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The Goryachev-Chaplygin Top and the Toda Lattice
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Abstract. The Goryachev-Chaplygin top is a rigid body rotating about a fixed
point with principal moments of inertia A, B, C satisfying A = B = 4C and with
center of mass lying in the equatorial plane. The problem is algebraically
completely integrable as a linear flow on a hyperelliptic Jacobian, only upon
putting the principal angular momentum in the horizontal plane.

This system admits asymptotic solutions with fractional powers in t and
depending on 4 degrees of freedom. As a consequence, the affϊne invariant
surfaces of the Chaplygin top are double covers of the hyperelliptic Jacobian
above, ramified along two translates of the theta divisor, touching in one point.
This system is an instance of a (master) system of differential equations in 7
unknowns having 5 quadratic constants of motion; a careful analysis of this
system reveals an intimate (rational) relationship with the 3-body periodic
Toda lattice.

The Goryachev-Chaplygin top is a rigid body rotating about a fixed point with
principal moments of inertia A, B, C satisfying A = B = 4C and with center of mass
lying in the equatorial plane (through the fixed point) going with the moments A
and B. First introduced by Goryachev [7] in 1900 and later integrated by
Chaplygin [5] in terms of hyperelliptic integrals, we learned about the system
from Golubev [6]. This motion has an extra-constant of motion, only upon
putting the principal angular momentum in the horizontal plane. After some
rescaling, the equations of motion take on the form:

y= — 3xz — 4w, v = xw — 4zu, (1)
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with energy

x2 + y2 + 4z2-8u = 6a,

and trivial invariants

u2 -f v2 + w2 = c ,

xu + yv + zw = const .

Only upon putting this constant equal to 0, does the system have an extra-
invariant

The system (1) is weight-homogeneous with x,y,z having weight 1 and w,ι;,w
having weight 2. Then being algebraically completely integrable on two-
dimensional complex tori T£, such a system is commonly believed to have Laurent
solutions with simple poles for x, y, z and double poles for u, υ, w, depending on
4 degrees of freedom, namely the values a, b, c of the constant of motion and the
local parameter of the algebraic curve(s) on T£ along which the variables blow up.
This system is interesting in that it is different: for the system to admit asymptotic
solutions depending on 4 degrees of freedom, the leading powers must be as follows

(x, y, z, u, v, w) = (ί ~3/2, Γ 3/2, t~\ ί~2, ί~2, r 1/2) x a Taylor series . (2)

This phenomenon will be explained in this paper by showing that the Goryachev-
Chaplygin equations are part of a system of differential equations in seven
unknowns having five quadratic constants of motion. This extended system also
shows that the Goryachev-Chaplygin top is intimately related to the three-body
Toda lattice.

Consider indeed the following system of 7 differential equations in the
unknowns yl9...,yΊ:

+23^7,

The following five quadrics are constants of motion for this system:

Q4 =
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Another flow commuting with (3) has the form

y2yl9

y2=-2yΊ, y5=~ 2

Although the system (3) is not weight-homogeneous, it admits Laurent
solutions depending on 6 free parameters α, fc, c, d, e, and Z, to wit:

= -- +2Z2-2s(Z(Z2-2a)+W)t-(2P+W)Zt2

(5)

£ 1 ,~ ~ /^o ^ x ,̂ —Λ ι£>/j

εZ

where ε2 = — 1 and

P(Z) = 2Z3 - 3αZ + 6, β(Z) ΞΞ 4cZ2

and where the parameters (Z, FP) belong to a hyperelliptic curve

The Laurent solutions are thus parametrized by two copies Jjf+ and Jtf. _ of the
same hyperelliptic curve J f for ε = + i. In order to embed ffl into some projective
space, we search for functions yθ9yι9...9yN of increasing degree in the original
variables having the property that the embedding D of JfV + Jf_ into PN via those
functions satisfies the relation (see Adler and van Moerbeke [1, 4]),

geometric genus (2D) = N + 2 . (7)

This occurs for the first time for JV=15; indeed the original set of variables
yo9 ',y7 can be enlarged by adjoining 8 other functions, with the following
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Laurent series obtained from (5):

1
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16ί

Z

4F

WO--

,)-f

Z2 εP

3>n =

y 12 = -

εZ2

8ί
+

16ί2

3sZ(P+W)2

32ί
+ 0(1),

εZ2(P+WQ

2ί2

Using these functions y0,...,y15, one embeds each of the curves j(f+ and Jf_ into
P15; thus embedded, they have only one point in common, at which they are

Xi

Fig. 1

Xi Xi

tangent to each other as illustrated in Fig. 1. Each of the curves have 2 points
covering Z = oo, at which P+ W behaves as follows:

P+W=4Z* + 0(Z\ by picking the + sign for W,

= 3̂- + lower order terms, by picking the — sign for W.

Then by picking the + sign for W and by dividing the vector (y0,...,y15) with
yί4 = yl, the corresponding point is mapped into the point (0, ...,0,1,0) in P15,
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which is independent of ε and thus is common to #C+ and Jf_, whereas picking
the — sign leads to two different points, according to the sign of ε. The divisor D
obtained in this way has genus 5 and thus 2D has genus 17, satisfying the
requirement (7). Following the methods in Adler and van Moerbeke [1,4], one
attaches the affϊne part of the intersection of the five quadrics so as to obtain a
smooth compact surface in P15 equipped with two commuting vector fields. One
copy of J f defines on T2 a polarization (δί9δ2) with δ1δ2 = genus(Jjf) — 1 = 1,
implying δ± = δ2 = 1 thus T2 is principally polarized and it is the Jacobian of the
hyperelliptic curve Jjf.

Let dt± and dt2 be the two holomorphic 1 -forms on T2 corresponding to the
vector fields (3) and (4), i.e., dt^X^δ^. Then differentiating yjy2 and ί/y2 with
regard to t1 and t2 and using the vector fields, one computes the restrictions ωt and
ω2 of dt1 and dt2 to D — 3?+ +3f-\ as expected they lead to the hyperelliptic
differentials

ZάZ Λ άZ
ωι = ~w~ and ω2 = W

up to some multiplicative constants. The zeroes of ω2 provide the points where the
vector field X± is tangent to the curves Jf+ and Jf_ on T2. In particular X± is
tangent to jf+ and Jf_ at the point where both curves touch, as illustrated in
Fig. 1.

The hyperelliptic curve Jf also plays another role: consider the projective
linear span

of the 5 quadrics Qb obtained by making the Qt homogeneous; for instance,

Q i = y i J>o + 4yl - Sy^o - 6ay% .

Then, we have the following identity

1 V
y3]A T y i /—4z yfj

in y^ , except for the coefficient of yl; identifying this coefficient leads to the
equation

Its solution is given by 4U = P+W, and therefore the hyperelliptic curve 2tf
defined in (6) has a concrete representation as the curve of rank 4 quadrics in the
span V of the 5 quadrics Qt. It shows that the curve of rank4 quadrics ties up very
closely with the set of curves which completes the affine intersection

. = 0, y0 Φ 0} into an Abelian surface; for an explanation of this phenomenon,
i

see [2].
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1. Consider now the case d = e = 0 and consider the transformation

0>2> 3>3> y*> y^ y& yiWx, y, z, u, v, w) defined by

,Z = y2, U = y4, V=y5. (9)

Since the function y3 has a simple pole along the divisor D = Jί?+ +^f_, and a
double zero along a hyperelliptic curve of genus 2, the transformation (9) defines a
double cover of T2 ramified along D. Using the last invariant, we obtain
yί = x2 + y2, and the inverse transform reads

0>ι> > VΊ) = (* + y > z> w > u> v, xw, yvή.

Putting this inverse transform into the constants of motion Ql9..., β4 leads to the 4
relations:

(10)

w(xu + yv + zw) = 0,

whereas the last invariant Q5 leads to an identity. Away from the locus w = 0, we
have

xu + yv + zw = Q. (11)

Using the differential equations (3) for y2, y3, y4, and y5 and those for y6 = xw and
yΊ = yw combined with (11) leads to the following system of differential equations

j> — 3xz — 4w, ύ = xw —

z = 4v, w = yu — xv.

These are exactly Eqs. (1) for the Goryachev-Chaplygin top. The invariant surfaces
defined by Eqs. (10) are double covers of the Jacobian of Jjf, ramified along the two
hyperelliptic curves J^+ and Jf_. This explains why the asymptotic solutions to the
differential equations (1) contain fractional powers. The asymptotic solutions (2)
can be read off from (5) and the change of variables (9).

2. The next case under consideration is c = d = 0, which we show is equivalent
to the 3 -body periodic Toda lattice. The latter motion is derived from the
Hamiltonian

which using Flaschka's transformation zi+3=—pt and zi = Qxp(qi — qi+ί), is
governed by the equations

Z2 = z2(z5-z6),

Z3 = z3(z6-z4),
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with constants of motion
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Q'4 = z4z5zβ + z2z4 + z3z5 = D .

Observe we may put the total momentum equal to zero (B = 0), without loss of
generality. It is also well known that this problem linearizes on the Jacobi variety
of a hyperelliptic curve [8] and it was shown by Adler and van Moerbeke [3] that
the afϊine variety defined by the 4 constants completes into this Jacobian by
adjoining 3 copies of the same hyperelliptic curve, each pair having one point in
common (tacnode), as illustrated by Fig. 2.

Fig. 2

The embedding of the tori which complete the affine surface, defined by (12),
can be done by means of the functions
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They span the space of functions which blow up like — at worst. Now pick the

linear combinations which have a simple pole along two specific hyperelliptic
curves and which remain finite along the third one; the only three such functions
are z1 + z4z5, z6, and z2z3. Then comparing their Laurent series with the ones of y^
y2, and y3 leads to the following change of variables

z z2 3

y2=- 9

(13)
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In turn the 6 variables z l 5 ...,z6 can also be expressed rationally in terms of
yί9 . . . , y7. Using the transformation (1 3) in the constants of motion Qt of the system
(3), leads to the identities

Ql= -β'3+ (*4 + *5-*6)G'2, 6 2 ^ - 6 4

But the fact that c = d = 0 implies Q'2 = Q and thus the conserved quantities Qt for
the flow (3) imply the conservation of the quantities β for the Toda flow.
Moreover, using the constants Qb the inverse transform of (13),

z3 = -4(y4-ίy5),

maps the flow (3) into the Toda flow.
Therefore the Toda flow is just another instance of the system (3). It enables one

to represent the afϊine invariant surface as an intersection of quadrics, and it
provides a representation of the Toda hyperelliptic curve as a curve of rank 4
quadrics in P4. Finally it shows that the Toda and the Goryachev-Chaplygin flows
are intimately related.
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