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Abstract. Various estimates of the lower bound of the holomorphic invariant
(M), defined in [T], are given here by using branched coverings, potential
estimates and Lelong numbers of positive, d-closed (1, 1) currents of certain
type, etc. These estimates are then applied to produce Kahler-Einstein metrics
on complex surfaces with C, >0, in particular, we prove that there are Kédhler-
Einstein structures with C,;>0 on any manifold of differential type
CP*#nCP* 3<n<8).

The question of finding gravitational instantons has been important in mathemat-
ical physics. In this paper, we restrict ourselves to Kdhler-Einstein metrics. In 1976,
the second author solved Calabi’s conjecture on the Kahler-Einstein metric.
However, an important related question has not been solved yet. When a compact
complex manifold has positive first Chern class, does it admit any Ké&hler-Einstein
metric?

The theorem of Matsushima says that if such a metric exists, the automorphism
group must be reductive. More recently, Futaki introduced more invariants
related to the automorphism group and he demonstrated that these invariants are
zero if the Kdhler-Einstein metric exists. Some authors expressed the hope that if
the automorphism group is discrete, then the Kéhler-Finstein metric exists.
However, there is another integrability condition, the tangent bundle of a Kahler-
Einstein manifold has to be stable unless reducible. (The work of Bogomolov,
Kobayashi, Liibke leads to such a conclusion.) Since the stability of the tangent
bundle is more related to the linearized version of the equation, it is likely that a
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more nonlinear concept of stability will be involved. Inspired by work in the study
of Yamabe’s problem and harmonic mappings [Tr, SU, S], the first author
introduces a holomorphic invariant ag(M) on a compact Kéhler manifold M with
C,(M)> 0, where G is the maximal compact subgroup of the automorphism group
Aut(M). Such a as(M) is an analogy of the best constant in the study of Yamabe’s

equation. In [T], it is proved that ag(M)> mm implies that M admits a Kéhler-

+1
Einstein metric, where m is the dimension of M. In the case that M is a fermat
m
m+1 (71
In the first part of this paper, we study the existence of the Kdhler-Einstein
metric on a complex surface with C, >0. By the classification theory of surfaces
[GH], if C(M)>0, the surface M must be of the following form, i.e. either
CP! x CP!, or CP?4#nCP?, the surface obtained by blowing up CP? at n generic
points, where 0 <n <8, and “generic” means that no three points are colinear, and
no six points are in one quadratic curve in CP?. As symmetric spaces, CP' x CP!
and CP? have standard Kéhler-Einstein metrics. For n=1 or 2, CP2#nCP? has
no Kéhler-Einstein metric, since its automorphism group is not reductive. For
n=3, define MM, = {all complex structures with C; >0 on CP?4nCP?}, then it is
known that 9, is an analytic variety, and 9;, M, contain only one point, dimg N,
>(n—4)for n=5. By exploiting various methods to estimate o(M) from below, we
prove the following

hypersurface of degree >m in CP™"?, ag(M) is indeed greater than

Theorem. For any M € U,CIR, for 3<n<=8, there is a Kdhler-Einstein metric on M,
where U, are non-empty open subsets.

In particular, the tangent bundle of these surfaces are stable. Note that in [Bu],
Burns proves that any complex surface CP? 4 nC P? has a stable tangent bundle for
2=n=<6. Also note that we actually prove that any complex surface
M =~ CP?#8CP? with C,(M)>0 and nontrivial Aut(M) admits a Kéhler-Einstein
metric.

Another theorem in this paper is the following

Theorem. When C,(M)>0, M admits a Kdhler-metric with its Ricci curvature
representing C (M) and bounded from below by a positive constant depending only
on the dimension m and C(M)™.

In the course of proving the above theorems, we also show various estimates of
o(M) in terms of different constructions of M. For example, if M is a branch cover
of another manifold N, we can relate «(M) and o(N) under certain conditions.

Let us outline the contents of this paper. In Sect. 1, we first review Lelong
numbers and positive, d-closed currents. For latter use, we will confine ourselves to
positive currents of type (1,1). Then we give a potential estimate for plurisub-
harmonicfunctions, whose proofis essentially due to Skoda [Sk]. We also recall the
definition of the invariant og(M) defined in [ T] and the relation with existence of
Kéhler-Einstein metrics (Theorem A). A lower bound of a;(M) is given in terms of
the upper bound of Lelong numbers of G-invariant, positive, d-closed (1,1)
currents, representing the cohomological class C,(M). As applications, we provide
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certain explicit lower bounds for a4(M) in the case when M = CP™, G CAut(CP™).
In Sect. 2, we consider algebraic manifolds M that are branched covers of CP™.
Imposing certain symmetry conditions on M, we can give an estimate of ag(M) in
terms of an estimate of o (CP™), where G’ is a group on CP™ induced from G by the
projection. The latter quantity is computed when M is a certain complex surface
with C, >0 and diffeomorphic to CP*4#nCP? n=35,6,7. In particular, a Kihler-
Einstein metric exists on such an M. In Sect. 3, by studying the automorphism
group of M and the curves of a certain type with low degrees in M, we prove that
ag(M)=1if M is CP? 4 3CP?%; ag(M)=2 if M is CP*44CP?. Hence, such M also
admits a Kéhler-Einstein metric. In Sect. 4, we study the existence of a Kéhler-
Einstein metric on complex surfaces with C, >0 and differential type CP? 4 8CP?.
We prove that any such surface M has og(M)=1 and then admits a Kéhler-
Einstein metric if its automorphism group is nontrivial. We also produce a family
of complex surfaces which fit our requirements. Such a family is parametrized by
an open set in CP?, Combining results proved in Sects. 2-4, the first main theorem
is proved. In Sect. 5, we apply the generalized Jensen formula for plurisub-
harmonic functions, once used by Demailly [De], or [Sk 2], to our algebraic
manifolds. We obtain an inequality between the Lelong number of a positive,
d-closed current and its intersection number with hyperphase sections. We also
explain briefly how this theorem relates to a conjecture in algebraic geometry to
the problem of existence of certain Kéhler metrics with Ricci curvatures bounded
uniformly from below on Kéhler manifolds with positive first Chern class. The
conjecture is that there is a uniform bound for (— K ,,)" for any algebraic manifold
M with dimension m and ample anti-canonical line bundle.

In this paper, unless specified, M is always a compact Kdhler manifold with
positive first Chern class and g is the Kahler metric on M, locally, g = g,3dz"dz’,
(g,) is a positive hermitian matrix-valued function. Define the Kahler class

1 . . )
Wy="5 Y ggdz* AdZ" in local coordinates. It is globally defined. We also
af

suppose that w, be in the class C,(M)e H %(M,R), usually, we use the symbol
g~ C,(M) to mean this.

There are two hopeful ways to improve our theorem. The first is to sharpen the
lower bound of the holomorphic invariant ag(M). In Sect. 1, by using a potential
estimate for plurisubharmonic functions, we give a lower bound of a;(M) in terms
of the upper bound of Lelong numbers of G-invariant, positive, d-closed (1,1)
currents representing C,(M) (Theorem 1.5). This bound is not optimal. The best

1 , 1 .
one should be aG(M)zL—,GM, where Ly(M)=sup {ﬂLg(u,z)|zeM, uis a
positive, d-closed (1, 1)-current, G-invariant, coholomogical to C,(M) and the set

(ze M|L,(u,z') = L,(u, z)) has complex dimension p ., g is a Kdhler metric on M,

m=dim¢M. The reason for our belief in such an equality is a prior estimate of

almost plurisubharmonic functions on a Kdhler manifold (M, g), namely, for f <1

there exists constants C,r, depending only on (M, g) and f, such that for any C?

V-1
2

T

function ¢ on M, satisfying w, + 00¢p =0, sup =0 and
M
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1 /=1 -
ol | <wg+708@>/\wg" '<mp,

r B(x)

where xe M. Then

[ e®dv,<C | e vdV,.

Bra(x) Br(x)\Br/2(x)

We are not far away from verifying this estimate. Note that the condition

=1 -
wg+760(p§0

on M is crucial, since a local version of such an estimate is never true. On a Kahler
surface (M, g), diffeomorphic to one of CP?3#nCP?, where n=35, 6, 7, 8, for any
positive, d-closed, G-invariant (1,1) current u representing C,(M), define
E,={xeM|L,u,x)= A}, then E, is analytic [Si1]. It can be shown that E, ,,is a
0-dimensional variety and E; _, is empty for £ small. Hence, in this case, L,(M)<1.
Another improvement will follow from an interior C°-estimate of certain complex
Monge-Ampére equations. Namely, consider the equation det(u;;)=F in the unit
ball B,(0) of C™, with F >0 bounded from above and u plurisubharmonic. Is there a
positive number p>0 such that for any solution u of the above equation,

WO)<C(|supu|+ | e PdV,
B1(0) B1(0)

where C depends only on F,p? Note that in [T], by a standard [*-estimate, it is
proved that for any sequence of C*-functions {u;} on (M,g) satisfying that

/=1 :
w,+ 76(%:,20 and s;p u;=0, there are a subsequence {u;, } and a subvariety

SCM such that in any compact set K of M\S, the integrals [e”?"«dV, are
K

uniformly bounded. Combining this with the proposed interior C°-estimate, one
should be able to prove that either there is a Kadhler-Finstein metric on (M, g), or
the degenerate Monge-Ampére equation det(g;;+;;)=0 has a solution u. The
solution u will be smooth outside an algebraic subvariety S of M and has
logarithmic growth near S. Such a u certainly imposes some constraints on the
manifold M. We expect that the understanding of those constraints will result in
the solution for the problem of existence of Kéhler-Einstein metrics on Kéhler
manifolds with C, >0. Also, the role of u here should resemble that of the Green
function of the conformal operator in the study of Yamabi’s equation.

Finally, we would like to mention that Calabi claimed that he could show the
existence of a Kéhler-Einstein metric over CP?#3CP? by an almost explicit
construction. Siu [Si 2] also proves that CP? # 3CP? and the Fermat surface admit
Kéhler-Einstein metrics by estimating the lower bound of bisectional curvatures of
some Kéhler metrics constructed on these surfaces and studying the Green’s
functions of holomorphic curves. A more effective estimate enables us to prove that
«(M)=% for any Kéhler surface M =~CP?#8CP? with C,(M)>0. Since the
estimate is being applied to the general case and being studied further, we would
like to present it elsewhere.
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1. Positive Currents and Related Estimates

In this section, we study d-closed, positive currents. We shall give an estimate for
plurisubharmonic functions. The basic idea is due to Skoda [Sk 1]. While most of
the arguments work for arbitrary (p, p)-currents, we will confine ourselves to (1, 1)-
current. At the end of this section, we will recall the definition of a4(M) in [T] and
the theorem on the existence of Kahler-Einstein metrics proved in [T]. The results
on (1, 1)-current will then be used to estimate ag(CP™) for GCU(m+1).

Let M be a Kdhler manifold with Kéhler metric g. In local coordinates
(215 .-+, Z,), g 1s represented by a positive hermitian matrix (g;;). The corresponding
Kahler form is given by w,= “lzni gijdz' A dZ'.

For the definition of positive current, we refer the readers to Siu [Si1] or
Griffiths and Harris [GH]. Now we recall the definition of the Lelong number of a
positive, d-closed, (1,1)-current u in an open set QCM. We define the total
variation [ul| of u to be the positive measure u A w} ~ ', where m=dim¢ M. For all
ae Q, we define the Lelong number L (u, a) of u at a with respect to the metric g to
be the limit

i s | wnop ! =lin o lul (Ba), (1.1)
where B,(a) is the geodesic ball in M with radius r and center a. Such a limit exists.
Lelong [Le] shows this for 2 C C" and g to be the standard metric. The general case
follows from this special case, since a Kédhler metric can be approximated by the
standard Euclidean metric at one point up to second order.

Lemma 1.1. Suppose that we have a sequence of closed, positive (1, 1)-currents {u;},
weakly converging to a d-closed, positive (1,1)-current u in Q in the sense of
convergence of corresponding total measures. Suppose also that for all aeQ,
Ly(u,a)< + co. Then for all >0, and compact subset K CQ, there exist r=r(e, K),
N =N(e, K), such that for i>N, aeK,

1
;msug)ui/\w;"_lél‘g(u,a)ﬂi- (1.2)
Proof. Choose r, <dist(K, 092), such that for ae K,
iz el SLwa+ (1.3)
r%n_zﬂn(m § = 3 ’

For each ae K, let g,(t) be a cut-off function satisfying:

1 0=Ztsr -6,
0= {0 = (14)
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Let r,(x) be the geodesic distance function on M from a, then near a, r (x) is
smooth. Thus
im [ o fruna) ' = [ gfrfurcp 'S | urop . (L9)
i~ B, (a) By (@) Br(@)
By the compactness of K, it is easy to see that there exists N(e, K) such that for
i>N,

[ edrd)urwy~'s | u/\a);"_1+rf"”2f, VaeK, (1.6)
By, (@) By, (@) ‘ 3
Hence
1 2
s [ wAol ' SLua)+ S (1.7)
T T B ts@ 3

Let r=r(¢e, K)=r, —0 with 6 small enough. Then we have

1
Pmsj(a uAwy ' <Lfu,a)+¢ for i>N,aekK. (1.8)
This finishes the proof of Lemma 1.1.
Before we state the next lemma, we need the following definition of slicing of a
d-closed positive (1, 1)-current u. Suppose Q = Bis an open small ball in M, then by
the closedness of u, there exists a plurisubharmonic function ¢ on B such that

u= ——lz—l 00¢. For an analytic curve L in M, LnB =0, we define the slice u|L of u
[

by L as

ulL= 0d(o|L) (1.8)

when it is meaningful. It is easy to see that the definition is independent of the
particular choice of ¢ and 00(¢|L) is meaningful whenever ¢|L is not identically

. . . /=1 -
equal to — oo and L'-integrable. An important case is given by u=w, + e 00¢

on M. When u is defined on M, and ¢ <0, u|L is well-defined iff ¢|L is not
identically equal to —oo. In this case, e °? is automatically integrable for ¢
sufficiently small which follows from Proposition 2.1 in [T].

Lemma 1.2 (Siu [Si1, Lemma 7.5]). Suppose u is a positive, d-closed (1, 1)-current
defined on Q. Let a€ Q and L be a smooth curve segment in Q passing through a such
that u|L is well-defined, then

Lyn(ulL.a)2 L(u,0). (19)

Remark. The statement here is slightly different from that in Lemma 7.5 of Siu
[Si1], but his proof still works.
The following proposition is essentially due to Skoda [Sk].

Proposition 1.3. Given (M, g), there exists a positive number R with the following
property. For any B,y >0, and <1, there existr=r(p,y, M), C=C(B,y, M) such that
for any plurisubharmonic function ¢ € C*(Bg(a)), a€ M, satisfying:

V-1 00¢

2r

‘év, | )I(pldV,,éw (1.10)

Br(a
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and
|/—1 -
R‘Z’"”BRj"(a)( > 58(p>/\w;"_1§/3, (1.11)
then
Bj( )e“”‘z’dVg(z)gc. (1.12)

Proof. The constant R will be chosen so that within the given complex coordinate
charts, the ratio of the geodesic distance to the Euclidean distance is close to one

. . .1 . . S
and w, s close to the Euclidean metric o 00|Z|?. In this case, (1.11) is valid with

g replaced by the Euclidean metric with f replaced by a slightly larger constant.
Hence we shall assume the metric is Euclidean. For convenience, we also assume

the ball to have radius one.
By Green’s formula (see Gilbarg and Trudinger [GT]), note that we write the
formula in complex coordinates,

1 1 -1 -
(n=De@=- (lZ—CIZ""z_ll—ZC_IZ'H)(l/ZTT%(p)

B1(0)

A (@ aaw)m_l
f(p(cf)l/n—< S 1—_>

" o |Z-gpmm2 =z
] /1 -1
A ( 66|C|2> . (1.13)
2n
In this proof, C will always denote constants depending only on S, v, M,

|Z— (P 2(001*" ™ '=(0dlog|Z — ()" ~*
+(m—1)0log|Z > A log|Z— (> A(0Tlog|Z— {2, (1.14)

Plugging this in the above Green formula, we have for |Z| <1,

1 _ _ _ _ m—1
~o(2)= b o n <‘/—; ) e

m—1 Blsw) |z

) —1
= j( 5810g[Z (> +0log|Z—C|* Adlog|Z — C|2>

2n B{(0) \IMM—
A (L 209 A=t o0log|Z —¢|? " +C
2 2

j

=

) Ip(ICI <——6610ng {[*+0log|Z—{> Adlog|Z — Clz)
T By(

]/_1 _ ]/_1 _ m—2
A 00p A <76810g|Z—C|2> +C, (1.15)

2n
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|p'(t)] £ 4. Note also that in the last inequality, C has absorbed the integral cut by
1—=p(IC.

Integrating the second term on the right by parts in the above inequality,

where p is a cut-off function satisfying: p(f)=1 for t <4, p(t)=0 for t=3, and

m—1 2

l/_ m—1
A ( n1 6510g]Z—C|2>

2

1 -1 -
—(P(Z)éBf(o)p(ICI)(—* —IOgIZ*CIZ) A V-t 00¢

1 _ —1
~ 1og|z—a28p(|ca)Agﬁloglz-ﬂ“Vz—T‘”“’

B1(0)\By,2(0)

m—2
A (—Haﬁlogm—qz) +C
2n

1
=— <1oge_'"_‘1|Z—C|2> A ‘/j 00¢p

B1/2(0) 2n

A <ga(ﬂog|z—c12)m_l +C. (1.16)

Put

Bij(0)\ 27

= mo1 /-
wZ)= | <—*1 6510ng—€|2> A <—2n—165¢>. (1.17)
We have the following monotonicity formula (see Lelong [Le]), for 0<r<R <1,

E65¢(2+C)A <§6510glélz>m_l

BR(O\B,(0) 2T

= e o aetzvon (VL)
B T

r(0) 27

—_ _ m—1
—% [ E65¢(2+C)A<g@(7lélz> : (1.18)

r B{0) 2T

Then,

-1 _ m—1 . _
W2 | (l/;aalogm—w) AV—;—Iaaw

1Z-{=3+12)

. <—21/:T—18<710g12_f12>m— /\%/?—ag(p(Z-FC)

Kl=3+12|

SGHZy T E66_¢(Z+C)A<Vj65|2+6|2>m_1

[lsi+izl 27 2n

<<%+2|Z[>2m"2 1 y ]/—166_ 0
=\ 14z GHAZY™ 7 (gsgram 2n 7

2 (V? )

2

(1.19)
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Since ¢ is plurisubharmonic, (1.18) implies

wrs (Pl | Ve (Vo) s (VA

1+2|Z] =1 2w 142|Z]
(1.20)
Let B, =p+1/2, then f<f,; <1. Take r small enough, s.t.
14+4r\>m 2
L <
then p(Z2)<p, for |Z|<r, by the concavity of log,
I =B
—p(z)< )log( i (e mnz-gp)
B B1/2(0)
]/_ _ m—1 ]/_1 _
<—— 6810g!Z—C[2> A 00 )
2n 2n
X +C
HZ)
__1 =B
<lo e m1YZ—()?
slog Bl/{(o)( I |>
]/_ -~ m—1 ]/_1 _
—16610g|Z—C|2 A ( 6aq)>
27[ 27f ( ) ﬁl
X ,B log (Z)+C'
b ! (1.22)
As l 6610g|Z {)* is dominated by CIZ i <l 86|C|2>
e ?P4z<C | dz
1Z]=r 1zl =r
(7‘1"‘7’5'2> L
X j IZ_CI_2ﬂ1_2m+2 n T §C
eSS B

This completes the proof of Proposition 1.3.

Consider a Kéhler manifold M with C,(M)>0, let us recall the definition of
ag(M) introduced in [T], where G is a compact subgroup in Aut(M). To define
og(M), we first pick up a G-invariant metric g~ C,(M).

Put Py(M, g)= {goeCZ(M R)|¢p is G-invariant and w,+ V-1t o 66_ > }

a(w(Z) supg)

og(M): =sup {althere exists C such that | e M4V, < C, Vo e Py(M, g)}
M

It is easy to show that og(M) is independent of the particular choice of g. a(M)
=ug(M) in case that G is trivial. In [T], the following theorem is proved. We will
use this theorem often.
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m
m+1
where m=dimgM, G is the maximal compact subgroup of Aut(M), then M admits a
Kdihler-Einstein metric.

Theorem 1.4. For a compact Kdhler manifold M with C (M) >0, if ag(M)>

On the given manifold M, we also have the following natural invariant:

Lo(M)=sup{L,(u,z)|ze M,uis ad-closed, positive (1, 1)-current,
cohomological to C,(M), and u is G-invariant}, (1.24)

where g is a Kdhler metric on M, g~ C,(M). As above, L;(M) is independent of the
choice of g. By Lemma 1.2, and the fact that M is actually algebraic, it can be
proven that L;(M) is bounded from above.

Theorem 1.5. ag(M)= ——— I ( M) whenever M is Kdhler and C(M)>0.

. . 1 , .
Proof. Fix an arbitrary A< LMy we have to prove that «4(M)= 4. For that, it
G

suffices to show that for any sequence {¢;} € P4(M, g), we can find a subsequence
{¢;.} and a constant C, such that

=M@, (z) —sup o, )
e "Ny <. (+%)

M

By taking the subsequence, one may assume that, as measures, u;=wm,

/—1 - . .

—|—2—68g0i converges weakly to a d-closed, positive (1,1)-current u, u is
T

cohomological to C,(M). By Lemma 1.1, there exists N >0, »>0 such that for
i>N,and ze M,

Sm=7 j. ui/\wg <o — &, ¢ small.
r B(2) 4

1 /=1 < .
Note that — >L,(u,z) for any ze M. Locally, w,=*-—0d0dy for a certain

A 2n
plurisubharmonic function, then y+ ¢, is plurisubharmonic for each i. Then
Proposition 1.3 implies (**) for i> N, i=1i,. Hence, the theorem is proved.

Remark. As we mentioned in the introduction, ag(M)- Ly(M)=1, where Ly(M)
=sup {%—i—pLg(u,z)IzeM, u is a positive, d-closed (1,1)-current, G-invariant,
cohomological to C,(M) and the set (z'e M|L,(u,z')=L,(u,z)) has complex
dimension p}. Note the set (z'e M|L,(u,z') = L,(u, z)) is analytic, see Siu [Su1].

1
Corollary 1.6. o(CP™) = s
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Proof. Just take g as the (m+ 1)-multiple of Fubini-Study metric, i.e.
I/ —1 _
w,=(m+ 1)77[— 001og|Z|?, where |Z|* =|Z|* +... +1Z,,%,

[Zo,...,Z,] is the homogeneous coordinate of CP™.

For any positive, d-closed (1, 1)-current u, cohomological to G(M), it can be
easily proved that the slice of u by [, is well-defined for each z e CP™ and generic line
[, through z in CP™, so L(u,z)

g(u Z) g| (ullz Z)<ju ,fcl(M m+1:

1
since u is cohomological to C,(M). Theorem 1.5 says that o(CP™)= —— mal O

Let G(p)CU(m+1) be the finite group generated by o; and permutations t;;
(0=i<m, 0Zi<j<m), where, in the homogeneous coordinates [Z,,...,Z,,] of
cpm,

0,20, 2,... 20 ... 2, )= 20, ..ne,Z; ... 2],
2n)/ —1
epzexp<np>, LITH VAN A

o ZperZod [ Zop i Zpoin Ziy o Zon] .

i

for p=2.

Actually, one should be able to demonstrate the sharp estimate o, (CP™) 2 mL-H
However, for simplicity, we only prove the following special estimate, which is

sufficient for this paper.

2
By a sophisticated argument, one can prove that og,(CP™)= "l

Corollary 1.7. 0, (CP*) 273 for p=2.

Proof. 1t suffices to show that for any positive, d-closed, G(p)-invariant, (1, 1)-
current u~C (M), L,(u,z)<2, ze M, where g~ C,(M), and

o, _3L aalog(|zo|2+|z I>+1Z,1%),

[Zy,Z,,Z,]=Z are the homogeneous coordinates of CP?.

For each ze M, the orbit G(p) - z has at least three distinct points. It is easy to
check that three of G(p) -z are not colinear, suppose they are z! =z, z%, z*e CP2
There is a family

{C[a. B, r]}[a. B,rleCP2

of quadrics in CP? passing through z!, z%, z3, and generic quadric is smooth. So one
can find a smooth quadric C on which the slice of u is well-defined, thus by
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Lemma 1.1 and G-invariance of u,

3L,(u,z)=L,(u,z")+ Ly(u,z*)+ Ly(u, 2°)
<Ly (ule,z') +Ly (ule, 2%) + Ly (ulc, 2°)
§£(Ulc)=(f:c1(M)=6,

ie. L(u,z2)<2. [

2. Kiihler-Einstein Metrics on CP?4nCP?* for 55n<7

In this section, we assume that the manifold M has been embedded into CPY,
m=dimgM, N >m, and the metric g is a multiple of the restriction of the Fubini-
Study metric of CPY to M. We also assume that the maximal compact subgroup G
of Aut(M) is a subgroup in U(N + 1), the maximal compact subgroup of Aut(CP")
=PSL(N +1). In the homogeneous coordinates [Z,, ..., Zy]=Z of CP",

1
W,= ﬂé—n:aﬁ log(IZol> + ... +1ZxP)lu»
u is a positive integer. Obviously, g is G-invariant.

Choose a (N —m— 1)-dimensional projective subspace F~CPY~™"! in CP",
such that FnM =(. We project M onto a m-dimensional subspace F*=~CP™
CCP" from F. Denote the projection by mp, then n,: M—F* is a branched
covering, its covering degree is the same as the degree of M in CP". Take a function
¢ € C*(M, R), define @y on F* as follows: Vxe F*,

1
Pp(x)= d,e Y e), (2.1)

g 1(x)

where d =deg(ng).

Lemma 2.1. F, F*, ;. as above, then for each ¢ € C*(M, R), and an open set U C F*,

AV (n(y)

70 >dVg(y)=d [e oy, (9, (22)

R (Jac(np(y» -

where g, = the Fubini-Study metric of F+=CP™, i.e. the corresponding Kdihler form
is

@@@’ 10g(1Zo+ ... +1Zx?)ls"

T
Jac(ng) is the Jacobian of mp.

Proof. It follows from the transformation formula for integrals and the fact that =
is a covering mapping outside the branched locus of complex codimension one.

Proposition 2.2. M, g, G as above, suppose that F1, ..., F; be (N —m—1)-subspaces in
CPY, such that F{n...nFir =0, F,aM =0 fori=1,2, ...,1, then we have projections
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ni=nFl:M—>Fil, i=1,2,...,1. Furthermore, suppose that the group G contains all
deck transformations of the projections w; (i=1,2,...,1), then

1
ng(M)2 ﬁ:— min ag,(F}), (2.3)
where G, is the compact subgroup of Aut(F?) induced by m; from G, i.e. the group

generated by elements of G preserving the fibres of w,.

Proof. First, we prove that for each i, there exists a constant C;, depending only in
i, A, such that

(o -sapo) 4V, (xx)
AJ,.[ e . (JaC(T[i) W) dl/;](X) =< Ci (24)

1 . . .
for each ¢ € P3(M, g), where A< mrl min og(F;) and gp is the Fubini-Study
u

1<i<l

metric on F;. Clearly we can assume sup ¢ =0.
M

For simplicity, we assume that i=1,

Ft={[Zy ... Z,,0,...,01€CP"}, F={[0,...,0,Z, ..., Zy] € CP}

and 7;:[Zy, ... Zx]1—>[Zos s Z,, 0, ..., 0]. Then

w ‘=—|/—166'10g(|20|2+...+|Zm|2). (2.5)
gF, 27.5
Put
lZolz+---+lZN|2>
=plog( 2o T TEN ) 2.6
v ”°g<lzo|2+...+lzm|2 y 20

since MNF, =0, such v is a smooth function on M.
Now for pe Py(M, g),

podlog(|Zol* + ... +1Z,/3) + d0(p + @)= udd log(|Zo|* + ... +1Zy|*) + 009 =0,
2.7)

it follows that
uodlog(1Zol* + ... +1Z,,1*) + 00(wp, + ¢p,) 20. (2.8)

Obviously, wp, +¢p, is G;-invariant, moreover, since G contains all deck
transformations of #; and ¢ is G-invariant,

1 (Wr, + @) =11V, + 11 Qr, =¥+ 0. (2.9)
Lemma 1.1 says:
- . v, (n(x))
Ajle My +o)( )<Jac(7z1(x))—§Vg(x) dV;,(X)
=d, [ e7 M Ter)OqY, (y),  d;=deg(m,), (2.10)

F

=
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we have proved that y, + ¢y, € Pg (F1, ugr,)=Pg,(CP", u- gp,). The first Chern
class of F;=~CP™ is represented by (m+1)w,, ,

m+1 .
T(WF1+¢F1)€PGI(CPM: C,(CP™), (211)
now
1 . 1
3™ min o ()< ™ g, (1), 212)
ie. M g (F7), hence, there exists a constant C', depending only on 4, such
+1 %
that
—Mwr, +0r,) () i e er) ) '
[e Fer)OY, = fle m K dv, =<C\. (2.13)
Fi Fi '

p is a smooth function independent of ¢, there exists a constant C, such that

V., (w(x))

0 >dl/_;,(x)§C1. (2.14)

[ e o <Ja0(m(X))
Once we have (*), we sum them up
S Jac(e()dV,, (x(x)

—Ap(x) [i=1
be v,

Because F1n...nFi =0, there exists a constant C” >0, such that

AV ()SCi+...+C=C. (215

1
X Jac(m )V, (1(x) 2 C'dV(x). (2-16)
Put C=C'/C", then
| e—z(fp(x)—s:lpfp)dVg(x) <c (2.17)
M

for each g e Py(M, g). It implies that
1
(M) = % min o (FY). (2.18)
1<ig

Now we consider the existence of Kdhler-Einstein metrics on CP? 3 5CP2. 1t is
known that the generic intersection of two quadrics in CP*is CP? blown up at five
generic points (see Griffiths and Harris [GH, p. 550]), consider smooth surfaces

M={[ZyZ,Z,,24,2,]e CPYZ}+...+Z2=0, agZi+a,Z}+ ... +a,Z:=0},

where a;=%a; for ij, 0=, j<4. M= CP?4 5CP>. We take g as the restriction of
Fubini-Study metric on CP* to M, then

0

001log(1Zo)* + ... +1Z o) ut »

e
Il

g 2n
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which is just C;(M), so g~C,(M). For i+j, 1<i, j<4,

F.={00,....Z,....,Z,0,...,0]1e CP*},

i=1 i } (2.19)
® G "

F5=\Z,,...,0,...,0,...,Z, |e CP%{,

the corresponding projections mpi M—>F3;, [Zos.. s Z4] to
(O
2,,...8...8,..z,]

FyrM={[0, ... Z;... Z},...,001 22+ Z2 =0, a,Z? +a,;Z> =0} =0, (2.20)

and 4
N, Fi=0.
i,j=0
i<j

Let G be the maximal compact group in Aut(M), then G contains transformations
[ Zos s Zy)>[ 2oy ooy — 24y .. Z4].
Since the deck transformations of n;; are 1, 1, 7;1;=1,7;, by Proposition 2.2,

ag(M)=3 min og, (F5),

0<i<j<4 Y
where G;; is the group on F3; induced from G by ;. By Corollary 1.6, we obtain
ag(M)=1. Hence

Theorem 2.3. Non-singular intersections
{(Z3+2Z}+..+2%=0, ayZ}+a,Z%+ ...+ a,Z5=0}
admit Kdhler-Einstein metrics, where a;+a; for 0Si<j<4.

Remark. Based on the same arguments, one can show the existence of Kéihler-
Einstein metrics on certain non-singular complete intersections, such as

(Z3+Z3+ ...+ Z3=0, apZ3+a, Z3+ ... +agZ3=0} CCPS;
{Z3+...+Z2,=0,a0Z%+ ...+ agZ%=0, by Z3+ ...+ bsZt=0} CCP®.

Next, we suppose that M is diffeomorphic to CP? 4 7CP?,i.e. CP? blown up at
seven generic points. By Riemann-Roch theorem and Kodaira vanishing theorem,
dimgHY(M, — K ,;)=3. It is known that this group gives a holomorphic branched
covering n: M —CP?, with degree equal to two. It has deck transformation o,
which exchanges two sheets over CP2. Let EC CP? be the branch locus, then E is
smooth, as M is smooth. From (—K,,)*=2, it is easy to see that degE=4.
Moreover, by applying the covering lemma to M — E—~CP?*—E, one can easily
deduce that any transformation of CP? preserving E can be lifted to be an
automorphism of M. Let Aut(E) be {t € PSL(3)|7(E) C E}. Then Aut(E) is finite and
we can assume Aut(E)C U(3). Also, Aut(E)C G CAut(M), where G is maximal
compact. Let g~ C,(M) be a G-invariant metric on M and

g0

)/ —1
@, :?85108(12012'HZJZ‘HZJZ)
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be the Chern form of the hyperplane line bundle H on CP?. As C,(M)=n*(C,(H))

Vj

=n*w,,), we have w,—n*w, = 766_1;) for a smooth function ype C*(M, R).

Obviously, we can assume that y is g,,-invariant and Aut(E)-invariant. Therefore
¥+ @p)=vw+ ¢ in Lemma 2.1, where ¢ € Pg(M, g). By Lemma 2.1,

— Ay +o—sup(y+y)) v, n _
iy ] L2997 V. =2 ~AMwrtoF ?PPZWF+W) .
Aj{e ( ac(n) av, ) # C‘Le dv,,
(2.21)
Let h be the global section of line bundle [z~ }(E)], defining =~ '(E), then
dv, (n(x))
JaC(n(X))W 2 C,lh*(x), (2.22)

where C, is a constant and |h|? is the norm of h with respect to certain fixed
hermitian metric for [z~ *(E)]. Since y is smooth, there exists a constant C, such
that

— AMe(x) —supo) ~ Mer() +yr®) vslt‘llp(w-er))

fe M |h*dV,<C, [ e av,
M cp?

9o

(2.23)
for every @ € P4(M, g).

V=1~ ~
* (wgo-i— —ﬁé(wp+(pF)> =n*w, + 00y +

2n

on the other hand, 3w, ~C,(CP?), so 3(yps+¢p) € P (CP? 3g,). where
Go,=Aut(E). Thus the right-handed side of (2.23) is uniformly bounded indepen-

dent of ¢, whenever /<3 (CP?).
2

By Holder inequality and the fact that | || B ﬁdVg < + o for >2, we have
M

- ﬂ(tp(x) —supe) - &(w(x) —sup o)
fe @ v dV, = (e x Mo h)? ’)lhrz/aqu
M

)
M
1'% ;i IT
§<5e““"X“:;Wn/r"“”é> <j 'h'rldV">
M
C

M

— Uer() +wr(y) —sup (PETUFD
M

3 € 9o

where C; is a constant depending only on A, M, o. Thus we prove that
ag(M)=304,(CP?) and ag(M)>3

whenever og (CP?)>3.
Now we take E such that the corresponding G,=Aut(E) contains a G(p)
defined in Sect. 1 for certain p, for example, we can take E to be the Fermat quartic
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curve {Z§+Z$+Z%=0} in CP? and in this case Aut(E)= G(4). For such a curve E,
Corollary 1.7 says that ag (CP?) 23, i.e. ag(M)23, where M is the corresponding
double covering of CP? branched along E. By Theorem 1.4, such an M admits
a Kihler-Einstein metric.

Theorem 2.4. For EC CP?, a quartic curve such that Aut(E) contains G(p), p=2, the
double covering M of CP? branched along E admits a Kihler-Einstein metric. Note
such a M =~CP?*#47CP>.

Remark. If one can prove agz(M)-LgM)=1 as stated in the remark after
Theorem 1.5, then a(M)=1 for M =~ CP? 4 7CP2. This concludes that any such a
M admits a Kdhler-Einstein metric. _

Combining a result in [ T], we have proved that there exists M =~ CP? % nCP?
admitting a Kahler-Einstein metric for each n among 5, 6, 7. A standard argument
by using implicit function theorem shows the following

Theorem 2.5. There exist non-empty open sets U,CIN, for n=35,6,7, such that each
M in U, admits a Kdhler-Einstein metric.

It is well-known that any algebraic manifold is a branched covering of the
projective space of same dimension. In many cases, the branched locus is smooth
and the pull-back of the anticanonical line bundle of the base manifold N is
proportional to that of the covering manifold M. Then one can estimate o(M) in
terms of «(N), the covering degree and the ratio of two anticanonical line bundles,
precisely, one can prove the following proposition. The proof is based on the same
argument in the estimate of «z(M) above when M is diffeomorphic to CP? 4 7CP2.

Proposition 2.6. Suppose that M, N are two compact Kdhler manifolds with positive
first Chern classes, and suppose there exist ad-branched covering map w: M — N such
that the branch locus Bis simple; i.e. B={x e N|n~'(x) consists of a single point} and

1
B is smooth. Then if n*C(N)=puC(M), pis a rational number, a(M) = yem o N). If
the maximal compact group G of Aut(M) contains all deck transformations of m, then

1
ag(M)= B—;;aG"(N)’ where G, is the subgroup of Aut(N) induced by G and .

Remark. The condition on the branch locus can be weakened.

3. Kihler-Einstein Metrics s on CP? 4 3CP? and CP? + 4CP?

In this section, we prove that ag(M)>3 if M is diffeomorphic to either CP? 4 3CP?

or CP?44CP?, and thus conclude the existence of Kéhler-Einstein metric on such

M. The case that M~ CP?4#3CP? is also considered by Calabi and Siu [Si2].
We start with a lemma taken from [T].

Lemma 3.1 ([T], Lemma 3.2). Let B} '(0)x B¢ (0)CC" ™' x C' be the product of
balls,

Sy= {(p € C*(Bg. '(0) x Bg,(0)IVze By, ', ¢.=¢lz,-) is subharmonic,

@0, [ A,@(wdw= ﬁ}~
(0)

Br,
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Then for each ¢, 6>0, there exist r,=r,(e, Ry)>0, C=C(3, ), such that Vpe S,

4 2 4n
— = -6} o(z, w) CR —(1+)<——6> (2, w)
[ e (B >“’”dzdwg 2 e )" azaw,  (3.4)
22 R, "3 iR,
Iwi=ra raSIwls2r

where A, is the real Laplacian of w.

Lemma 3.2. Let ¢ be a radically symmetric subharmonic function in B,(0)C C*, then

z 1
2)—o|l—)=0(Z)—p(1)= — A dw\logl|Z]. 32
@(2) ¢<|Zl> P(Z)— o )_2n<3‘5(0) P(w) W> og|Z| (32)
d( do
Proof. Let r=|Z|, rf(r)=r4¢ =0, then rf=a T ) note that ¢ can be

considered as a function of r. Integrating on both sides of the above equality,
d r
r22 (1) = [ sf(s)ds. (3.3)
dr 0
So
r d rds s
o) —o(1)={ 2 ds=] = [f (0t
1ds 150

11 rds 1
= ({ Sf(s)ds - { ?S = _2;< Blj(o) A(p(Z)dZ> log|Z|. (3.4)

Theorem 3.3. (i) If M is diffeomorphic to CP?#3CP?, then ag(M)=1,

(i) If M is diffeomorphic to CP? #4CP?, then ai(M) =3, where G is the maximal
compact subgroup of Aut(M). In particular, both manifolds in (1), (i) admit Kdhler-
Einstein metrics.

The rest of this section is devoted to the proof of this theorem. First, let us
assume M =~ CP?#3CP?,ie. M is CP? blown up at three generic points. After an
automorphism of CP?, we may assume that the blown-up points are [1,0,0],
[0,1,0], [0,0, 1]. Aut(M) consists of all those projective transformations on CP?,
permutating the blown-up points, so G is generated by

e, 0 0
0 e, 0|ePSL3), lel=le)]=les|=1
0 0 ey

and
010\ /oo 1\ /1t oo
1 00,0 1 0],[0 0 1]ePSL3).
00 1/ 11t oo lo1o0

Now the metric g is G-invariant. In order to estimate ag(M), we take a sequence
{o;} CPg(M, g). Fix a A< 1. By taking a subsequence if necessary, we may assume
that there is an analytic subvariety S,, such that dim.S,<1 and for each
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ze M-S, Ir>0, C>0, such that

A e "M 4y ()< C for all i (3.5)
for zeS§,,
lim e MOy )=+ o0 for any r>0 [T]. (3.6)
12T B(z)

For our purpose, it suffices to show that S;=0. On the other hand, by Proposi-

tion 2.1, e "("O75P) have uniform L'-integral bound for ¢ small and all i, so we

may assume that ¢, —sup ¢, converge to ¢ in I?, then e #° is L!'-integrable and
M

/=1 ~
U=, + 706% converge weakly to the positive, d-closed (1, 1)-current u=w,

+l > aago, where 9dp is in the sense of distribution. Define

1 . . . . .
E,= {zeM [L,(u,2z)= 1}’ then E; is an analytic subvariety (see Siu [Si1]). The

arguments in the proof of Theorem 1.5 shows that E;2S,. Note that they are not
equal in general.

Let n: M —CP? be the natural projection, C, C,, C, be the exceptional curves
of M over [1,0,0], [0,1,0], [0,0,1], F,, F,, F, are quadratic transformations of
lines

{[0,Z,Z,]eCP?*}, {[Z,,0,Z,]eCP?*}, {[Z,Z,,0]eCP?}.
Claim. For A<1, E;C(CouC,uC)nN(FoUF UF,).
Since E, is G-invariant and analytic, it is easy to see that E, is contained in
FyuF,UF,uCy,uC,uC,.

Ifdim.E, =1, theneither FyUF ,UF,CE;, or CouC,uC,CE,.Inthe former case,
since e * is L'-integrable for ¢ small, we find a generic line [C CP?, avoiding
[1,0,0], [0, 1,01, [0,0, 1], such that ¢ is not identically equal to — co on ™ ()1,
so the slice u|,- 1 is well-defined. This [ intersects F; at one point P;, i=0,1,2,
P,,P,P,eE,, so by Lemma 1.2,

I/_1 _ 2
f Cl(M)= ( <60g+”—2‘?66(p>22 glnlu) n 1(1),P)

=1 LRRIT)) -

Ly Pz 3. (3.7)

1\%
|I M o l

but C,(M)=n*(3H)-[C,]—[C,]—[C,], where H is the hyperplane line bundle
on CP?, so

[ CyM)=(n*(3H)—[Co]—[C,]—-[C,])-[=~ (D] ([GH])

= 1(1)

=3. (3.8)
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A Contradiction.In the second case, by taking a generic quadric Q in CP? passing
through [1,0,0], [0,1,0], [0,0,1], we can also get a contradiction by the same
argument as above.

Hence, dimqE,; =0, i.e. E; consists of finite points. For any point pe M other

than s ,
(o))
i=o0 i=0

the orbit G - p has at least real dimension one, so p ¢ E,. Thus the claim is proved.
Quadrics C;={Z,Z,=0Z3} of CP? (6 CP") pass through [1,0,0], [0,0,1].
Their quadratic transformations 7*C, pass through points ConF,, C,nF,. n*C;
is smooth except 6= o0 e CP.
At point C,nF,, the local coordinates are (x,#)—[1,x,xn] x[1,n]€ M, the
automorphism

e, 0 0
0 e O
\ 0 0 e
acts on M near (0,0)=C,nF, by sending (x,%) to (e,e; ' x, e;e; 'n), so
10 0
0 e O
0 0 €2

acts on M by (x, n)—(ex, en), since @, is G-invariant, ¢{(x, )= @ex, en) forany ee C
with [e]=1, so @/(x,n)=@{|x], [1)).

For R small enough, Bg(C,NnF,) is contained in the chart of local coordinates
(x,#). Since the metric g is G-invariant, n*C;n Bg(Co,NF,) is spherically symmetric
in the usual sense of local coordinates (x, %), so

T*CsNBr(ConF,)={(x,1) In=0x, Ix|2+n* < R;}

for certain R;>0. On each n*C;nBg(CyNF,), each ¢; is radically symmetric.

00 1

Automorphism |0 1 0) € G maps each 7*C; into itself and maps C,nF, to
C,NnF,. 100
/—1 _
d=1*C;-C;(M)= | C,(M)= | <wg+ —56(pi>
n*Cs m*Cs 21

for any ¢;, but ¢; is G-invariant, so

-1 55_%) <3 (wng gﬁgq)i) =2.

w,+ =
g 53
Br(ConF2)nmCs ( 2n 7Cs

V=1 _~ . . .
Locally, w,= > 00y, v is also G-invariant, then

0,0, ) =vp(x,n)+ @{x,n)— Sup ¢; = 0:(1xl, 1)
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is radically symmetric on each n*C;nBg(C,NF,). Each 6, is plurisubharmonic and
/—1 _
A6(0d{=2n | (cog + 88(p,~> Sdnr,
2*CsnBR(ConF2) 2+CnBR(ConFa) 2n
so by Lemma 3.2,
0:(x, ) 2 2log(Ix|? +[nI?) + 0z(x, 1)) ,

where z(x,n) e n*C;n0Bg(CyNF,). Thus, since 1< 1, by using the polar coordi-
nates, there exists C>0, such that

e—lﬂf(x,n)dygéc j e—wl(x.n)d[/g,

Br(ConF2) OBR(x,m)
then
—A(@. ~supgy) , =2 (p,—supo,)
e G se [ e Wy,
Br(ConF3) CBR(ConF2)

2

2
Since we have proved that S, C E, contains at most < U C,-) N < U F,~>, integrat-
i=0

i=

ing on R from R; to 2R, R, small, it follows that there exists C such that

[ e 'Oy, <C foralli,
Br(ConF2)
ie. ConF,¢8,. Similarly, C,nFy¢5S,, and C;nF;¢S, (i%)), so S, =0. Therefore,
we have proved that ag(M)=1.

Next, we turn to the proof of (ii). In this case, we may assume that M is CP?
blown up at four points [1,0,0],[0, 1,07, [0,0,1],[1,1,1]. There is a fibration of M
over CP! by conics, precisely, if n: M—CP? is the projection, the fibration
f:M—CP! is given by mapping n*C, j, to [, f]1€ CP', where

Coopy={2Zo(Z, = Zy)+BZAZ,—Z)=0} CCP?.
Let G,CG be the subgroup preserving the fibration, then G, is generated by

10 0 0 —1 1 0 1 —1
go=|—-1 0 1|, o,={0 —1 0], o,=(1 0 —1].
110 t —1 0 00 —1

The fixed points of g, are D,
Dy=n*{[Z0,Z,,Z,]1€e CP*|Z +Z,=Z,}V{[0,1,1]},
D\=n*{(Zy,Z,Z,]1eCP*}|Zy+Z,=Z,}U{[1,0,1]},
D,=n*{[Z0,Z,,Z,]1€CP*|Zy+Z,=2Z,}U{[1,1,0]},

DynD,=D,nD,=D,nD,={[1,0,1],[0,1,1],[1,1,0]}.

As before, we fix a A<3 and take a sequence {@,} CP(M,g), we also have
S,,E,,S,SE,. It is sufficient to show that S, =0.
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Claim. dim¢S,=0.

First of all, E, cannot contain a curve in fibres of f. In fact, if not, E, contains at
least one fibre C, 4. As G acts on M without fixed point, E; contains at least two
fibres Cy, 4, Ci, - Choose a generic line [C CP?, away from four blown-up points,
such that ¢ = — 00 on n*L, where ¢ is the limit of @, —sup @, as before. Then, by

M

Bertini theorem [GH], [ will intersect Cy, g, Cj, 5 at two points, respectively. The
argument used in Lemma 1.2 then gives a contradiction. So S, CE, does not
contain a curve in the fibre. If dim.S, =1, then S, is generically transversal to the
fibres of f. n*Cy, 5- C{(M)=2, and G, acts on each smooth 7n*C,, 4 without fixed
point, since [1,1,0], [0,1,1], [1,0, 1] are only fixed points of G,, and they are in
three singular fibres C;; o}, Cjo, 1) Ci1, 17 Hence, at each point p where S, intersects
a smooth n*C, j, transversally, we may find a neighborhood U so that in proper
local coordinates, U=Bp '(0) x Bg,(0), p=(0,0), and Unn*Cyy gy is one of
z x Bg,(0), ze BE, (0), moreover,
| <a)g+ ga&ol) S3n*Cry gy C(M)=1.
Unn*Crar, g1 ys

By Lemma 3.1, one sees that p¢S,, a contradiction, and we have proved
dimgS,=0.

Furthermore, the above argument actually shows that S, contains at most
[1,1,0], [1,0,1], [0,1,1]. They are equivalent under the action of G. Now we

. V=1 .~ .
estimate Lelong numbers of w,+ 2—66(/) at those points.
Y[

Lemma 3.4. The generic curve in the family
(0Z(Zo—Z,—Z)HZ\ = Z)+Z (2, —Zo—Z ) (Zo—Z1)=0},ccpr

in CP? is smooth except at [1,1,0], [1,0,1], [0, 1, 1], where the curve has ordinary
double points.

Proof. Let C,={0Zy(Zo—Z,~Z)Z,—~Z)+Z)\Z,~Z,~Z)(Zy—Z,)=0}.
It is trivial to see that C, and C_, have no common component. By Bezout’s
theorem (see Griffiths and Harris [GH, p. 670], also [H, p. 54]).
16: Z int(cm Coc’p)a
peConCqy

where int(C,, C,,, p) denotes the intersection multiplicity of C,and C at p. C,, C.,
pass through points [1,0,0], [0,1,0], [0,0,1], [1,1,0], [0,1,1], [1,0,1], [1,1,1]
and have multiplicities =2 at [1,1,0], [0,1,1], [1,0,1].

It is well known that int(C,, C,, p) =2 mult(C,, p) mult(C ., p) [H, Exercise 5.4],
thus at p=one of [1,1,0], [0,1,1], [1,0,1], int(C,, C,, p)=4.

Hence,

int(Co, C, p)=4 for p=[1,1,0], or [0,1,1], or [1,0,1],
int(C,, C,,p)=1 for p=one of [1,0,0], [0,1,0], [0,0,1], [1,1,1].

By Bertini theorem [GH], the generic C, is smooth outside [1,1,0], [0,1,1],
[1,0,1].
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A direct computation shows that for a% —1, 0, co, C, has ordinary double
points at [1,1,0], [1,0,1], [0,1,1].

As before, by Lemma 3.4, we can find a generic quartic curve C,, smooth
outside [1,1,0], [1,0,1], [0,1, 1], where C, has ordinary double points, such that

the slice of u=w,+ ——12—1 00¢ is well-defined on n*C,, then
T

8=7*C, C\(M)= [ Ci(M)= [ uZ Ly (tlec, [1,1,00

*Cy
+ Lg|ﬂ*ca(uln*cu> [1a 0: 1]) + Lg(“'n*cap [Oa 1’ 1])
(Lemma 1.2) >2L,(u, [1,1,01)+2L,(u, [1,0,11)+ 2L,(u, [0,1,1])
=6L,(u,[1,1,0]).

ie.

Ly(u,[1,0,1])=Lyu,[0,1,1])=L,(u,[1,1,0]) <%,

so [1,1,07, [1,0,1], [0,1,1]¢ E,, it follows that S,=0. Therefore, ag(M)=3. We
complete the proof of Theorem 3.3.

4. Kihler-Einstein Metrics on CP? 4 8CP?

In this section, we investigate the existence of Kahler-Einstein metrics on complex
surfaces with C, >0 and diffeomorphic to CP?48CP>. As before, it suffices to
estimate the lower bound of ag(M) for M =~ CP? 4 8CP2. Such a surface is obtained
by blowing up CP? at generic eight points as explained in the introduction. Now,
C,(M)*=1 and h°(M, 0,/(—K,,))=2, i.e. the anti-canonical bundle —K,, has a
pencil of elliptic curves as its complete linear system. Such a pencil corresponds to
the pencil of cubic curves {C}s.cp: in CP? passing through the blown-up points.
Because of the general positions of those blown-up points, one easily checks that
each C; is irreducible, so the singular C; is the rational curve with either an
ordinary double point or a cusp. Aut(M) consists of all automorphisms in
Aut(CP?) preserving the set of blown-up points. Clearly, Aut(M) is finite.

Lemma 4.1. Any non-trivial 0 € Aut(M) doesn’t preserve the singular curve in the
pencil {Cs}sccpr-

Proof. Suppose that ¢ preserves the singular curve C;,. Then o fixes the singular
point P, of C;,. o must interchange the cubic curves in the given pencil. Since all
these cubic curves intersect at one point P,, which is not one of the blown-up
points. Thus, ¢ fixes P,. Now, o preserves the tangent line T,,C; =1 If InC;,
contains more than one point, then ¢ fixed at least three points of C; . Since C, is
rational, o|c, =identity. It follows that ¢ is the identity, a contraction. Hence,
InC,,={P,}. CP*\I= C? choose coordinates [x, y, z] of CP? such that [={z =0},
P,=[0,0,1], and P,=[0,1,0], then for certain a,beC, C,,={y*=ax>+bx?*},
where a=+0.

.. . . 1
Now, ¢ is a linear transformation of C2. It follows that either o = <0 ?), or

)/ —1 .
ol= (BU (1)>, w=exp (2n 3 >, and b=0. In the case, since o2 preserves the set
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of eight blown-up points, it must fix at least two of them, thus o2 fixes at least four

points of Cj;,, as before, it follows that o? =identity, which is impossible! Hence,
1 0 . . . 1 0 .

o= < 0 1), but a direct computation shows thatif o = < 0 1), then either three

of eight blown-up points are colinear, or six of them are on a quadratic curve. Both
are against the assumption of the generic position of blown-up points. The lemma
is proved.

Example. We construct a family of complex surfaces M, ; ,, parametrized by an
open subset in CP? such that M, ; ,,~CP*#8CP? C,(M, ;,)>0, and

Aut(M,, 5, ,) * {identity},

i.e. non-trivial.
Fix an element

o O

,  w=exp

()

Q
Il
o o -
o g o

g

(5]

and
P,=[1,0,0], P,=[0,1,0], Py=[1,1,1], P, =[1,, "],
Ps=[1,0% 0], Ps=[o,f,7], P;=0(Pg), Py=0%Pg).
Take V, ={xyz=0}u< U lij>, where I;; is the line through P, P,

1=igj=ss
Vy,={wyz—xy—(1+w)xz=0}u{yz—xy—o(l + w)xz=0}
u{yz—oxy—xz(1 + w)=0}u{z?=xy}u{x=y}
u{x=wy}ui{x=w?y}.

Then it is straightforward to check that for any Pge CP*\V,UV,, P{,P,, ..., Py
are in general position. Blowing up CP? at these P, we obtain the required M, 4 .,
with o€ Aut(M, 4 ,1). Moreover, one can directly verify Lemma 4.1 for o.

Theorem 4.2. For Kdhler surface M=~CP? #8CP?, C,(M)>0, if Aut(M) is
nontrivial, then ag(M)=1. In particular, such a Kdhler surface M admits a Kdhler-
Einstein metric.

Proof. Note that G=Aut(M) in this case. Fix a A<1, in order to prove that
ag(M)= 4, as before, we take a sequence {¢;} from Py(M, g), where g is a Kahler
metric on M, invariant under G. It suffices to prove that S, =0, where S, is defined
as in the proof of Theorem 3.3. Let {C;};.p: be the pencil of cubic curves on M,
which generate H(M, 0,,(—K,). Then by C,(M)*=1, ie. C,(M)-Cs;=1 and
Lemma 3.1, one concludes that S, consists of those singular points of certain Cy’s,
which are finite. Let o € Aut(M), o +id, and a singular point P, P, =0(P,). By
Lemma 4.1 and nontriviality of Aut(M), P, + P,. Moreover, suppose that C;,, C;,
pass through P, P,, respectively.

By the Riemann-Roch theorem [GH], h%(M, 0,,(— 2K ,,))=4. Thus there is a
pencil of divisors of — 2K, passing through P, and P,. Clearly, C;, + Cj, is one of
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them and the other one has no common component with this one. Hence, one can
pick up an irreducible divisor D of —2K,, in that pencil such that ¢ £ — co on D,
where ¢ is the limit of the sequence {¢;}. It follows that the slicing ul, of the

.\ /=1 .5 . .
d-closed, positive (1,1)-current u=w,+ —2;06(/) is well-defined. Since

22int(C;,, D, Py)Z2mult(Cs,, P,) mult(D, P,) =2 mult(D, P,) ([H], Exercise 5.4), D
is smooth at P,. Similarly, D is smooth at P,. Then

2=D. CI(M)Zg)ungID(uIDﬂ P)+ Ly (ulp, P,)
=Ly (u, Py)+ Ly(u, P,)=2L,(u, P,),

thus, L(u,P,)<1. By Lemma 1.1 and Proposition 1.3, it follows that P, ¢S,.
Therefore, S, =0.

Corollary. M|, ; 5, constructed in the previous example, admits a Kdhler-Einstein
metric.

A standard argument using the implicit function theorem shows the following

Theorem 4.3. There is an open, non-empty set Ug CIMg such that each M € U g admits
a Kdhler-Einstein metric.

Combining this with Theorem 2.5 and Theorem 3.3, we finish the proof of the
main theorem of this paper.

5. A Lower Bound of «(M) in Terms of (— K,,)™
In this section, we apply the Jensen formula to obtain a useful inequality.

Lemma 5.1 [De, Sk 2]. Let X be a stein manifold, u be a positive, d-closed (1,1)-
current. Let y be an exhaustive function of X. Define B(r)={z € X|y(z)<r?}, then
for O<r, <r,<supwp,

X

(3"t [ unprl =t [ uAp" = [ una™l,
B(ra) (mri)™ ™" Biry B(ri»r2)

where
m=dimX, B(ry,r,)=B(r,)\B(ry),
]/‘1 _ |
B= a0y, a:—laalogw.
27 2n

Theorem 5.2. Let M be an algebraic manifold in CPY and g be the restriction of the
Fubini-Study metric on CP" to M. Then for any d-closed, positive (1,1)-current u,

funow) '2L(u,z) foreachzeM.
M
Proof. Let [Z,,...,Z\y] be homogeneous coordinate of CPY such that

the point zeM corresponds to [1,0,0,....0]eCP¥ and T,M
={[1.Z,,...Z,,0,...,0]e CPN.
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N
Let H =the hyperplane {Z,=0}in CPY, X =M\HCC"andy= Y |Z,|* Then
i=1

1 is obviously a plurisubharmonic exhaustive function of X. Hence by the above
lemma, for R>r>0,
1 1

S unpm Tl ——— uApm" =0,
(nR*"~ 183 ©0) o 2)"'_13}0) e

where ff= —l2_1 hIVARS

First, we assume that u is smooth and consider

1
lim ———— unpmt,
R+ (TRZ)™ ! BR[(O) p
By Stoke’s theorem,
1 . [/ —1 _
lim ——— unf™ 1= lim undlog|Z|Pna™ 2,
R-+w (RR*)™ 1 BJ(O) 4 R-+w 21 0B1£(0) glZ|

where o=

V=1 -
Y 90log|Z|?.
2n

Let CPY be the manifold produced by blowing up CP¥ at [1,0, ...,0], =: CPY
— CP" the natural projection. There is a natural fibration p: CPY—-CP¥~! = H by
CP"s, under which
o= p*w'| peps

where o' = l 88 log(|1Z,|?+...4+|Zy/?) is the Fubini-Study metric of CP¥ !,

n*M is the quadratlc transformation of M.

lim —1— [ unpm t=lim /-1 [ m*uAdlog|Z|* A(p*e)" 2

R— (7IR) BR(O) R-w 2T OBR(0)

NE (2P
— lim sy (p*0) 2 A ( Tlog 21 4 Flog(1 + |2
f i e B A< 081z Holosl+IZP)

I/ — 2
= lim <— ! { *u A (p*o’)" 2 A (66_10glz—|>

2
R—- 0 27T 7~ 1(M\BR(0)) 1+'Zl

+ [ mfuApro)" A n*w9>
THBR(0))
=lim | n*usrmto,A@pro’)" "2,
R>® nx(BR(0)
|2

since Vol(n*(M\Bg(0)))~0 as R— oo and log1 12 ]

is smooth in M\{Z}. Then

1 ]/_1 ~
lim ——— UuAB" 1=lim Y—— ¥ u A ) A (p¥e)" 3 A dloglZ)?
R_'+O°(7TR) B}j(o) ﬁ R—- 27[ ﬂ*(aEfR(O)) ( g) (p ) gl ’

=liml_1 [ unw,Adlogp Aa™ 3,

R-w 2T OBR(0)
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Hence, inductively, we obtain

1
lim ————r unpf™ 1= lim uA™ unop!
R-o (TR?)" ! BR§<0> p R-w B j<0) ! j
Thus, for each >0, and smooth u, we have
unop 'z e [ unprt 4
T (" o)

By taking the smooth approximation, one can easily see that (*) still holds for
general u. Now we let r go to zero and show that the limit is exactly Ly(u, Z).

By the choice of the homogeneous coordinate, there exist holomorphic
functions f,,,{,..., fy near z=(0,...,0)e C™, such that

X={Z\,...Zp fuii(Zy,... Z,), ... ]N(Z+, ..., Z,))}

locally at origin of CV. Since LXx={2....2,,0,...,00e C"}, f;=0, df;=0 at
origin for j=m+1,...,N, so

g: |fj(Zl, o ZP=00Z, P+ ... +1Z,,")%).

j=m+

On the other hand,

Wy~ ﬁl (1Z,)*+ ... +1Z,J»)? locally at origin

=0(1Z,]*+...+1Z\*)?).

X IZi|2—10g<1 + X lZi|2>
i=1 i=1
Hence, there exists a function &(r), such that &(r)>0, &(r)—0 as r—0 and

(1—e&r) p<w,< 1+P(r)
A

Br(l - s(r))(o) C Bg(07 r) C Br(l + s(r))(O) s ﬂ s

T
where B,(0,r) is the geodesic ball of (M, g) at 0.
i L (e

Lu,z)=lim - — [ urowy '<lim OURE

< u/\ﬁm—l
>0 F Bg(0,r) r>0  (mr

By(1 +6(r)(0)
q
=lim —
o T+ P 0o

< 1 )m—l
—lim _1:&_

uno™ =lim -— UAO
50 r2m 2 f , g >0 r2m 2 B ('!),r)
Bg<0’ 1 —a(r)>

j- lt/\,Bm_l

unpm™” 1—11m—_
d o (mr?)"~ 1 o)

m— 1

Hence,
L,(u,z) <ju/\co"' L0

Recall the Monge-Ampére equations (*),

det(gi3+(p,.j):det(gﬁ)eF_“” on M (%)
(85+ @7 >0 ’ '
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where g is a Kéhler metric on M with C,(M)>0, g~ C,(M), Rlc(g)

=w,+ ~—12_ O0F. For any solution ¢, of (+),, g;+ ¢,;;=_g,; define a new Kihler

metric on M, the Ricci curvature Rlc(g,) =tg,+(1—1t)g>tg, Itisactually proved in

[T] that (%), is solvable for r<™ oc(M).

Theorem 5.3. If M is a compact Kdhler manifold with C(M)>0, then M admits a
Kdhler metric gy~ C{(M), with Ric(g,,)> C(m), where C(m) depends only on the
dimension m and C,(M)™.

Proof. By the arguments in [M], one can prove that in case C,(M)>0, there is an
integer N >0, depending only on the upper bound of C,(M)™, such that (— K )"
gives an embedding of M into certain projective space, let g, be the restriction of
the Fubini-Study metric of the projective space to M, then w,,=NC,(M), the

1
metric g~ C,(M) may be taken as —g,. Then by Theorem 5.2,

NgF'
Ly(u,z)=L,, §ju/\(NC1(M))”' T=N""1C,(My"~1

for any zeM and d-closed, positive (1,1)-current u~C,(M). It follows

(Theorem 1.5) that By the previous remark before the

1
M2 —
HMZ No=re,
statement of the theorem, we finish the proof. [

In algebraic geometry, there is a famous conjecture that for each m there exists
a C(m)>0 such that C,(M)™ < C(m) for any algebraic manifold M with C,(M)>0
and dimg M = m. The conjecture is true trivially in case m =1, 2. In case m= 3, such
a C(3) exists, as proved by L’Vouskil in [Lv]. Moreover, for m<3, C(m) is just
C,(CP™™ 1t is still unknown for the cases m=4. If the conjecture is true,

Corollary 4.4 says that for each dimension m, there is a uniform constant ——

( )7
such that any Kahler manlfold M with C,(M)>0 admits a Kéihler metric

2y~ C (M) with Ric(gy)> =—— C ( y Conversely, by the comparison theorem on

volume, a uniform lower bound of Ric(g,,) will result in a uniform estimate of
Vol(g,), which is nothing but C,(M)™. Hence, we have built the equivalence of the
conjecture in algebraic geometry and the existence of certain Kédhler metrics with
Ricci curvatures bounded uniformly from below.
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