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Abstract. It is shown that a few physically significant conditions fix the global
structure of the local algebras appearing in quantum field theory: it is
isomorphic to that of SR® 3, where 9ί is the unique hyperfinite factor of type
///! and 3 the center of the respective algebra. The argument is based on
results in [1, 2] relating to the type of the local algebras and an improvement of
an argument in [3] concerning the "split property."

1. Introduction

Since the very beginnings of the algebraic approach to quantum field theory [4],
there has been continuous interest in the structure of the local algebras appearing
in this setting. This interest originates from the insight that the entire physical
information of a quantum field theory is encoded in the map

0-*3l(0), (1.1)

assigning to each bounded region & of Minkowski space a von Neumann algebra
31(0) which is generated by the observables (respectively fields) associated with the
region in question. So there naturally arises the question of the concrete algebraic
properties of the images 31(6?) of this map.

It is by now well known that the local algebras 31(0) are, in generic cases, of type
///! according to the classification of Connes (cf. [5]). This fact has been
established in several models by explicit calculations, and also by more abstract
arguments (cf. [6] for a review). But only recently this result has been derived from
conditions which seem to be sufficiently general to cover most theories of physical
interest [1]. Besides the standard postulates of quantum field theory the only input
needed is the assumption that the theory has a scaling limit. This is expected to be
the case in renormalizable field theories with an ultraviolet fixed point, hence in
particular in all theories which are asymptotically free.
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Although this result substantially restricts the possible structure of the local
algebras it does not fix it completely since there exist non-isomorphic factors of
type /J/j. But, as was recently shown by Haagerup [2], there is only one such
factor which is hyperfinite, i.e. generated by an increasing family of finite
dimensional algebras.

The idea that the local algebras ought to be hyperfinite sounds physically
reasonable and has been confirmed in models (cf. [6]). But it should be noticed that
this is a quite subtle property. For example, a subalgebra of a hyperfinite algebra
does not need to be hyperfinite. It is therefore gratifying that the hyperfiniteness of
the local algebras can be derived, as we shall demonstrate, from gross properties
having a simple physical interpretation.

Our starting point is the nuclearity condition proposed in [3] which restricts
the number of local degrees of freedom of a theory in a sensible manner. We will
show (Sect. 2) that theories satisfying this condition have the so-called "split-
property" [7]. This means that for every pair of bounded regions (9ί9&2 with
@ιCC&2 (i e the closure oϊ&1 has to be contained in the interior of &2) there exists
some factor 501 of type I such that

9ί(^1)ca«C9X(^2). (1.2)

This result is an improvement on the somewhat weaker assertions in [3], saying
that this inclusion holds if the region Θ2 is sufficiently large compared to G± ("distal
split property"). In the present context it is, however, essential that the boundaries
of 0J and &2 may be arbitrarily close to each other. For this implies that the local
algebras can be approximated from the inside (respectively from the outside) by
type / factors. As was pointed out in [8], it then follows that the local algebras are
hyperfinite.

The only remaining ambiguity in the structure of the local algebras is the
question of whether these algebras can have a center. It was argued in [4] that this
possibility can be ruled out in the presence of equations of motion ("primitive
causality"). In this case it would follow that the local algebras are isomorphic to the
unique hyperfinite type IΠ^ factor 9ί [2]. But a rigorous proof showing that the
local algebras are factors does not yet exist.

In the presence of a center 3 the structure of the local algebras would, however,
change only in a trivial manner. As will be discussed in Sect. 3, it then coincides
with that of the tensor product of 9ΐ and 3>

8l(Φ)-9l®3. (1.3)

So the results of this discussion may be summarized by saying that the local
algebras in a quantum field theory exhibit the universal structure (1.3), whenever
the number of local degrees of freedom of the theory complies with certain
moderate limitations, and the underlying fields have a tame ultraviolet behavior.
(The precise quantitative conditions are given in Sect. 3.) One may hope that this
very explicit information on the local algebras will be the key to further progress in
the structural analysis of the maps (1.1), in each of which the specific features of a
particular theory are encoded.
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2. Nuclearity and the Split Property

We turn now to the central part of this investigation, namely the demonstration
that the split property (1.2) holds in theories satisfying the nuclearity condition
proposed in [3]. The consequences of this result will be discussed in the subsequent
section.

Let us begin by specifying the assumptions entering into our argument.
1. (Net structure) We consider a net 0->5I(0) of von Neumann algebras on a

Hubert space 3£ which is associated with the open, bounded regions Φ of
Minkowski space and satisfies the condition of isotony:

51(0^31(02) if $ιC02. (2.1)

Specific information about spacelike commutation properties ("locality") is not
required in the present section.

2. (Translations) On ffl there is a continuous, unitary representation f -»[/(£)
of IR implementing the time translations on Minkowski space, i.e.

C7(ί)9l(0)l7(ί)~ 1 C 91(0 4- 1 e) . (2.2)

Here e denotes the vector fixing the time direction. The generator H of the time
translations U(t) has non-negative spectrum including the eigenvalue 0 with
multiplicity one, and the eigenvector Ω corresponding to this eigenvalue is cyclic
and separating for the algebras 31(0).

3. (Nuclearity) Let (9 be any fixed bounded region. Then each member of the
family of maps Θβ, β>0 of 91(0) into ̂  given by

θβ(A) = e~βHAΩ , A e 31(0) (2.3)

is assumed to be nuclear. This means that for each Θβ there exists a sequence of
vectors Φt e 2ff and of linear functional φf e3I(0)* such that Σ \\9i\\ I I Φ I I < °° an<i

)Φ« (2.4)
i

Moreover, defining the trace-norm of Θβ by

\\θβ\\ι=^fΣ\\9i\\\\ΦιL (2.5)

where the infϊmum is to be taken with respect to all vectors Φt and functionals φz

complying with the above conditions, we assume the bound for β \ 0,

llβΛ^0""11. (2-6)

where β0, n are positive constants (depending only on 0).
This third assumption is equivalent to the nuclearity condition proposed in

[3]. The present formulation, suggested by R. Longo, turns out to be more
convenient in our discussion. For a brief explanation of the physical significance of
the nuclearity condition see the subsequent section.

Our goal is the following

Theorem 2.1. Let 0-»3I(0) be a net of von Neumann algebras with the properties
listed above. Then there exists for any pair of open, bounded regions 0 l 502 wiί/z
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01CC02 some type I factor 9W such that

2i(01)c9«c2i(02).
For the proof of this theorem we need two auxiliary lemmas. The first one is a

simple consequence of the nuclearity condition.

Lemma 2.2. Let f(ω\ ω ̂  0 be any continuous function such that for some ε > 0,

where β^n are the constants appearing in the formulation of the nuclearity
condition. Then the map Θ of 21(0) into 2tf given by

Θ(A)=f(H) AΩ, ,4 e 21(0)

is nuclear. Moreover, there exists a sequence of vectors Ψt e ffl ana of ultraweakly
continuous (normal) linear functional^ ιpt e 21(0)̂  such that

Σ\\Ψi\\\\Ψt\\<«> and Θ( )=ΣΨi( )Ψi.
ί i

Proof. Let EJ9 j e N be the spectral projections of H corresponding to the spectral
values ω, j — l^ω<j. Then the maps Ξj given by

Ξj{A) = EjΆΩ9 ,4 e 21(0)

satisfy for any β > 0 the identity

where Θβ are the nuclear maps defined in (2.3). Since the operators Ej eβH on Jtf
are bounded, it is clear that each Ξj is nuclear. Moreover, on the basis of (2.6) we
obtain (for large 7) the bounds on the trace norms

\\Ξj\\^ inf
β>0

< inf e

βj+(βolβ)n<e2(βoj)n/n+i

~ β>o ~~

From this it follows that the map
Ξ( ' )= Σ e~(2+ε}(βoj}n/n + ίΞ{ - )

j

is nuclear too for any ε > 0, since the sum is absolutely convergent with respect to
the trace norm. Introducing now on ffl the (unbounded) operator,

and using the facts that Eβj = δ^E^ as well as £ Ej = 1 , we see that the given map Θ
can be represented by j

But from the postulated behavior of the function /(ω) for large ω it follows that the
operator f(H)u(H) is bounded. Hence Θ is nuclear.
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Now let Ψ{E2tf and φte*Ά(Θ}* be sequences of vectors and functional,
respectively, such that £ \\φt\\ \\Ψ{\\ < oo and

i

Θ( )=Σ<Pi( )Ψt
ί

As is well known (cf. [9, Chap. III.2]) every functional c^eSI^)* can uniquely be
decomposed into a normal part ipt e %i(@)* and a singular part σ^eSΪ^)^, i.e.
Ψi — Ψί + σiί and \\9i\\ = l i ^ i l l + l l σ i l i Consequently Θ can be represented as sum of
the maps,

}Vi and Θ(s)( )=I>;( m ,
i

each of which is nuclear. Since 2I(C% and 2Ϊ($)^ are norm-closed subspaces of
21(0)*, it is also clear that Θ(n} is normal and that <9(s) is singular. But Θ = Θ(n} + Θ(s}

is a normal map from 2l($) into ffl (equipped with the ultra-weak topology) as is
obvious from its definition. Hence <9(s) = Θ — Θ(n\ being normal and singular, must
be the zero map. Π

In the second lemma we establish an identity for the vacuum expectation
values of certain specific operators. In the proof we rely only on the assumed
spectral properties of H.

Lemma 2.3. Let δ>0. Then there exists some continuous function /(ω), ω e ]R "which
decreases almost exponentially, i.e.

sup |/(ω)|e|ω|κ < oo for any 0 < K < 1
ω

and which has the property that for any pair of bounded operators A, B satisfying
[U(t)AU(tΓ\B]=0 for \t\<δ, there holds the identity

(Ω, ABΩ) = (Ω, Af(H)BΩ) + (Ω, Bf(H)AΩ).

Proof. Let τ > 0 and let ̂ τ = C\{z: Imz = 0, |Rez| ̂  τ} be the two-fold cut complex
plane with cuts starting at z = ± τ. Making use of the invariance of Ω under the
action of U(t), the positivity of H, and the commutation properties of A, J5, it
follows from standard arguments that there exists on ̂  some analytic function
h(z) such that for ίeR,

lim h(t + fe) = (β, A U(t)BΩ)
ε \ 0

and

lim h(t- is) = (Ω, BU(- t)AΩ).
ε \ 0

Now let w->z = 2τw/(w2 -f 1) be the conformal mapping of the unit disk | w| < 1 onto
the cut plane &τ. If 0<τ<(5, we have ^TC^§, and consequently the function
w->/ι(2τw/(w2 +1)) is analytic on |w| < 1. Its boundary values for w-*eiφ, 0^φ^2π
are

(Ω,AU(τ/cosφ)BΩ) if O^φ^π, φφπ/2
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and
(Ω, BU(- τ/cos φ)AΩ) if π ̂  φ ̂  2π , φ Φ 3π/2 .

The function may be discontinuous at w = ± ί, but it stays bounded at these points.
In fact we have the uniform bound

|Λ(2τw/(w2 + l)) |^M||- | |B| | for |w |<l ,

as is easily shown. Thus Cauchy's formula applies to this function even if we extend
the path of integration to the boundary of the disk |w| < 1, giving in particular

A(0) - ~ 7 dφ lim h(2τreίφ/(l + r2e2iφ)) .
2π o r / i

If we rewrite this result in terms of the vacuum expectation values we obtain

(Ω,ABΩ) = -ί }dφ{(Ω,AU(τ/cosφ)BΩ) + (Ω,BU(τ/cosφ)AΩ)} ,
2π o

and this relation holds for all 0 < τ < δ. Now we pick some testfunction g(τ) with
support in 0<τ<δ, whose Fourier transform g(ω) is almost exponentially
decreasing (in the sense made precise in the statement of the lemma) and does not
vanish at ω = 0. For a proof that such functions exist cf. [10]. If we multiply the
above relation for the vacuum expectation values with g(τ) and integrate with
respect to τ we arrive at the identity

(Ω, ABΩ) = (Ω, Af(H)BΩ) + (β, Bf(H)AΩ) ,

where /(ω), ω e ]R is given by

This function is continuous and decreases almost exponentially, as one easily
verifies. So the proof of the lemma is complete. Π

With this information we can turn now to the proof of the split property: let
&a, Θb be two arbitrary open bounded regions such that (9aCC(9b, and let
2l(0fl)Θ2IW be the algebraic tensor product of 2I(0α) and 2l(0fe)' [the commutant
of 2I(0b) in ̂ (^}~\. We consider two representations of this tensor product: the first
one, denoted by π, acts on ffl and is obtained by linear extension from

A-B for v4e9I(0α), Be9I(06)'. (2.7)

This definition is obviously consistent, and it defines a ^-representation of the
tensor product since the operators in 2l(0α) and 9I(Cy commute. The second
representation, denoted by πp9 acts on Jf ® Jf and is fixed by

for Ae<&((9a], BE^(Ob}' . (2.8)

For the proof of the split property we must show that these representations are
equivalent.

To this end we consider the state ω on 9I($fl)Θ2ϊ($b)' given by

ω(AQ B) = (Ω, π(AQB)Ω) = (Ω, ABΩ) . (2.9)
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We will demonstrate first that ω is normal relative to the representation πp

 1 : since
ΰaCCΘb, there is some δ>Q such that V(t)^i(Oa)U(tr^ C^(0b) for \t\<δ, cf.
relations (2.1) and (2.2). Hence there exists according to Lemma 2.3 some
continuous, almost exponentially decreasing function / such that

ω(AQB) = (Ω, Af(H)BΩ) + (Ω, Bf(H)AΩ) (2.10)

for all A e 3I(0J and B e 2l(06)'. With the help of the nuclearity condition, it is then
easy to show that both functionals appearing on the right-hand side of this identity
are normal relative to πp. Let us consider first the linear functional ξ on
3I($JΘ2W given by

ξ(AQB) = (Ω,Bf(H)AΩ). (2.11)

Taking into account that Θa is bounded as well as the specific properties of / it
follows from Lemma 2.2 that the map θ(A) =f(H)AΩ, A e 9I(0j is nuclear. Thus
we can represent ξ as an infinite sum of functionals ξi of the form

(2.12)

where tpie®(0«)*> ΨiE^f and ]Γ ||ι/;.|| H ^ H < oo. So each ξi is manifestly normal
i

relative to πp9 and since ||<y^ \\ipi\\ H ^ H , we also have Σ l l ί i l l <oo. Hence ξ, being
i

an absolutely convergent sum of normal functionals, is normal. The same
considerations apply to the functional

η(AQB) = (Ω, Af(H)BΩ) = (Ω, B*f(H)A*Ω) , (2.1 3)

proving that ω = ξ + η is normal relative to πp.
Now since Ω is cyclic and separating for the algebras 31(6?), the vector

Ω®Ω e^®^e is cyclic for the commutant of πp(9l(0β)θ9l(06)') in J>pΠ® J>pf ).
Hence every state which is normal relative to πp can be represented by a vectorstate
in this representation [11, Theorem 2.7.9]. In particular, there are vectors
Ωpe3?®3F such that

ω(C) = (Ωp,πp(C)Ωp) for CeSl^Jom)'. (2-14)

From this it readily follows that the representations π and πp are not disjoint. For
the proof that they are even equivalent, one could then apply the general
arguments expounded in [3]. But the more specific information provided by Eq.
(2.14) also allows a simple direct proof of this fact.

The essential step is the demonstration that the normal extension of ω to the
W*-tensor product 9I(0β)(g) 9I(0d)' is faithful. For this implies that the vector Ωp in
relation (2.14) can be chosen to be cyclic for πp [1 1, Theorem 2.7.9]. Since Ω is cyclic
for π and since

(Ω,π(QΩ) = (βp,πJI(C)β|l) for Ce^flJOm)', (2-15)

cf. relations (2.9) and (2.14), it is then clear that π and πp are unitarily equivalent.
For the proof that ω is faithful we first recall that the choice of the regions &a, (9b

in our discussion was completely arbitrary, apart from the condition that (9a CC &b.

1 A linear functional on 2I(0i)O2i($2)' i§ said to be normal relative to π if it is continuous with
respect to the ultra weak topology determined by this representation

p
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We may thus choose regions $a, $b such that &a CC Oa CC &b CC (9b and consider the
representations π, πp of 9I(0fl)O9l(0f,)', which are defined as in relations (2.7) and
(2.8), respectively. The corresponding state ώ, defined as in (2.9), is an extension of
ω to the larger algebra under consideration. It is normal relative to πp and may
thus be represented by some vector Ώpe $? ®3tf. We note that, since Ω®Ω is
separating for 9l($J® 9l(0b)', there is also such a vector Ωp which is not orthogonal
to Ω®Ω.

Now because of the choice of the regions 0fl, &b, relation (2.2), and the fact that
Ω is invariant under the action of U(t) there exists some δ > 0 such that for all

tΓlΩp), (2.16)

where Up(t)=U(t)®U(t). Hence if ^e2I(0jΘ2I(0&)' is any net which converges
strongly to some XeW((9a}®W((9b)' and if lim ω(X* Xt) = 0, it follows from (2.16)
that for |ί|<<5,

(2.17)

Since the generator of ί->C7p(ί) is positive, this equation extends by analyticity to
any ί eR. Taking also into account that the multiples of £2® Ω are the only vectors
which are invariant under the action of Up(i)9 we thus find, by taking in (2.17) a
suitable mean over ί, that X Ω®Ω = Q. Hence X = Q, so the normal extension of ω
to 9l(0fl)®9l(0b)' is faithful, as claimed.

Having shown that the representations π and πp are equivalent, the proof of the
split property is now easily accomplished: let V be any isometry mapping ffl onto

which establishes the equivalence of π and πp. We then have

A'B=V~1A®BV for 4e9l(0J, Be^(Gb} . (2.18)

Since 91 = V ~ γ^(^}®\ V is clearly a type / factor and since there holds the trivial
inclusion

we arrive at

9ί(0Jc9lc9l(06). (2.20)

This completes our proof of the split property.

3. Quantum Fields and the Structure of Local Algebras

We will establish now the universal structure (1.3) of the local algebras in quantum
field theory by combining information about the type of these algebras with the
results of the previous section. Strictly speaking, the present section is nothing but
a summary of known facts. But we found it worth-while to bring together here the
scattered information which is relevant in the present context.

Our starting point is the standard formulation of local quantum field theory in
terms of Wightman fields. Since this setting is well-known we can be very brief in
stating the relevant assumptions.
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1. (Wightman axioms \Λ2~\) We consider a *-algebra ^ of (unbounded)
operators generated by a collection of Wightman fields Fα and acting on some
domain in a Hubert space ffl . So the fields Fα are temperate distributions on
Minkowski space with values in ty on which the Poincare group (respectively its
covering group) 3P\ acts by automorphisms. These automorphisms are
implemented on 3? by a continuous, unitary representation L->U(L) of 3P\. In
connection with the question of the type of the local algebras, it will be essential
that the fields are finitely covariant, i.e. that each Fα transforms under the
subgroup of Lorentz-transformations according to some finite-dimensional
representation. The fields Fα are local and satisfy normal spacelike commutation,
respectively anticommutation relations. At last, there is an (up to a phase unique)
unit vector Ω which is invariant under the action of the unitaries U(L) and which
is the ground state of the Hamiltonian H (the generator of the time-translations).
We assume that Ω is cyclic for the algebra φ and that the resulting domain
3) — ?βΩ is a core for the field operators Fa(f) for any testfunction /.

This setting is familiar from many field-theoretic models. We emphasize that it
also applies to gauge quantum field theory if one restricts the algebra ^ to local,
gauge-invariant fields and observables, respectively.

Given this structure, we can define a Poincare-co variant net &-+<&(&) of von
Neumann algebras on ̂  as follows: let & be any open, bounded region in
Minkowski space and let ίf(&) be the subspace of all testfunctions with support in
&. Picking any field Fα and any /e £f(G\ we obtain a field operator Fα(/) e φ which
is associated with the region Θ. This operator, being an element of a *-algebra, has
a densely defined adjoint, and hence is closable. It thus determines in a canonical
way the algebra ^α>/={Fα(/)*5Fα(/)**}"5 which is the smallest von Neumann
algebra to which the closure of Fα(/) is affiliated. We then define 21(0) as the von
Neumann algebra generated by all 9tα?/ with f

It follows immediately from this definition that the family of algebras 21(0) so
defined satisfies the condition of isotony, cf. relation (2.1). Moreover, since the
support of a function is a closed set (by definition), the algebras 21(0) are
"continuous from the inside," i.e. for each increasing family of open regions &{ with
\JO~0, we have

(3-2)

From the Poincare co variance of the fields Fα, it is also clear that the Poincare
transformations act on the algebras 21(0) in the geometrically obvious manner

C7(L)9l(0)C/(L) ~ l C 9l(L0) . (3.3)

The only feature which does not immediately carry over from the Wightman fields
to the corresponding net of von Neumann algebras is the property of locality.
Disregarding the fact that the field operators are unbounded one would deduce
from the spacelike commutation relations of the fields the following specific
structure of the algebras 21(0): eacn operator C E 21(0) is composed of a Bose part
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C+ and a Fermi part C_, given by

C±=i(C±C70CI/o), (3.4)

where [70 = 17 J = I/Q 1 is the operator inducing the sign change of Fermi fields
("rotation by 2π"). If 4 e 91(0 J and B e 9I(0δ) is any pair of operators associated
with two arbitrary spacelike separated regions 0fl and Φb there holds the
commutator equation

[>4,B+ + UoB-]=0, (3-5)

combining in compact form the normal spacelike commutation and anti-
commutation relations of Bose and Fermi operators, respectively.

The question of whether these locality properties persist in the transition from
the Wightman fields Fa to the net 0-> 91(0) is a subtle mathematical problem due to
the fact that the field operators Fα(/) are unbounded. Several regularity conditions
in terms of the fields are known which guarantee that no pathologies occur in this
step (cf. [13] and references quoted therein). In the cases where the fields Fα

generating the algebra φ are to be interpreted as observables, the locality property
of the corresponding net of von Neumann algebras has to be demanded also on
physical grounds. We therefore assume that the underlying Wightman theory is
sufficiently regular and postulate

2. (Regularity) The net 0-»9I(0) defined in (3.1) satisfies the spacelike
commutation relations (3.5).

It is a well-known consequence of the structure described so far that the vector
Ω is cyclic and separating for the local algebras 91(0): it is cyclic since the
polynomials in the field operators Fα(/), /e^(0) generate a dense set of vectors
from Ω according to the Reeh-Schlieder theorem [14]. From the locality condition
(3.5), it then follows that Ω is also cyclic for 91(0)', and hence separating for 91(0).

Another feature which is of interest here is the fact that the local net 0-»9I(0)
can always be extended to a net 0->9ϊ(0) which satisfies the condition of duality
[1 5], and hence is the maximal net with the properties mentioned above. This net is
obtained by first constructing for all open wedge-shaped regions W bounded by
two characteristic planes algebras 9l(ι̂ ) as in relation (3.1). Then one defines the
algebras 9Ϊ(0) associated with "causally convex" regions 0 (i.e. open, bounded
regions, such as double cones, whose closure 0 is the intersection of wedges Hf\
setting

) = /\ W(ir). (3.6)

(An extension of this definition to arbitrary regions can be accomplished by
additivity.) It is obvious from relation (3.6) that the algebras so defined are
"continuous from the outside," i.e. if 0^ is any decreasing family of regions such that
C\@i = <9, we have

91(0)^91(0;). (3-7)
/

The subsequent discussion applies to the "minimal net" defined in (3.1) as well as to
the "maximal net" defined in (3.6). We therefore introduce the notation 0->9I(0)
for either one of these nets.
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We supplement now this general setting by two more specific assumptions
distinguishing a physically significant class of models. Firstly, we assume the
nuclearity condition employed in the previous section. We recall here in brief this
postulate.

3. (Nuclearity) Let & be any fixed bounded region. Then the maps

are nuclear for any β > 0. Moreover the trace-norms of these maps satisfy the
bound in the limit β \ 0,

where /?0, n are certain constants.
As already mentioned, this condition restricts the admissible number of local

degrees of freedom of a theory. As a measure of this quantity one takes the energy-
level density of the states which are well-localized inside the region Φ. The quantity
|| 00 H i is the analogue of the partition function in statistical mechanics, and the
bound on \\Θβ\\^ says that the level density should not grow substantially faster
than that of an arbitrary number of indistinguishable particles confined to a box of
finite volume. We note that in asymptotically free theories, where Stephan-
Boltzmann's law can be applied at high temperatures, one expects that the
constant n appearing in the bound can be put equal to the dimension of space. For
a more detailed discussion and justification of the nuclearity condition we refer to
[3], cf. also [16].

The following result concerning the intrinsic structure of the local algebras is a
straightforward consequence of the preceding discussion.

Proposition 3.1. The algebras $1(0) associated with causally convex regions 0 are
hyperfίnite.

Remark. In the case of the minimal net this statement holds in fact true for
arbitrary regions, including unbounded ones such as if^.

Proof. It follows from the preceding assumptions and the analysis in Sect. 2 that
the local net has the split property. Moreover, the algebras 91(0) are continuous
from the inside (in the case of the minimal net) or from the outside (in the case of the
maximal net), respectively. In the first case we choose a sequence of regions &i such
that 0JCC0/ + 1 and y0 f = 0. Then there exists an increasing family of type /

factors 9Jtt such that &(0ί)c9KίC2l(0l +1), and hence

Similarly, we find in the case of the maximal net a decreasing family of type /
factors 91,. such that

Since type / factors on a separable Hubert space Jtf2 are clearly hyperfinite it is
obvious from these approximation formulas that 91(0) is hyperfinite, too. (For an

2 That $P is separable is a trivial aspect of the nuclearity condition
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account of the standard properties of hyperfinite von Neumann algebras
cf. [5].) D

It remains to discuss the type of the local algebras. This property has been
determined in [1] for local nets constructed from Wightman fields admitting a
scaling limit. For the convenience of the reader we recall here the precise
assumptions: given any positive, monotone function N(λ), A>0 one first defines a
scaling transformation of the testfunctions /(x) on Minkowski space, setting

fλ(x) = N(λ)f(x/λ). (3.8)

One then obtains a corresponding transformation of the field operators Fa (/) by
replacing the testfunctions / by fλ. Now according to the theory of the
renormalization group (cf. [17]) one expects that in renormalizable theories with
an ultraviolet fixed point the vacuum expectation values of products of the scaled
fields Fα(/λ) have a non-trivial limit as λ \ 0 for an appropriate choice of the
function N(λ). In asymptotically free theories N(λ) should be of the form λδ~d

being the canonical dimension of the field and d the dimension of Minkowski
[<5 space], possibly modified by logarithmic corrections. But the precise form ofN(λ)
is irrelevant here. In fact one needs for the determination of the type of the local
algebras only, the following mild assumption concerning the scaling properties of
the underlying Wightman theory.

4. (Asymptotic scale ίnvarίance) Amongst the Wightman fields Fa generat-
ing the local net 0-»9I(0) there is some field F with vanishing vacuum
expectation value such that for a suitable choice of N(λ) the scaled field
operators F(fλ) have the following properties: the expectation values
(Ω, F(fλ)*F(fλ)Ω) converge for all testfunctions / in the limit λ\0 and are non-
zero for some /, and the norms \\F(fλ}*F(fλ}Q\\ and \\F(fλ}F(f^Q\\ stay
bounded in this limit.

Combining this input with information about the modular groups associated
with the algebras 9I(̂ ) and the vacuum state Ω [15], one can determine the
Connes invariant of the local algebras, and hence their type. This was demon-
strated in [1] under the assumption that the field F having the required scaling
properties transforms as a scalar under Lorentz-transformations. But it is evident
from that argument that the conclusions hold just as well if F is finitely co variant.
So there holds the

Proposition 3.2. The algebras 91(0) associated with causally convex regions are of
type J//1? i.e. only factors of type ΠI^ appear in the central decomposition of

Remark. Again, one can extend this result to algebras associated with a larger class
of regions, cf. [1].

In case that the local algebras are factors we thus have reached our goal:
according to the result of Haagerup already quoted, the hyperfinite type 111^ factor
9ί is unique, so all local algebras are isomorphic to 9ί. Taking also into account the
possibility that the local algebras have a center we can summarize the results of this
discussion in the following

Theorem 3.3. Let 0->9I(0) be a (minimal or maximal) local net constructed from a
Wightman theory which satisfies the conditions of nuclearity and asymptotic scale
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invariance. Then the algebras 2I($) associated with causally convex regions Θ are
isomorphic to 91® 3> where 9ΐ is the unique hyperfinite factor of type ΠI^ and 3 the
center of 21(0).

Proof. Since in the central decomposition of a hyperfinite von Neumann algebra
there appear only hyperfinite factors [5], it follows from the preceding two
propositions that 21(0) can be expressed as a direct integral 21(0) = J dμ(z)9l(z) of
hyperfinite type III ^ factors 5R(z). Because of the uniqueness of this factor it is then
clear (cf. [11, Chap. 4.5]) that 21(0) is isomorphic to
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