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Abstract. Poincare-invariant generalizations of the Galilei-invariant
Calogero-Moser AΓ-particle systems are studied. A quantization of the classical
integrals S1?...,SN is presented such that the operators Si9...,SN mutually
commute. As a corollary it follows that Si9...9SN Poisson commute. These
results hinge on functional equations satisfied by the Weierstrass σ- and 0*-
functions. A generalized Cauchy identity involving the σ-function leads to an
N x N matrix L whose symmetric functions are proportional to Sl5 ...9SN.

1. Introduction

Recently, new integrable classical TV-particle systems have been discovered [1]
that may be viewed as relativistic generalizations of the well-known nonrelativistic
Calogero-Moser systems [2]. The time translation, space translation, and boost
generators of these systems are given by

<fc), (1.1)

P = mcΣshθiUf(qi-qJ)9 (1.2)
ί=l 7 Φ i

I N

B=~- Σ ί i (1-3)
C i= 1

Here, m denotes the particle mass, c the speed of light, θ the particle rapidity, and q
the canonically conjugate generalized position. Moreover, the potential energy
function f(q) reads

, (1.4)

where a and b are arbitrary constants and where 3P is the Weierstrass ^-function.
This choice of/ not only guarantees Poincare in variance, but also the existence of
N independent integrals for the H flow, given by

Sk= Σ e x p ( Σ 0 Λ Π /(*-«;)> k=l9...9N. (1.5)
/c{l,...,JV} \ίel Jiel

\I\=k jφl
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The special case f2 = 1 + sh~ 2 turns out to be intimately related to several soliton
equations, the sine-Gordon equation being a prime example.

These results from [1] form the starting-point for the present paper, whose
principal result is a solution to the problem of quantizing the classical systems in
such a fashion that they remain completely integrable. The term "quantum
integrability" is used here in the customary loose sense of there existing N
independent mutually commuting formal operators §19...,§N. We regard our
demonstration that this state of affairs obtains as a first step towards the goal of
making rigorous sense of these operators as pull-backs of real-valued multiplica-
tion operators under a unitary eigenfunction transform (a point of view described
in more detail in [3]). Elsewhere [4] we shall return to this problem, and present
arguments to the effect that the equivalence of the TV-particle systems with the N-
soliton/antisoliton sectors of the sine-Gordon theory persists for the quantization
described in this paper (the soliton-antisoliton interaction being described by the
"crossed channel" potential f2 = l — ch~2).

We shall now sketch the plan of the paper and describe its results in more
detail. We begin by showing how the integrals S1? . . ., SN can be quantized in such a
fashion that they mutually commute. The vanishing of the quantum commutators
hinges on functional equations satisfied by the Weierstrass σ-function. These
identities [cf. (2.4), (2.10) below] are new, as far as we know. As a corollary it follows
that the ^-function satisfies functional equations (2.5), (2.8) entailing that the
Poisson brackets {Sk,Sz} vanish. Thus, classical integrability follows from
quantum integrability. In Sect. 2 these results are detailed in a discursive fashion;
the technicalities are relegated to Appendix A.

In Sect. 3 we generalize the Lax matrix found in [1] for the hyperbolic case to
the elliptic case, cf. (3.13)-(3.14). The fact that the above Sk are proportional to the
symmetric functions Σh of L [cf. (3.16)] follows from an explicit formula for the
determinant of an NxN matrix whose elements are expressed in terms of
σ-functions. This formula, (3.18) below, may be viewed as a generalization of
Cauchy's identity. We prove it in Appendix B, where we also consider special
cases of interest.

Our conventions concerning elliptic functions are those of Erdelyi [5]. In the
appendices we assume some familiarity with the results and arguments to be found
there and (in more detail) in Whittaker and Watson [6, Chap. XX]. However, to
render the main text more self-contained, it may be in order to add some remarks
and formulas, most of which we have occasion to use.

First, we should mention that the term "elliptic function" is often reserved for
doubly periodic meromorphic functions, like the ^-function. Here, the term
includes the ζ- and σ-function, which are meromorphic and entire, respectively, but
not doubly periodic. They are, however, quasi-periodic, in the sense that

(1.6)

σ(q + 2ωk) = - σ(q) exp [2ηk(q + ωj] . (1 .7)

Here, k takes the values 1,2,3, and one has

0)^=0), ω2=—CD — o}'.) ω3 = ω', ηk = ζ(ωk). (1.8)

Moreover, 2ω and 2ω' denote a pair of primitive periods of the ^-function.
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The σ-function is odd and has simple zeros at the points of the period lattice
2wω + 2nω', n,mεZ. Furthermore, it satisfies the scaling relation

σ(λq; ω,ω') = λσ(q , ω/λ,ω'/λ). (1.9)

Corresponding properties of ζ and 9 can be read off from the relations

(1.10)

In particular, ^ is even and has second-order poles at the lattice points.
As a rule, we shall choose ω, — iω' e (0, oo]. With this convention έP(q) decreases

monotonically from oo to e^ >0, e2, e3 <0, — oo as q varies along the rectangle 0,
ω l 9 — ω2, ω3, 0. Also, σ is real on the real axis and purely imaginary on the
imaginary axis. Most of what follows does not depend on this choice of periods.
The main reason for our convention is the ensuing positivity of ^(q) on the real
axis. By choosing appropriate coupling constants a and b in (1.4), we can then
ensure that the Sk are real-valued at the classical and formally hermitian at the
quantum level.

Let us finish this introduction by specifying &(q) and σ(q) for the degenerate
cases ω = oo or ω' = iαo.

A. Hyperbolic case (ω=oo? ω' = z'π/2v),

B. Trigonometric case (ω = π/2v, α/ = ioo),

2 2

C. Rational case (ω = oo, ω'^z

ί. (1.13)

2. Quantum and Classical Integrability

We begin by discussing the quantization ofSl9...,SN (denoted S1? . . ., SN) in the free
case /(<?)=!. From (1.1) and (1.2) one sees that the rapidity variable θ is
dimensionless. The canonically conjugate variable q is related to the customary
position x by q = mcxchθ, and hence has the dimension of action. Thus, the
obvious quantization procedure reads

0MΞy<V ;•=!,. . . .ΛΓ. (2.1)

We shall put ft = 1 henceforth.
Clearly, this prescription yields commuting operators S1? ...,SN which are all

diagonalized by Fourier transformation. Their action can be exemplified by the
formula

ι, . . ., qN) = ψ(q1 - i, . . ., qN) . (2.2)
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Here, ψ(z), z e (CN, denotes a function that is supposed to be "sufficiently analytic"
for (2.2) to make sense. Specifically, ψ should at least be analytic in the strip
— I<lmq1<0 and have reasonable boundary values.

When f= 1 there is no problem in being more precise than this. However, the
situation is drastically different when f(q) is not constant. Elsewhere we will return
to the difficulties associated with a rigorous definition [4], Our present purpose is
to show that there exists a formal quantization of Sl9 ...,SN such that the resulting
operators are (formally) hermitian and commute. It should be emphasized that
there exist (to date) no general principles guaranteeing that such a quantization is
possible, even within the "formal algebra" framework adopted here.

The solution we have found is most likely unique. A description of its relevant
features is facilitated by first considering a seemingly different question. Let us start
with a meromorphic function h(q) and set

Σ Π Λtej-«ί)1/2exp(7ί Σ $1} Π h(qi-qj)112,
IC{1,...,#} ie/ \ iel J ίel

\I\=k jφl jφl

(2.3)

where β is an arbitrary positive number. Now we ask : What condition on h ensures
that all Sk commute pairwise for any AT? As proved in Appendix A, the answer is : If
and only if h satisfies the functional equations

Σ Π htij-qi
I C { 1 , . . . , N } ίel ίel

= 0, V J V > 1 , V f c e { l , . . . , 7 V } . (2.4)

Next, assume that h satisfies (2.4). Dividing by β and sending β to 0 yields

JC{1 ..... N}\ίel J ίel
l / l = * JΦI

V/ce{l, ..., J

where

F(q) = h(q)h(-q).

For JV=:3 and fc = l (2.5) reduces to the functional equation

F(di) F(dv) 1

F(d2) F(d2] 1 = 0,

(2.5)

(2.6)

(2.7)

which is known to be satisfied if and only if

(2.8)

where a and fc are arbitrary constants. Thus we are led back to our potential (1.4): A
necessary condition for commutativity of §ί9 ...,§N with arbitrary β is that h be
related to the ^-function by

(2.9)
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In [1] it is proved that the identities (2.5) are equivalent to involutivity of the
classical functions Sl9...9SN with f2 = F. Moreover, it is shown there that the
function a + bέP(q) satisfies (2.5) for k = 1 . However, the proof could not be adapted
to cover the case k > 1, so that complete integrability for N > 4 was left open. From
the above it transpires that involutivity of Sl9 . . ., SN will follow, once one finds a
factorization a + b£P(q) = h(q)h( — q) such that h satisfies (2.4), or, equivalently, such
that Si9...,SN commute.

It remains to prove that a function h with these properties exists. Let us first
note that (2.9) does not determine h uniquely: If a meromorphic function h satisfies
(2.9), then this is also true for the function K = heE, where E is an arbitrary entire odd
function. However, if h satisfies (2.4), then there is no reason why K would also
satisfy (2.4), except in the trivial case where E is proportional to q. At any rate, we
consider it plausible that the solution we have found, viz.,

h(q) = σ(q + μ)/σ(q), μeC, (2.10)

is unique up to multiplication by c^eC2q, with cl9c2 arbitrary constants. [As
concerns replacing q by c3q, recall the scaling relation (1.9).]

The proof that h satisfies (2.4) can be found in Appendix A. As explained above,
it follows from this that h satisfies (2.9). Of course, (2.9) is also obvious from the
well-known relation

σ(q + μ)σ(q-μ)

σ2(q)σ2(μ)

which suggested (2.10) as a candidate.
To finish this section, we tie up some loose ends and add various remarks.
(i) (Hermίticity) Ensuring hermiticity amounts to ensuring that h( — q) equal

h(q) for q eR, and this can be attained by picking μ on the imaginary axis (cf. our
remarks at the end of Sect. 1). Note, however, that this leads to a restriction on the
coupling constants in the classical potential (α + i>^(g))1/2: One must have

6/αe[0,-l/e3] (2.12)

for a hermitian quantization of the form (2.3), (2.10) to exist. Indeed, from (2.1 1) one
has

- (2.13)

and l/^(μ) takes values in [l/e3,0] as μ varies over the imaginary axis. Note also
that one may as well restrict μ to vary between — ω' and ω', since multiplicative
constants are irrelevant.

(ii) (Degenerate cases) From (1.11) we see that we may take

in the hyperbolic case. The exponential factor has been omitted, since the exponent
is linear in q, and hence only gives rise to multiplicative constants in the operators
S l5 . . ., £N. The "critical points" μ=± iπ/2v correspond to the sine-Gordon theory
[4]. Similarly, in the trigonometric case one gets
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from (1.12), and in the rational case

(2.16)

from (1.13). q

(iii) (Relatiυistic invariance) Let us take β= 1 in (2.3) [with h given by (2.10)]
and set 2

H^(s1+§_l}, ps^.(S1-S.1), *=-i£i i , (2-17)
Z Δ C i = l

where S-l = S^1SN^ί [cf. also (All)]. Then it is clear from the above that
H, P, B are hermitian when μ is purely imaginary, and that

[#, P] = 0 , [H, 5] - iP , [P, £] - ίH/c2 . (2.1 8)

Thus, H, P, and 5 represent the Lie algebra of the Poincare group. We also point
out that for imaginary μ H has the physically desirable property of being positive.

(iv) (Nonrelativίstίc limit) So far, we have treated θ as a dimensionless variable
and q as having the dimension of action. This is in agreement with the relations
p = me sh 0, x = q/mc ch 0, the first of which is the standard one defining the rapidity
variable. If one takes this point of view, one can only hope to get a sensible
nonrelativistic limit by transforming ίϊ,P,Bto x-space and then sending c to oo.
However, this is an awkward enterprise at the quantum level. Even at the classical
level, where no ordering problems occur, one must work harder to obtain the
nonrelativistic Calogero-Moser systems in this way than when one takes a suitable
limit directly on the (q,θ) phase space, cf. [1, Chap. 4]. The latter limit (which
amounts to exploiting the parameter β) can be readily taken at the quantum level
as well. However, though this limit is mathematically unimpeachable, it is
physically unsatisfactory: It does not respect the dimensions of the quantities
involved and cannot be viewed as a nonrelativistic limit in the usual sense.

These problems can be cured in a simple way: One needs only replace q, θ by
mcq, θ/mc. Then the dimensions of q and θ change to position and momentum,
respectively. Let us write out the Poincare group generators (2.17) with these new
conventions:

(2.19)

me

(2.20)

B=-m £ qi9 (2.21)
i = l

where

o'mc[-l,l]. (2.22)
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We have used (1.9) to scale out the factor me. However, we continue denoting the
scaled periods by ω, ω', since they have to be kept fixed when c-> oo for the Galilei-
invariant Calogero-Moser systems to result. Indeed, using (1.10) one gets

Hnr= lim(H-Nmc2)
c-» oo

ΛΓ ? / \

*- (123)

P., -\imf- £«,, (2.24)
c-xx> i=ι

β n r = l i m β = - m Σ € , . (2-25)
c- oo i=ι

Note the change g2-»g(g — 1) as compared to the nonrelativistic limit at the
classical level [cf. (3.25) below].

Probably, a more general result holds true: We expect that, just as at the
classical level, suitable linear combinations of Sl5 ...9SN converge to the usual
51>nr, . . ., §Nfnr as c-> oo. Note that one would recover the quantum integrability of
the nonrelativistic Calogero-Moser systems (2.23) (cf. [7-9]) from such a
convergence result. We shall briefly return to this question at the end of Sect. 3.

(v) (Classical limit) It is of interest to note that the parameter β in (2.3) may be
interpreted as Planck's constant, cf. (2.1). Thus, the implication "quantum
integrability => classical integrability" established above agrees with the physicist's
expectation that quantum mechanics reduces to classical mechanics in the limit

3. The Elliptic Lax Matrix

The customary approach [2] to the classical nonrelativistic Calogero-Moser
systems is based on the existence of a pair of N x N matrices Lnr, Mnr depending on
the canonical variables of the JV-particle system, which are such that {Lnr, Hnτ}
= [Lnr, Mnr]. Here, Hm = iTrL^r denotes the nonrelativistic energy function. This
leads to the existence of N independent integrals SΛ>nr for the Hnr flow, defined by

|Lnr + αl|= Σ «%-Λnr. (3.1)
*f = 0

Subsequently, one shows that the eigenvalues of Lnr and hence the Sfc>nr, too, are in
involution. There is no simple "closed form" formula for the Sfe> nr in particular, it is
not obvious that they can be expressed solely in terms of the momenta and the
potentials.

Let us now compare this state of affairs to the relativistic case. There, one has
the explicit formulas (1.4)-(1 5), expressing the N independent Poisson commuting
Hamiltonians Sl9 ...,SN in terms of eθl,..., eθN and the potentials. Neither the proof
of [1, Theorem A 4] to the effect that the Sk are integrals for H, nor the more
general proof that the Sk are in involution (cf. Sect. 2) involves matrices. Therefore,
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it might appear irrelevant to look for an N x N matrix L such that

|L+αl|= Jo<x%_,. (3.2)

In a way, this is indeed the case: If this were the only objective, one could take
e.g.

L=

1 0 0

o. ι ' . . ί

ό . :o Ί Ό

(3.3)

Indeed, (3.2) is then readily verified. [We mention in passing that a matrix of the
form (3.3) can be used to show that it is not generally true that isospectrality
implies involutivity of the eigenvalues: If one picks

N

S ι = Σ P ? > S* = Xfc-ιPfc-*fcP*-ι> fc = 2,. . . ,JV, (3.4)
ί = l

then L is isospectral under the Sί flow, yet its symmetric functions do not
commute.]

However, in the nonrelativistic case it has turned out that the known Lax
matrices Lnr play a much more fundamental role than just yielding the commuting
Hamiltonians: They can be used to construct explicit solutions and the action-
angle map [2]. The Lax matrix found in [1] for the relativistic hyperbolic case also
has these properties [1, 10].

We are not aware of any general arguments entailing that such a matrix should
exist in the relativistic elliptic case. However, it is natural to believe that this case
(which contains all other cases) is not going to be an exception. As explained in [1,
Chap. 4], the structure of the Sk [cf. (1.5)] suggests the Ansatz

(3-5)

For (3.2) to follow, the 2 x 2 principal minor C(z, j) should equal l//2(#i — #,-), while
the general principal minor should be the product of all 2 x 2 principal minors
contained in it. For the hyperbolic case /2 — l~sh~ 2 this can be attained by
substituting

(3.6)

(with φ, χ exponential functions) in Cauchy's identity [1]. Thus, an obvious guess is
that the elliptic case can be handled by making a more general substitution.

To study this, let us recall that Cauchy's identity is equivalent to

|C|= ΠαU). (3.7)

^xj-yj)112, (3.8)

Here, C is defined by 1<J

so that
C ( U ) = f c (3.9)
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Let us, therefore, ask the general question: Can one characterize pairs of functions
φ,χ such that the principal minor C(ίJ) is a function of qt — #,- after the
substitution (3.6)? Acting with dq. + dq. on C(ij'), one gets as the necessary and
sufficient condition the functional equation

Equivalently, there should be α, ft, c, d such that

= φ,χ, (3.11)

If one assumes that the coefficients are constant, then one is led back to the
hyperbolic Lax matrix of [10], in essence. This follows from a straightforward
analysis we shall skip. We do not know whether (3.11) also admits elliptic solutions
with non-constant α, b, c, and/or d, leading to the elliptic Sk.

However, even if such solutions would exist, they cannot yield the matrix that is
undoubtedly the "right" elliptic Lax matrix and to whose description we now turn.
The point is that this matrix L is of the form (3.5), but with a matrix C that is not a
Cauchy matrix, i.e., C does not arise from (3.8) by appropriate substitution.
Specifically, its principal minor C(I) is not equal to the product of all principal
minors C(i, j) with /, j e /, but only proportional to this product. Thus one gets

\L+oΛ\= Σ
instead of (3.2). '=°

Explicitly, this matrix reads

(3.12)

(3.13)

«- σ(λ) σ(qί-

Here, N(μ) is a normalization constant, whose choice is to a large extent arbitrary.
We shall set

σ2(μ), (3.15)

σ(μ)

since this is the simplest choice of potential in the quantum case [cf. (2.13)], and
since it yields the simplest formulas for the symmetric functions of L: with (3.15) in
force they are given by

Σ
{1,...,
\I\=k

iel

Π
, jφl

These formulas readily follow from (3.13)-(3.15) by using the identity

(3.16)

( >
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(from which the above-announced "principal minor property" of C can also be
read off). This identity is a consequence of the more general identity

N \

x Π σ(<li-<lj)σ(rj-ri) Π —f τ (3 18)

Indeed, (3.17) follows by setting r = q — μ, v = λ — μ in (3.18) and then using (2.11).
The proof of the latter identity is relegated to Appendix B, where we also consider
various other specializations of interest.

Let us now complete the picture by considering classical analogs of the issues
(i)-(iv) in Sect. 2 and, last but not least, by discussing the "correctness" of the above
elliptic Lax matrix.

(i) (Reality) Due to our standing assumption that ω and — iωf are positive (cf.
Sect. 1), we can ensure real-valuedness of the functions Σl9..., ΣN for q, θ eRN by
choosing λ and μ on the imaginary axis. This choice also entails that C is self-
adjoint, cf. (3.14). Thus, one can get a self-adjoint Lax matrix by taking D1/2CD1/2

instead of DC, cf. (3.13). Recall that the choice amounts to the restriction (2.12) on
the parameters a and b. Of course, the restriction can be considerably relaxed if one
only demands reality of the functions Sly ...,SN: They are real (in fact, positive)
whenever a + b0>(q) is positive on R, i.e., when fo^O and a^ — bely cf. (1.4)-(1 5).

(ii) (Degenerate cases) As the generalized hyperbolic Lax matrix we can take

shvμ / o , m

Its symmetric functions are given by

| / |=k

sh2vu \1/2

x Π 1- . 2 ,
 μ J , (3-20)

iei,jφi\ sh2v(qi-qj)J

cf. (B28). For the trigonometric and rational cases one needs only replace sh by sin,
and send v to 0, respectively.

(iii) ( Relativistic invariance) As the classical analogs of (2.19)-(2.21) we may
take N

H=mc2 Σ &(ΘJmc)Vίq), (3.21)
ί = l

P = mc f sh(0;/mc)%), (3.22)
i = l

B=-m 9ί, (3.23)
where l-1

/2 (3 24)
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Note that the difference with Eqs. (1.1)-(1.4) consists only in the adoption of
position and momentum dimensions for q and θ, and in the parametrization of the
potential. As in Sect. 2, these conventions simplify the nonrelativistic limit, which
we consider next.

iv) (Nonrelativistic limit) Using the fact that the functions ε~2σ(ε)2 — 1 and
)-l are 0(ε4) for ε->0, one gets

Hm= lim(H-Nmc2)
c->oo

N Q2 S2

= Σ Λ Z Γ + ^Γ Σ Wqi-qj), (3-25)
i=ι 2m m ι ^ ί < j ^ N

P n r =limP= Σ θt, (3.26)
c-*oo

N

Bnr= l imB=-m £ qt. (3.27)
c->oo i=l

Note that one can take g in Hnr purely imaginary without violating reality, whereas
this choice would lead to a loss of generality in (3.21) due to the branch points at
ίi-4/= ±ig/mc [cf. also (i)].

Taking m = 1 henceforth, let us set

θι-+ΘJc, μ-^ig/c (3.28)

in the elliptic Lax matrix (3Λ3)-(3Λ5). Denoting the result by L(c), one readily
verifies that

L(c) = 1 + LJc + 0(l/c2) , c-^ oo , (3.29)

where

(3-30)

The matrix Lnr is in essence Krichever's [11] Lax matrix for the nonrelativistic
elliptic case, special cases of which were first found by Calogero [12]. From (3.29) it
follows as in [1, Chap. 4] that its symmetric functions are given by

S f c,n r=limGk(c), (3.31)
c-» oo

where

~ (3.32)

Here, Σ^(c) denotes the symmetric functions of L(c), explicitly given by (3.16) with
the substitutions (3.28). It follows that S1>nr, . . ., SNtnτ are in involution and depend
only on the momenta θt and the potentials ^fe — #/), something which is far from
obvious from (3.30).

As promised below (2.25), let us briefly return to the question whether an
analog of (3.31)-(3.32) holds true on the quantum level. As is well known (and
easily verified), the quantization prescription (2.1) yields unambiguous, formally
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hermitian operators §ί jnr, . . ., §Ntnr. The point is, that no ordering problems occur
in the nonrelativistic case. If one ignores the ordering in Σv(c\ . . ., ΣN(c), then (3.31)
would hold at the quantum level. However, since θt and Λ(g, — <Z/)1/2 do not
commute, one gets additional terms, as we have already seen [recall (2.23) and
(3.25)]. A priori, these terms might spoil the existence of lim Gk(c\ but this turns

c-*oo

out not to happen for small k. Indeed, it is straightforward to verify that for k ̂  3
the limit exists, yielding the "renormalized" operators

(3-33)
i

°πr = Σ ̂  -g(g-l) Σ ̂ «ί-4/)+ ̂ JV(N-IW), (3.34)

%nnr = Σ
i<j<k i φ j . f c

j<k

+ ^(N-1)(N- ΐp(λ) Σ 6, + \- N(N - 1)(AΓ - 2)P(λ) . (3.35)
2 i o

The only change compared to the symmetric functions of Lnr is the replacement of
S2 by g(g — 1) in the second term at the right-hand side of (3.34) and (3.35). We
expect a similar behavior for arbitrary fe, but have not found a proof.

(v) (The role of the Lax matrix) As evinced by the above developments, our
elliptic Lax matrix L leads to several useful insights that would be hard to obtain
from a direct consideration of the Poisson commuting functions Sί9...,SN.
However, the above does not answer the question whether L can be used to give an
explicit construction of the action-angle map (whose existence, it should be
recalled, follows from the Liouville-Arnold theorem). In this connection the
obvious guess is that the "extra" parameter λ plays the same role as in Krichever's
[11] treatment of the nonrelativistic elliptic case.

To study this, let us consider (following Krichever) the transcendental curve ΓN,
defined by setting

Λ(M) = 0, (3.36)
where

R(a,λ) = \L(λ) + oΛ\= Σ «%_Λλ). (3.37)
^ = 0

We may view ΓN as an N-fold cover of the torus T2, since the functions Σk(λ) are
meromorphic on Γ2, cf. (3.16), (1.7). From (3.16) we also infer that near λ = 0 one
has

#(M)~A-*TMf + (aλ)N-2c2(μ)S2+ ... +cMSN]. (3.38)

Putting z = od, the polynomial in brackets has N non-zero distinct roots zί9...,zN

for μ, q, θ in general position. Consequently, ΓN has no branch points over λ = 0 and
one must have (generically)

Λ(α, λ) = JΠ L - "j- + f,(λ]\ , z, Φ 0 , z, Φ Zj (3.39)
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near Λ = 0, where /!,...,/# are regular. It follows from this that the functions daR
and dλR have poles of order N — 1 and N +1, respectively, at each of the N points
lying over λ = 0.

Let us now assume that μ, q, θ are such that ΓN is irreducible. (For N = 2 this is
easily seen to be the generic situation; for arbitrary N this is probably true as well.)
Then we may regard ΓN as a closed Riemann surface. The functions px :(α,Λ)->α,
p2: (α, λ)^>λ are holomorphic from 7^ onto <Cu{oo} and T2, respectively, and both
have degree N. Assuming that ΫRή=Q on ΓN (which, again, should be true in
general), the total branch number of pt and p2 equals the degree of dλR and dΛR,
respectively, viewed as holomorphic functions from ΓN onto the Riemann sphere.
Thus, by virtue of the above pole count these numbers equal N(N + l) and
N(N — l), respectively. Applying now the Riemann-Hurwitz relation to pv or p2

one concludes that the genus of ΓN equals N(N — l)/2 + l.
For N = 2 this is the same result as in the nonrelativistic case; in fact, Γ2 is not

essentially different from (Γ2)nr, as is readily seen. Also, the motion oϊq1—q2 under
the Sl flow is in essence the same as under the Hnr flow, cf. [1, Eq. (2.14)]. Thus, we
expect that for N = 2 the Jacobian variety J(ΓN) gives rise to an explicit model of
the invariant tori, as in the nonrelativistic case. However, for N > 2 the genus of T r̂
is greater than N, whereas it equals N for (ΓN)nr [11]. Thus, although the flows
generated bySl9...,SN might still linearize on J(ΓN) under an appropriate map, one
cannot fill out the Jacobian as in the nonrelativistic case.

Unfortunately, these somewhat sketchy remarks are all we have to offer
concerning the connection between our Lax matrix and the action-angle map in
the general case. In support of our conjecture that such a connection should exist,
let us point out once more that for special parameter values L reduces to Lax
matrices that are known to yield action-angle maps [10, 11]. Moreover, there
appear to be no examples of Lax matrices [but for our contrived example (3.3)
above] that are unrelated to the action-angle map; in fact, for many other
integrable systems with compact level sets (e.g. the generalized periodic Toda
systems) the flows linearize on the Jacobian of a curve whose relation to the Lax
matrix is defined via (analogs of) (3.36)-(3.37) [13].

Appendix A. Commutativity and Functional Equations

In this appendix we first prove that the operators §i9...9SN defined by (2.3)
commute for any N if and only if the function h satisfies the functional equations
(2.4). This is the content of Theorem A1. In Theorem A 2 we show that
h = σ(q + μ)/σ(q) obeys these identities. As a consequence it follows that the
function a + b0>(q) satisfies the identities expressing classical commutativity
(Corollary A 3).

It is convenient to employ the following notation. Let /, J be disjoint subsets of
{1,...,N} and let h be a meromorphic function. Then we set

n*fo-i//2, (Al)
iel
JeJ

βr=Σθi, (A2)
ίel
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so that the operators (2.3) can be written

$k= Σ (W'W, k=ί,...,N. (A3)

We also introduce

§-k^ Σ (Πfy-^m, k = ί,...,N, (A4)
IC{1,...,JV}

| / |=k

Finally, we set

β,e'= +, - . (A5)

Thus, a — /+ on a set denotes shifting down/up all q in the set by ίβ, cf. (2.2). Note
also that

(IEJε) = (U), (A 6)

(/+J) = (/J_). (A7)

We are now prepared for Theorem Al, whose proof is patterned after
[1, Theorem Al].

Theorem Al. One has

[&Λ]=0, V(/cX)e {I,--, W} 2, V Λ Γ > 1 , (A8)

if and only if

Σ ((ici)2(i.ιcγ-(ic.i}2(iιc)2}
/C{l f...,JV>

|/|=fc

= 0, V f e e { l , . . . , Λ Γ } , V Λ Γ > 1 . (A9)

Proof. Due to (A 6) the operators

S±N = exp(±βθ(ί ..... N}) (A10)

commute with §k, k= ±1, ..., +(N — 1). It is also readily verified that

Sk.N = SkS_N, fc = l, . . . ,JV-l. (All)

Hence, (A 8) is equivalent to

[Sfe,5_,]=0, V(/c,/)e{l,...,AΓ-l}2, VN>1. (A 12)

Next, we use (A3), (A 4) to obtain

I&X,]= Σ ((IcI)e(IIc)(JJc)
\I\=k
\J\=t

-(JJc)e-βΛθj(JcJ)(ΓI)eβ^(IΓ)) . (A 13)

Introducing the pairwise disjoint sets

(A14)
, D = (IuJ)c,
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one gets after a straightforward calculation using (A 6) and (A 7),

[$kXj= Σ (
\I\=k
Σ (B9CvD)(CvD9A)(BA)(A-B)(BA.)

\I\=k

x((DC)2(C.D)2-(D_C)2(CD)2)

x eβ(°A-°B\AB)(CvD,B)(A, CuD). (A 15)

Clearly, the terms in the sum involving Qxpβ(θA — ΘB) sum to zero if and only if the
bracketed expression vanishes when summed over all disjoint C,D with CuD
= (AvB)c, \C\ = k-\A\ = t-\B\, \D\ = N-k-\B\ = N-t-\A\. This entails the
equivalence of (A 12) and (A 9). Π

This theorem has a corollary whose statement and proof amount to making
some obvious changes in Corollary A 2 of [1], so that we shall not spell it out.
However, there appears to be no quantum analog of Lemma A3 in [1], For
instance, h(q) = 1/shq obeys (A 9) in view of the following theorem, whereas hc(q)
= l/shq + c violates (A9) with k = 1 and N = 3, as is readily verified. This holds true
in spite of the fact that hc(q)hc( — q) gives rise to an integrable classical potential.

Theorem A 2. The function

(A 16)

(where σ is the Weierstrass sigma- function) satisfies the functional equations (A 9).

Proof. We need only consider the case c^ = 1, c2 = 0.
Let us introduce

\ι\=k

Then our claim is equivalent to the assertion that E vanishes for arbitrary N>1,
k e {1, . . ., N}, q e <CN, λ, μ e C. To prove this assertion, we begin by noting that E is
doubly periodic in each q^ in view of (1.7). Since £ is a symmetric function of
ql9...9qN satisfying

£(-«)= -E(ί), (A18)

we need only show that E, viewed as a function of ql9 is pole-free. Indeed,
Liouville's theorem then entails that E does not depend on q, and zero is the only
constant satisfying (A 18).

To prove absence of poles in the variable qί9 we fix the remaining variables in
general position. Specifically, we choose the points λ9 2λ, q^ — qh q^ — qi±λ,j>i>\,
incongruent to 0. Note that this ensures that the terms in the sum have at most
simple poles in qίt By double periodicity, symmetry and oddness we need only
show that the residue sum at the two points ί)qι=q2 and 2) qγ =q2 — λ vanishes.
To this end we pair off the singular / in (A 1 7), i.e., we consider / = {1 } u J, / = {2} u J
with 1,2^ J. For such a pair the residues at 1) of the two "left" products cancel.
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Indeed, if one omits the singular factors σ(q2 — q±)~l and σ(qi — q2)~1

= — σ(<l2 — 4ι) ~ 1 in the first and second case, respectively, and then puts qι = q2in
the remaining products, then these products are manifestly equal. Similarly, the
residues coming from the "right" products cancel at 1).

To handle the residue sum at 2), we use induction on k. First, let fc = l. For
1 = {1} only the left product has a pole, whereas for 1 = {2} only the right product
does (recall 2λ φ 0). Hence the residue sum equals

- gi - μ T-T gj - gi + μ)<Kgj - gi - μ -

|

evaluated at ̂  =q2 — λ, which indeed vanishes.
Now assume

(A19)

(A20)

and consider EktN. The residue sum at qί = q2 — λ is then equal to

0j—g2-μ)Σ
JC{3,...,ΛT} σ(λ) qj -q2 + λ}σ(qj - q2)

ίej σ(q2 - qi

σ(λ + μ)σ(-μ)

σ(λ)

-qt-λ) σ(qj - -qt-λ)

σ(.- ̂  + qt)σ( - ̂  + qt - λ)

σ(g,

* Σ
JC{3,...,#}

_(

(A21)

However, by virtue of the induction hypothesis (A 20) the last sum vanishes,
completing the proof. Π

Corollary A3. Let

(A22)
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where 0* is the Weierstrass ^-function. Then one has

Σ (Σ^Πffoί-^HO, V/ce{l, . . . ,N}, V Λ Γ > 1 . (A23)
/C{1 . . . . . J V U i e / / i e /

W = * J*/

Proof. We have just seen that the function £ given by (A 17) vanishes identically.
Dividing E by λ, sending λ to 0 and using (2.11) one arrives at (A 23). Π

Appendix B. Generalized Cauchy Identities

In this appendix we prove the identity (3.18) and then derive various special cases
of interest. An ingredient of the proof is the following fact, which is a special case of
the Weinstein-Aronszajn formula [14]. For completeness we include a proof.

Lemma Bl. Let M be a regular N xN matrix and let

M = M + u®v, (Bl)

where u,ve <CN. Then one has

\M\ = \M\ίl+(υ,M-lu)-]. (B2)

Proof. Since

M~1M = l + (M"1ιι)®t;, (B3)

we need only show

l+(t;,w). (B4)

This is clear when v and w are proportional, so let us assume w and v are linearly
independent. With respect to a base u1=wί u2 = v, Uj.Lv, j = 39...9N of <CN the
matrix of H + w(x)ι; is triangular with diagonal elements 1 +(v9 w), 1,..., 1. Hence,
(B4) follows. Π

Theorem B2. Let ql9...9qN9rl9...9rN9λ9με<C and let σ denote the Weierstrass sigma-
functίon. Let C denote the matrix with elements

c =σ(μ)

Then one has

\N

\c\=

(B6)

where

Σ= Σ (9t-rd (B7)
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Proof. Let us introduce the auxiliary function

,,.Λ_ Φ) v e C .
vσ(v)σ(^-r;)

Using the quasi-periodicity relation (1.7) one infers that

/exp [2ηk(qι — r7 )] σ(qi — r7 + v)

(B8)

= A(v). (B9)

Hence, A is doubly periodic. It is clear from (B8) that poles of A can only occur for
v = 0 and v = — Σ.

We now assert that A is actually regular at v = 0 for q, r in general position. To
prove this assertion, we write

A =
σ(v)

M+
σ(v)

e®e

where

and note that due to (1.10) one has

v->0

(BIO)

(Bll)

(B12)

(B13)

In order to invoke Lemma Bl, we now show that |M0| (and hence |M|, too) does
not vanish identically. Indeed, let us set

(B14)

If we expand |M0|, then the term coming from the product of all diagonal elements
equals ζ(δω)N. Thus it blows up like δ~N for <5->0. Since the off-diagonal elements
have finite limits for (5-»0, the other terms in the expansion cannot cancel it for
(5->0. Thus, MO and M are generically regular, as claimed.

By virtue of Lemma Bl, it then follows that

Therefore, one obtains

lim A = \M0\(e, M0~
 v

(B15)

(B 16)

Since |M0|(e,Mo 1e) is equal to the sum of all cofactors of M0 [recall (Bll)], it
follows that .̂(v) has no pole at 0 whenever Σ φ 0 and qt — r,- φ 0 [recall (B 1 3)] . Thus
the above assertion is proved.

It follows that A can only have poles when v = — Σ. However, it is obvious from
the definition (B8) that the order of these poles is at most one. Since A is doubly
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periodic, it follows that the residue at these poles vanishes. Thus A is everywhere
regular, so that A = K(q, r) by Liouville's theorem. We have, therefore, proved that

K(q,r). (B17)
σ(qi-rj

σ(v)σ(qi-rj) σ(v)

We proceed by determining the qί -dependence of K(q,r). To this end we
introduce

sr ίft Λt\ \ / *r( si v I τ Λ \

(B18)

This function is doubly periodic in view of (1.7). Picking vφO, one easily verifies
that φ has zeros at

N N

4ι= Σ rj~ Σ 9j—v, 4ι = v, qι = qj9 j = 2,...,N, (B19)
J = l 7 = 2

the first zero being a consequence of (B17). Generically, these points are
incongruent and σ(qi — rj} does not vanish. Hence, the order of φ(q1) is at least
N + 1 for q2, . . ., qN, r1? . . ., rN in general position.

On the other hand, φ has at most N + 1 incongruent simple poles, e.g. at

βι=0, 4ι = f> 7 = 1, -,N. (B20)

Thus it follows that φ is generically of order N+ 1. Moreover, since the sum of the
zeros (B19) equals the sum of the poles (B20) one must have

σ(v + Σ)σ(qί - v) Π σ(ql - qj)
φ(qi) = K(v,q2,...,qN,r) - J>1 - . (B21)

σ(<?ι)Πσ(<2ι-θ)
j

Comparing this with (B18) and (B17), we conclude that

K(q,r) = K(q29...,qN9r) Π ^ι~^)Π * Γ (B22)
j>ι j σWι~ r jJ

Evidently, the dependence on g2? •••>## and rι? ? r N can be determined
analogously, yielding

K(q,r) = K U^qt-qjWrj-rJll σ ( _ γ γ (B23)

Next, we substitute this in (B17), after which we replace v by λ — μ and r by r — μ.
Then the result can be rewritten as (B 6), but for an extra constant K at the right-
hand side. Thus it remains to prove that K = ί. To show this, we first set q = r,
which implies Cj~\. Taking then μ to 0, the off-diagonal elements of C go to 0,
so that |C|->1 for μ->0. However, if we set q = r at the right-hand side of (B 6) and
then take μ to 0, we also get 1 as limit. Hence it follows that K = l, so that the
proof is complete. Π
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We proceed by pointing out some interesting special cases of the identity (B6).
First, if we multiply by σ(λ)N or σ(μ)~N and then send λ or μ, respectively, to 0, we
obtain

σ(λ + Σ)
Π βfo-

Let us now recall that

I e~η3Xsnax/a, v

e-η2Xsnax/adnax , v = ω
_ M J Ce ηι snax/acnax, v

2 ,

(B24)

(B25)

(B.26)

where a = (eΐ — e3)
1/2. Thus we can obtain explicit formulas for the determinants of

the matrices (J^ — r,-)), with J one of the six odd Jacobian functions sn, sd, sc, ns, ds,
cs by setting μ = ωk, λ = ωk; formulas for the even ones follow by shifting r. The
formula for J = ds can also be deduced from recent work by Carey and Hannabuss,
who study temperature states on loop groups [15].

In (B24) one can set in addition q = r. Then one gets (a similarity transform of)
an antisymmetric matrix, and the factor σ((N — l)ωfe) at the right-hand side ensures
that its determinant vanishes for N odd, as required. For N = 2M and μ = ω3 we
recover the formula

obtained first by Palmer and Tracy in their study of the Ising model correlation
functions (cf. [15, pp. 376-377]). [To verify that (B27) follows from (B24), one
needs the little known relation σ(ω3)~4 = (eί— e3)(e2 — e3)exp( — 2f/3ω3).]

Let us now derive various identities for the hyperbolic case ω = oo. Combining
(B6) with (1.11), it is straightforward to verify that all exponentials cancel. Thus one
concludes that

shμ sh^ —

. (B28)

(B29)

shλ

To simplify special cases of this identity, we introduce the products

(B30)
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which are related by

Ps(r-iπ/2) = ΓNPc(r)

(note that one has r,-— rt in Ps and rt — r7- in Pc).
If we take λ-+μ + iπ/2, r->r + μ in (B28) we get

Taking r-^r — iπ/2 in this and using (B31) yields

c, AT even,

Letting λ->co in (B28) one obtains, shifting r by μ,

1

and shifting r by — ίπ/2 yields

-P..

Also, letting μ-»oo in (B28) and shifting rbyλ results in

and shifting r by iπ/2 this yields

Next, we observe that Lemma B 1 can be used to infer that

211

(B31)

(B32)

(B33)

(B34)

(B35)

(B36)

(B37)

(B38)

fsh(Σ)Pe, JVeven,

[ch(Σ)Pc, Nodd, ^ '

where Σ denotes the sum over all cofactors. Indeed, setting M = (cth(q,-—Γj )) we
CO

have, using the notation (Bll),

shλ
= |M|(l+cth/l(e,M-1e))

(B40)

Combining this with (B32) and (B28) yields (B38), and (B39) then follows upon
shifting r by — ί'π/2.

A particularly striking special case of (B39) is obtained by setting q = r:

Π (B41)
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This should be compared with the identity

|(th(ίί-ίj))2Mx2M|=ι<ίΠ<^th2(ίf-ίj), (B42)

which follows similarly from (B33) [or alternatively, by taking fc->l in the
Palmer/Tracy identity (B27)].

Let us also note the formulas

(B43)

(B44)

These follow upon combining (B32), (B38) and (B33), (B39), respectively.
Of course, trigonometric analogs of the above hyperbolic identities follow in

the same way by using (1.12) or by taking q, r^iq, ir. Moreover, replacing q, r, λ, μ
by εq, εr, ελ, εμ in (B28) and sending ε->0 yields the rational identity

μ 9ι-r,+
λ qί-

x Π (qt-9MrJ-rύU „ l , (B45)
»'< J »» J Qi^'j^ I*

Finally, letting λ-κ» and r->r + μ, we obtain Cauchy's identity,

1

Taking μ-^oo and shifting r by A yields

- (B46)

(B47)
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