N) = μC^M), μ is a rational number, α(M) ̂  —γ~ α(JV). //

the maximal compact group G of Aut(M) contains all deck transformations of π, then

α G (M)^ —-(XG Q(N), where Go is the subgroup of Aut(N) induced by G and π.

Remark. The condition on the branch locus can be weakened.

3. Kahler-Einstein Metrics s on CP2*3CP2 and C P 2 # 4CP2

In this section, we prove that αG(M) > § if M is diffeomorphic to either CP2 # 3 CP2

or CP2 # 4 C P 2 , and thus conclude the existence of Kahler-Einstein metric on such
M. The case that M^CP2φ3CP2 is also considered by Calabi and Siu [Si2].

We start with a lemma taken from [T].

Lemma 3.1 ([T], Lemma 3.2). Let B™;\0) x B^OKC 1 """ 1 x C 1 be the product of
balls,

Sβ= ίφe C2(B%; \0) x BΛ2(0))|VzeB%; ι, φz = φ{z, ) is subharmonic,

Δwφz(w)dw^β\.
jBR2(0)



192 G. Tian and S.-T. Yau

Then for each ε, δ>0, there exist r2 = r2(ε, R2) > 0, C = C(δ, β), such that Vφ G Sβ,

'-2^ if e" v"^"/ Z'Wdzdw, (3.1)

where Aw is the real Laplacian of w.

Lemma 3.2. Lei φ t e α radically symmetric subharmonίc function in Bλ(0)C C1,

'jZ_\ _ 1
J Λφ{w)dw\\og\Z\.
( 0 ) y

(3.2)

Proo/ Let r = |Z|, rf(r) = rzl φ = 0, then r/= — (r-^-L note that φ can be
αr \ dr )

considered as a function of r. Integrating on both sides of the above equality,

r—j-{r) = \sf{s)ds. (3.3)

So

dco

5 o

2 π ^ β

J

(

(3.4)

Theorem 3.3. (i) // M is diffeomorphic to_CP2#3CP2, then
(ii) // M is diffeomorphic to CP2 # 4CP 2, then αG(M) ̂  | , w/zere G fs the maximal

compact subgroup of Aut(M). In particular, both manifolds in (i), (ii) admit Kάhler-
Einstein metrics.

The rest of this section is devoted to the proof of this theorem. First, let us
assume M^CP2 # 3CP2, i.e. M is CP2 blown up at three generic points. After an
automorphism of CP2, we may assume that the blown-up points are [1,0,0],
[0,1,0], [0,0,1]. Aut(M) consists of all those projective transformations on CP2,
permutating the blown-up points, so G is generated by

ePSL(3),0

0

0

0

0

0

and

1 0 0\

0 0 1 \ePSL(3).

0 1 0/

Now the metric g is G-invariant. In order to estimate αG(M), we take a sequence
{(Pi\ C PG(M, g). Fix a λ < 1. By taking a subsequence if necessary, we may assume
that there is an analytic sub variety Sλ, such that d i m c 5 A ^ l and for each
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zeM-Sλ, 3r>0, C>0, such that

J e~λ{φι{Q~^φιUvgg)^C for all /; (3.5)

for z e Sλ,

lim J e A(Φ ι ( ζ ) s^P < P l)dl^(0= + oo for any r > 0 [7] . (3.6)
i—* + oo Br(z)

For our purpose, it suffices to show that 5 λ = 0. On the other hand, by Proposi-

tion 2.1, e ε(φt SM?φ> have uniform //-integral bound for ε small and all i, so we

may assume that φi — supφ t converge to φ in L2, then e~ε(p is LMntegrable and
M

]/—1 _
u~ωQ + ^ — δ δ ^ j converge weakly to the positive, ^-closed (1, l)-current u = ω

2π

1/ — 1 -
+ ^ ddφ, where δδω is in the sense of distribution. Define

2π

Eλ= <zeM\L (M,Z)^ ->, then £ λ is an analytic sub variety (see Siu [Sil]). The

arguments in the proof of Theorem 1.5 shows that Eλ2Sλ. Note that they are not
equal in general.

Let π: M-+CP2 be the natural projection, Co, Cu C2 be the exceptional curves
of M over [1,0,0], [0,1,0], [0,0,1], Fθ9 Fl9 F2 are quadratic transformations of
lines

{[0, Z 1 ? Z 2 ] G CP2}, {[Zo, 0, Z 2 ] G CP2}, {[Zo, Z 1 ? 0] G CP 2 }.

C/αίm. For λ<l, E^iCouC^C^niFoKjF^F^.
Since EA is G-invariant and analytic, it is easy to see that Eλ is contained in

If dimc Eλ = l, then either F0vFίvF2cEλ, or Co u C x u C2 C £A. In the former case,
since e~~εφ is ίZ-integrable for ε small, we find a generic line /CCP2, avoiding
[1,0,0], [0,1,0], [0,0,1], such that φ is not identically equal to - oo on π~\ϊ)^ /,
so the slice u\π-i{l) is well-defined. This / intersects Ft at one point Pb i = 0,1,2,
P o, P 1 , P 2 e £ A , so by Lemma 1.2,

-- L ^g\n •twWπ-Hl))1 ί)

2 3

~ί = o g ' ι ~~ λ

but C^M) = π*(3H) - [Co] - [ C J - [C 2], where // is the hyperplane line bundle
on CP2, so

J C1(M) = (π*(3i f )-[C 0 ]-[C 1 ]-[C 2 ]) . [π- 1 (/)] ([GH])

= 3. (3.8)
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A Contradiction. In the second case, by taking a generic quadric Q in CP2 passing
through [1,0,0], [0,1,0], [0,0,1], we can also get a contradiction by the same
argument as above.

Hence, dimcEλ = 0, i.e. Eλ consists of finite points. For any point peM other
than

W
i = 0 i = 0

the orbit G p has at least real dimension one, so p φ Eλ. Thus the claim is proved.
Quadrics Cδ={Z0Z2 = δZ2} of CP2 (δeCP1) pass through [1,0,0], [0,0,1].

Their quadratic transformations π*C*,pass through points C0nF2, C2ΓΛF0. π*Cδ

is smooth except δ = oo e CP1.
At point C0nF2, the local coordinates are (x,η)^>[ί,x,xη'] x [ 1 , ^ ] G M , the

automorphism

' 0 θ\

0 0

0 0 e3

acts on M near (0,0) = C0nF2 by sending (x,η) to x > e3e2lγj\ s o

acts on M by (x, η)^(ex, eη), since ςo£ is G-invariant, φt(x, η) = φ^ex, eη) for any eeC

ιη ι η
For R small enough, BR(C0nF2) is contained in the chart of local coordinates

(x, f/). Since the metric g is G-invariant, π*CδnBR(C0r\F2) is spherically symmetric
in the usual sense of local coordinates (x, η), so

= δx, \x\2 + \η\2^Rδ}

for certain Rδ>0. On each π*Qnβ Λ (C o ni 7

2 ), each φt is radically symmetric.

Automorphism

C2nF0.

0

0

1

0

1

0

1

0

0/

G maps each π*Cδ into itself and maps C 0 n F 2 to

=jcδ

for any φb but φ( is G-invariant, so

ί

= f
*C

ddφi

ddφΛ=2.

- 1

27
Locally, α>9 = ~^— ddψ, ψ is also G-invariant, then

θi(x, η) = ψ(x, η) 4- φlx, η) - sup φi = θf(|x|, |
M
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is radically symmetric on each π*CδnBR(C0nF2). Each θt is plurisubharmonic and

JJ
π*CόnBR(ConF2)

JJ
π*CόnBR(C0nF2)

so by Lemma 3.2,

θfaη) £ 2 log(|x|2 + \η\

where z(x,η)eπ*CδndBR(C0nF2). Thus, since λ<l, by using the polar coordi-
nates, there exists C > 0, such that

JJ
dBR(x,η)

then

, - sup<p, )
f

J
dVg.

BR(C0nF2) cBR(C0nF2)

( 2 \ / 2 \

Since we have proved that SλQEλ contains at most M Ci n 1) F t , integrat-
\i = 0 / \i = 0 /

ing on Λ from Λx to 2Rl9 Kx small, it follows that there exists C such that
f -λ/<p,-suρ<iί>Λ

^ C for all i,

i.e. C0nF2φSλ. Similarly, C2nF0φSλ, and CinFjφSλ (i+j), so Sλ = φ. Therefore,
we have proved that αG(M) ̂  1.

Next, we turn to the proof of (ii). In this case, we may assume that M is CP2

blown up at four points [1,0,0], [0,1,0], [0,0,1], [1,1,1]. There is a fibration of M
over CP1 by conies, precisely, if π.M^CP2 is the projection, the fibration
f.M-ϊCP1 is given by mapping π*C[αtβ] to [μ,β~]eCPι, where

C[atβ} = {ocZo(Zί - Z 2) + βZ2(Zί - Zo) = 0} C CP2.

Let Go C G be the subgroup preserving the fibration, then Go is generated by

0 - 1 l\ /θ 1 - 1

0 - 1 0 , <J2= 1 0 - 1

1 - 1 0/ \0 0 - 1

The fixed points of σi are Dt ,

D0nDι=D1nD2=D2nD0 = {[1,0,1], [0,1,1],[1,1,0]}.

As before, we fix a /I < | and take a sequence {φJcPG(M,g), we also have
t, Eλ, Sλ Q Eλ. It is sufficient to show that Sλ = 0.



196 G. Tian and S.-T. Yau

Claim. dim<LSλ = O.

First of all, Eλ cannot contain a curve in fibres of/ In fact, if not, Eλ contains at
least one fibre C[αj3]. As G acts on M without fixed point, Eλ contains at least two
fibres C[aβ], C[a>βΊ. Choose a generic line lc CP2, away from four blown-up points,
such that φ φ — oo on π*L, where φ is the limit of φi — sup φt as before. Then, by

M

Bertini theorem [GH], / will intersect C[αj5], C [ α % / n at two points, respectively. The
argument used in Lemma 1.2 then gives a contradiction. So SλcEλ does not
contain a curve in the fibre. If dimcSλ = 1, then Sλ is generically transversal to the
fibres of/ π*C [ α j 3 ] C1(M) = 2, and Go acts on each smooth π*C[α ^ without fixed
point, since [1,1,0], [0,1,1], [1,0,1] are only fixed points of Go, and they are in
three singular fibres C [ l j 0 ] J C[0> 1]? C[1Λ]. Hence, at each point p where Sλ intersects
a smooth π*C[α?/?] transversally, we may find a neighborhood U so that in proper
local coordinates, U = B%~1(0)xBR2(0), p = (0,0), and Unπ*Cίa,tβΊ is one of
z x BR2(0), zeB%~ ̂ 0), moreover,

Unπ*C[oe>,βΊ

By Lemma 3.1, one sees that pφSλ, a contradiction, and we have proved

Furthermore, the above argument actually shows that Sλ contains at most
[1,1,0], [1,0,1], [0,1,1]. They are equivalent under the action of G. Now we

estimate Lelong numbers of ωg + ^—— ddφ at those points.

Lemma 3.4. The generic curve in the family

in CP2 is smooth except at [1,1,0], [1,0,1], [0,1,1], where the curve has ordinary
double points.

Proof. Let Cα = { α Z 0 ( Z 0 - Z 1 - Z 2 ) 2 ( Z 1 - Z 2 ) + Z 2 ( Z 2 - Z 1 - Z 0 ) 2 ( Z 0 - Z 1 ) = 0}.
It is trivial to see that Co and Cx have no common component. By Bezout's
theorem (see Griffiths and Harris [GH, p. 670], also [H, p. 54]).

16= Σ int(C0,Cx,p),
peConCoo

where int (Co, C^, p) denotes the intersection multiplicity of Co and C^ at p. Co, C^
pass through points [1,0,0], [0,1,0], [0,0,1], [1,1,0], [0,1,1], [1,0,1], [1,1,1]
and have multiplicities =2 at [1,1,0], [0,1,1], [1,0,1].

It is well known that int(C0, C^, p) ̂  murt(C0, p) mult(C00, p) [H, Exercise 5.4],
thus at p = one of [1,1,0], [0,1,1], [1,0,1], mt(C0,C^p)^A.

Hence,

int(C0, C00,p) = 4 for p= [1,1,0], or [0,1,1], or [1,0,1] ,

int(Co,Coo,p) = l for p = one of [1,0,0], [0,1,0], [0,0,1], [1,1,1].

By Bertini theorem [GH], the generic Cα is smooth outside [1,1,0], [0,1,1],
[1,0,1].
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A direct computation shows that for α φ — 1, 0, oo, Cα has ordinary double
points at [1,1,0], [1,0,1], [0,1,1].

As before, by Lemma 3.4, we can find a generic quartic curve Cα, smooth
outside [1,1,0], [1,0,1], [0,1,1], where Cα has ordinary double points, such that

the slice of u = ωg+ ^——ddφ is well-defined on π*Cα, then

= π*Cβ.C1(M)= J 0^)= J ^ L 9 | π J 4 C α ,
π*Cα π*C«

> |π*Cα, [0,1,1])

(Lemma 1.2) £2L,(κ, [1, l,0]) + 2L,(u, [1,0, l]) + 2L,(tι, [0,1,1])

= 6Lg(u, [1,1,0]),

so [1,1,0], [1,0,1], [0,1, Y\φEλ9 it follows that Sλ = 0. Therefore, α G ( M ) ^ | . We
complete the proof of Theorem 3.3.

4. Kahler-Einstein Metrics on CP 2 φ8CP 2

In this section, we investigate the existence of Kahler-Einstein metrics on complex
surfaces with C1>0 and diffeomorphic to C P 2 # 8 C P 2 . As before, it suffices to
estimate the lower bound of αG(M) for M ^ CP2 # 8CP 2. Such a surface is obtained
by blowing up CP2 at generic eight points as explained in the introduction. Now,
C1(M)2 = 1 and h°(M,θM(-KM)) = 2, i.e. the anti-canonical bundle -KM has a
pencil of elliptic curves as its complete linear system. Such a pencil corresponds to
the pencil of cubic curves {C}δeCPi in CP2 passing through the blown-up points.
Because of the general positions of those blown-up points, one easily checks that
each Cδ is irreducible, so the singular Cδ is the rational curve with either an
ordinary double point or a cusp. Aut(M) consists of all automorphisms in
Aut (CP2) preserving the set of blown-up points. Clearly, Aut(M) is finite.

Lemma 4.1. Any non-trivial σeAut(M) doesn't preserve the singular curve in the
pencil {Cδ}δeCpi.

Proof. Suppose that σ preserves the singular curve Cδo. Then σ fixes the singular
point Pί of Cδo. σ must interchange the cubic curves in the given pencil. Since all
these cubic curves intersect at one point P 2 , which is not one of the blown-up
points. Thus, σ fixes P 2 . Now, σ preserves the tangent line TP2Cδo = l. If lnCδo

contains more than one point, then σ fixed at least three points of Cδo. Since Cδo is
rational, σ\Cδ = identity. It follows that σ is the identity, a contraction. Hence,
InCδo = {P2}.° CP 2 V = C2, choose coordinates [x, y, z] of C P 2 such that l={z = 0},

Pi = [0,0,1], and P2 = [0,1,0], then for certain a,beC, Cδo = {y2 = ax3 + bx2},
where ΦO

Now, σ is a linear transformation of C2. It follows that either σ = ( I, or

σ

2 = I J5 (JO = exp I —^- j , and b = 0. In the case, since σ2 preserves the set



198 G. Tian and S.-T. Yau

of eight blown-up points, it must fix at least two of them, thus σ2 fixes at least four
points of Cδo, as before, it follows that σ2 = identity, which is impossible! Hence,

σ = ί I, but a direct computation shows that if σ = ί 1, then either three

of eight blown-up points are colinear, or six of them are on a quadratic curve. Both
are against the assumption of the generic position of blown-up points. The lemma
is proved.

Example. We construct a family of complex surfaces M[Λtβ>y] parametrized by an
open subset in CP2 such that M [ α > j M ] ^ C P 2 # 8 C P 2 , C 1 (M [ α ^ > y ] )>0, and

Aut(M [ M , y ] )Φ {identity},

i.e. non-trivial.
Fix an element

ω = exp
\θ 0 ω2)

and

Take FΊ = {xyz = 0} u f (J Zf , \ where /,- is the line through P i ? P ,

= {ωyz — xy —

u {yz — ωxy — xz{\ + ω) = 0} u {z2 = xy} u {x = y}

Then it is straightforward to check that for any P 6 e CP^Vy u F2, PUP2,...,P8

are in general position. Blowing up CP2 at these P t , we obtain the required M[aβy]

with σe Aut(M[α ^ y ]). Moreover, one can directly verify Lemma 4.1 for σ.

Theorem 4.2. For Kάhler surface M^CP2^%CP2, C 1(M)>0, if Aut(M) is
nontrίvial, then α G (M)^ 1. Jrc particular, such a Kάhler surface M admits a Kdhler-
Eίnstein metric.

Proof. Note that G = Aut(M) in this case. Fix a λ<l, in order to prove that
%G(M)^λ, as before, we take a sequence {φt} from PG(M,g), where g is a Kahler
metric on M, invariant under G. It suffices to prove that Sλ = Φ, where S2 is defined
as in the proof of Theorem 3.3. Let {Cδ}δeCPι be the pencil of cubic curves on M,
which generate H°(M,ΘM(-KM)). Then by C^Mf^l, i.e. C^MJ C ^ l and
Lemma 3.1, one concludes that SA consists of those singular points of certain C/s,
which are finite. Let σeAut(M), σφid, and a singular point PuP2^σ(P1). By
Lemma 4.1 and nontriviality of Aut(M), P1+P2. Moreover, suppose that Cδl, Cδ2

pass through Pi,P2, respectively.
By the Riemann-Roch theorem [GH], h°(M,θM(-2KM)) = 4. Thus there is a

pencil of divisors of —2KM passing through Pi and P 2 . Clearly, Cδι + Cδ2 is one of
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them and the other one has no common component with this one. Hence, one can
pick up an irreducible divisor D of — 2KM in that pencil such that φ φ — oo on D,
where φ is the limit of the sequence {φj. It follows that the slicing u\D of the

d-closed, positive (1, l)-current u = ωg+^-—ddφ is well-defined. Since

2 ^ int(C a i, D, Px) ^m\xlt(Cδl, P J mult(Z), P J ^ 2 mult(Z), P J ([H], Exercise 5.4), D
is smooth at Pλ. Similarly, D is smooth at P 2 . Then

thus, L ^ P J ^ l . By Lemma 1.1 and Proposition 1.3, it follows that PίφSλ.
Therefore, Sλ = φ.

Corollary. M [ α j j M ] , constructed in the previous example, admits a Kahler-Einstein
metric.

A standard argument using the implicit function theorem shows the following

Theorem 4.3. There is an open, non-empty set U8 C 9JΪ8 such that each M eU8 admits
a Kahler-Einstein metric.

Combining this with Theorem 2.5 and Theorem 3.3, we finish the proof of the
main theorem of this paper.

5. A Lower Bound of α(M) in Terms of {-KM)m

In this section, we apply the Jensen formula to obtain a useful inequality.

Lemma 5.1 [De, Sk2]. Let X be a stein manifold, u be a positive, d-closed (1,1)-
current. Let ψ be an exhaustive function of X. Define B(r)={zeX\ψ(z)<r2}, then
for 0<rl<r2< supi/;,

x

(πrlΓ" 1 f U Λ Γ 1 - - ^ j uAβm^= f UAX™-1,
B(r2) (πrj B(rι) B(n,r2)

where

m = dimX, B(rl9 r2) = B(r2)\B(ri),

β d d ψ , α ^
In In

Theorem 5.2. Let M be an algebraic manifold in CPN and g be the restriction of the
Fubini-Study metric on CPN to M. Then for any d-closed, positive (1, \)-current u,

j WΛωJ1"1^Lg(u,z) for each zeM.
M

Proof Let [Z o , . . .,ZN] be homogeneous coordinate of CPN such that

the point zeM corresponds to [1,0,0, . . . ,0 ]eCP N and TZM

= {[1, Z l 9 . . . , Zm, 0,...,0] e CPN.
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{ }
i = 1

ψ is obviously a plurisubharmonic exhaustive function of X. Hence by the above
lemma, for R > r > 0,

where β =

First, we assume that u is smooth and consider

1

R ^ + CO (πR ) m BR(0)

By Stoke's theorem,

1
T ί uΛβ"-1- lim

B ( 0 ) R - + CX 2 π dBR{0)

where α = ~—<3δlog |Z | 2 .
2π

Let CPN be the manifold produced by blowing up CPN at [1,0,..., 0], π: CPN

-+CPN the natural projection. There is a natural ίibration p: CPN^>CPN~1 =H by
CP1?s, under which

where ω'= ̂ ~ddlog(\Z1\
2 + ... + |ZN | 2) is the Fubini-Study metric of C P * " 1 ,

2π
π*M is the quadratic transformation of M.

lim J f u Λ r ^ l i m V ^ f Λ Λ 31og|Z|2 Λ(pV)""2

= lim ί-

J ΛΛ(pV

= lim j Λ Λ Λ 3 Λ (p*ω')m ~ 2 ,
Λ-*°° π*(BR(0))

\z\
since Vol(π*(M\BjR(0)))^0 as R^oo and log ' ' is smooth in M\{Z}. Then

1 + \Z\
1Z|2 ;

Ί+|Z|

l l m r^lvn-l ί M

BR(0) R^π ^ π π*(dBR(0))

= lim -̂  j u/\ωg/\d logφ Λ an

R^CO 2 π d B θ )
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Hence, inductively, we obtain

1
lim

R-*oo BR(O) R->co BR(0)

Thus, for each r > 0, and smooth u, we have

m - l > j

M ^ ~~ (7ΓΓ ) m ^ ( 0 )
(*)

By taking the smooth approximation, one can easily see that (*) still holds for
general u. Now we let r go to zero and show that the limit is exactly Lg(u, Z).

By the choice of the homogeneous coordinate, there exist holomorphic
functions fm + 1 , . . . , fN near z = (0,..., 0) e Cm, such that

locally at origin of CN. Since
origin for j = m + 1 , . . . , N, so

= {(Zu...,Zm,0,...,0)eCN}9 /) = 0, df~Q at

On the other hand, ωa-
X-β

π
= O((\Z1\

2 + ... + \Zm\2)2) locally at origin

Σ |z,.|2-iog(i+ Σ \zt\
2

i = 1 V i = l
^ P + . . + IZ^I2)2).

Hence, there exists a function ε(r), such that ε(r)>0, ε(r)->0 as r->0 and

where 5^(0, r) is the geodesic ball of (M, g) at 0.

1

^ ' r-+0 Γ 2 m 2 βg(0,r) ^

1

f2\m — 1 J
r ) Br(l+e(r))(0)

«2m-2

Hence,
Ί -ε(r)

Bg(0,r)

Recall the Monge-Ampere equations (*)t

on M, (*),
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where g is a Kahler metric on M with CAM)>0, g~CΛM\ - — — Ric(g)
2π

= ωg+ ^——δdF. For any solution φt of (*)f, gfj-\-φtfj = gtfj define a new Kahler

metric on M, the Ricci curvature Ric(gί) = tgt + (1 — t)g > tgg. It is actually proved in

[T] that (*), is solvable for t< α(M).

m
Theorem 5.3. // M is a compact Kahler manifold with C 1(M)>0, then M admits a
Kahler metric gM~C1(M)9 with Ric(gM)>C(ra), where C(m) depends only on the
dimension m and Cx(M)m.

Proof By the arguments in [M], one can prove that in case C 1(M)>0, there is an
integer iV>0, depending only on the upper bound of C^M)™, such that ( — KM)N

gives an embedding of M into certain projective space, let gF be the restriction of
the Fubini-Study metric of the projective space to M, then ωg^NC^M), the

metric g^C^M) may be taken as —:gF. Then by Theorem 5.2,

(Theorem 1.5) that α(M)^ Aτm-iΓ ίΛ/rΛm

 β y t n e previous remark before the
iV ( jVl J

M

for any zeM and d-closed, positive (1, l)-current u^C^M). It follows

iV

statement of the theorem, we finish the proof. •

In algebraic geometry, there is a famous conjecture that for each m there exists
a C(m) > 0 such that C^M^^Cim) for any algebraic manifold M with C 1 (M)>0
and dim c M = m. The conjecture is true trivially in case m = 1,2. In case m = 3, such
a C(3) exists, as proved by L'Vouskiϊ in [Lvj. Moreover, for m5Ξ3, C(m) is just
C^CP™)™. It is still unknown for the cases m ^ 4 . If the conjecture is true,

Corollary 4.4 says that for each dimension m, there is a uniform constant — — > 0,

such that any Kahler manifold M with C 1 (M)>0 admits a Kahler metric

gM~Cγ{M) with Ric(gM)> -. Conversely, by the comparison theorem on

C(m)
volume, a uniform lower bound of Ric(gM) will result in a uniform estimate of
Vol(gM), which is nothing but Cγ{M)m. Hence, we have built the equivalence of the
conjecture in algebraic geometry and the existence of certain Kahler metrics with
Ricci curvatures bounded uniformly from below.
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