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Abstract. This paper deals with the existence of multiple solutions of Hartree-
Fock equations for Coulomb systems and related equations such as the
Thomas-Fermi-Dirac-Von Weizicker equation.
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1. Introduction

We want to present here various existence results of multiple solutions of Hartree
and Hartree-Fock equations for Coulomb systems. More precisely, we consider the

* Partially supported by CEA-DAM



34 P.L.Lions

standard quantum description of nonrelativistic electrons interacting with static
nucleii through the purely Coulombic N-body Hamiltonian,

N N
1
H=—) A+ Y V(x)+ Y ; (1
i=1 i=1 i<j Xi_x,"
where
Vix)y=—=3 zjlx—x|7, mz1, z>0, xeR> are fixed,
j=1

acting on the Hilbert space L*(IR*") or its subspace LZ(IR*") (consisting of
functions which are antisymmetric in x,, ..., xy). All functions will be complex-
valued but everything we say below is trivially adapted to real-valued functions or
complex-valued spin-dependent functions. The ground state energy is then defined
by

E=inf{(H<I>,<I>)/cDeH1(R3N)1, deL?(R3Y), f](b]zdx:l}, ©)

R33N

with

N
(HO,®)= [ [VO|?dx+ | { Vix)+ ) ! }|¢|2. (3)
RN r3 (i=1 i<j xi_xj|

The interpretation of this energy functional is as follows: the first term corresponds
to the kinetic energy of the electrons, the second term is the 1-body attractive
interaction between the electrons and the nucleii “located at X;,” each of which
having a total charge z; for 1 <j<m, and the third term is the usual 2-body
repulsive interaction between the electrons.

Because of dimensions (3 V), the direct computation of E seems rather hopeless
and approximations are needed. Historically, the first method was introduced by
Hartree [27] ignoring the antisymmetry (i.e. the Pauli principle) and choosing test
functions in (2) of the form

N
d5(x1,...,xN)=l=_[1 @;(x;) . “4)

Later on, Fock [24] and Slater [54] proposed another class of test functions — which
take into account the Pauli principle — namely the class of Slater determinants

v 1
Ot = e D=0 ] pugle) = T et (). )

NI VN

where the sum is taken over all permutations o of {1,..., N} and |o| denotes the
signature of . If we “restrict” the infimum in (2) to these classes of test functions,
we obtain the following minimization problems

Inf{éa((pla“"(pN)/(piEHl(]R3) VZ9 ((pls"‘:(pN)eK}a (6)

0
1HI(IR'")={MEL2(IR"'),E%GLZ(IR'") for all 1§i§m}, for m=1
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where &, K are given in Hartree case (4), or Hartree-Fock case (5), respectively by

EH(@y,..., on)= Z §31V¢1I2+ Vip|*dx
1

i=

+ > I el ()i ||<pjlz(y)dxdy, ™)

i+j R3x R3

K={(<P1,~'=<PN)GL2(1R3)N/Il(ﬂilzdx=1 for 1§i§N}, ®)
R3

and
N
EE @y, )= . n{Iqui|2+V|<pi|2dx ©)
i=1 R3
Ao Q%) 7 ey dxdy - ! §f lo(x,y) | dxdy,
2 pixwo el 2 RIx R Ix yl

={((P1,--.,<PN)EL2(R3)N/§<P,€D*dx o;; for 1§i,j§N}, (10)

where z* denotes the conjugate of the complex number z, o(x) = Z l@;|? (x) is the
i=1
density, o(x,y) = Z @; (X) ¥ () is the density matrix.
i=1
The Euler-Lagrange equations corresponding to Hartree problem (A in short),
i.e. problem (6)—(8), are the so-called Hartree equations (H equations in short)

which may be written as

1 .
—A<p,~+V<pi+Z<I¢jl2*m)¢i+8i<0i=0 in R* for 1<i<N, (11)

JEi

where 4, = —¢; is the Lagrange multiplier and (¢4,..., ¢y) € K. In the case of
Hartree-Fock (HF) problem (6)-(9)-(10), we first observe that (9)-(10) are
invariant under unitary transforms of (¢,,..., @y), i.e. if U is a N x N unitary
matrix and (¢y,..., Gy)=U(@,..., @y), then E(By,..., ox)=E(01,..., Oy)
and (@y,..., py) € K. Now, if (¢4, ..., ¢y) is @ minimum of the HF problem, the
corresponding Euler-Lagrange equations are

W A 1 1 A .
—A¢i+V<pi+<p*!—x-l> (Ia(xy)‘ |<p,(y)dy> 2Ay®; nIR®, Vi (12)

for some hermitian matrix (4;;) of Lagrange multipliers. Hence, if we diagonalize
this matrix and we use the above invariance, we find another minimum (¢4, ..., @y)
solving the Hartree-Fock (HF) equations

.

1
—A¢i+V¢i+<p* ) (JQ( ,y)] 'qo(y)dy>+8<p,~0 in R® Vi

x|
(13)
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for some ¢; € R and (¢,,..., ¢y) € K. In fact, D. Hartree originally derived the
Hartree equations without going through the minimization procedure, and it is
quite natural to look for “‘all”” solutions of (12) or (13) (excited states), the possible
minima of (6) being of course the most important ones (ground state). H and HF
equations are extensively used in Atomic Physics — see for instance Hartree [28],
Slater [55], Bethe and Jackiw [13], Schaeffer [51]. Notice also that very often
restricted Hartree equations are considered where some of the ¢;’s are taken to be
equal: for example, for Helium (m =1, ¥, =0, z, =2, N = 2) one often encounters
the restricted H equation which is nothing but (11) with ¢, = ¢,, i.e.

—Au+Vu+<|u|2*l—jc—|>u—|—3u=O in IR3 (14)

Z .
with eeR, [ |ul?dx=1,Z=2,V(x)= i (for Helium).
R3

Let us finally mention that a related equation namely the Thomas-Fermi-Von
Weizicker equation occurs in Thomas-Fermi theory (see Lieb [31, 32]; Benguria et
al. [10]): this equation may be written as

1 .
—Au+Vu+<lulz*m>u+/l|u]1"1u+su=0 in IR3 (15)

witheeR, | |ul?dx=1,p>1, 1>0.
R3
In this paper, we prove (in particular) the following

Theorem. We denote by Z= Y z; the total charge of the nucleii.
j=1

1) (Hartree equations). Assume Z > (N —1), then there exists a sequence of
distinct solutions (¢1,..., oY) (n=1) of H equations (11) such that ¢! have
exponential decay at infinity and

[ lot?dx=1, forall n21, 1Si<N.
R3

2) (Hartree-Fock equations). Assume Z = N, then there exists a sequence of
distinct solutions (¢, ..., %) (m=1) of HF equations (13) such that

"™ dx=96,, forall 1<ij<N, n=1.
]RS(pl J ij

3) (Restricted Hartree equation). Assume Z = 1, then there exists a sequence of
distinct solutions (u") (nz 1) of (14) with | |u"|*dx=1.
R3

4) (TEFW equation). Assume Z = 1, p = 3, then there exists a sequence of distinct

solutions (") (n2 1) of (15) with | |u"|*dx=1.
R3

Remarks. 1) In the following sections, additional information on these solutions
(regularity, exponential decay, spectral properties) will be given.
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ii) It is an important open question to determine the best condition on Z (or
more precisely on z;, X; for 1 <j < m) insuring the existence of solutions of the
various equations considered in the above result. In fact, best conditions (if they
exist) should depend on the number of solutions one wants, the first step being best
conditions for the existence of a ground state. For restricted Hartree and TFW
equations it is possible to discuss the existence of a positive solution (see Benguria et
al. [10] and Sect. IT below).

iii) For Hartree-Fock equations, the only reference we know is the work of Lieb
and Simon [37, 38] (see also Lieb [33]) where the existence of a minimum (ground
state) is given requiring Z > (N — 1). We recall in Sect. II their method of proof and
we detail some of the arguments sketched in [37]. For Hartree equations, most
references we know are concerned with the existence of a positive solution (without

Ix|
which is obtained by bifurcation or related arguments: see Reeken [51], Gustafson
and Sather [26], Bazley and Seydel [7], Bazley and Zwahlen [8, 9]; Bazley et al. [6].
For the same problem, Bader [3] showed the existence of a minimum (ground state)

. . Z
prescribing the L2 norm) of the restricted Hartree equation <W1th V(x)= ~—>

with the normalization constraint | | |u|*dx=1 | and Stuart [58, 59] proved the
R3

existence of infinitely many normalized solutions (by bifurcation and nodal-
spectral arguments) — see also Bongers [14] for some partial results. Still for the
restricted Hartree equations (and general V'), we investigated in [41, 42] the
existence of multiple unnormalized solutions by critical point theory arguments.
Finally, J.H. Wolkowisky proved in [65] the existence of infinitely many
normalized solutions of the Hartree equations in the spherically symmetric case

in particular V' (x) = !ZI—) by a fixed point and nodal-spectral arguments.
x

iv) In [39], Lieb and Simon proved that the HF approximation method is
asymptotically exact. [J

We would like now to make a few comments on the proofs of the above
theorem. In fact, even if we will give only one proof of the above theorem in its full
generality, we will present below three different strategies of proofs which will give
different results and two of those will work only in particular situations (basically
the spherically symmetric case). These three strategies may be briefly described as
follows.

1) Direct variational, min-max critical point theory: Here, we build convenient min-
max values which yield the desired solutions through abstract results which are
variations of standard results (see Rabinowitz [50], Ambrosetti and Rabinowitz [2],
Berestycki and Lions [11]...), provided one checks the so-called Palais-Smale
condition (a compactness condition). And this is where one encounters a non-
standard difficulty: observing that we are dealing with semilinear elliptic equations
which are in a vague sense sublinear (the nonlinear terms are ““positive’), one sees
that the only mathematical difficulty lies with the fact that one is dealing with IR>.
And, to check the Palais-Smale condition amounts to show that we can avoid the
“‘continuous spectrum”, and this happens to be equivalent to a difficult spectral
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problem: one has to show that 0 cannot be an eigenvalue for a Schrédinger operator
with a potential which behaves roughly speaking like a Coulomb potential at
infinity. Unfortunately, this spectral problem does not seem to be solved easily and
we only succeeded in showing it in the spherical symmetric situation where we can
check the conditions required by a powerful result due to Agmon [1]. This approach
is developed in Sects. I111.1-2.

2) Fixed point on the potential: This approach due to Wolkowisky [65] is a
mathematical version of iterative methods used for numerical purposes by
physicists (successive improvements of the potential). The idea, say for problem
(14) to simplify, is to consider the mapping 7, which associates to u e L*(IR?),
| lu]*dx <1 the normalized eigenfunction (7, u) of the operator

R3
[—A +V+ (lulz*i—ﬂ
[x]

corresponding to the k™ eigenvalue, for any k = 1 fixed. One immediately sees that
this method requires in order to be meaningful to have eigenvalues of multiplicity 1;
and the only way we can check this condition is by imposing spherical symmetry
(see Sect. IIL1.3). Then, under appropriate conditions one checks that 7, is well-
defined and that 7, is continuous, compact and thus admits a fixed point. It would
be interesting (and important for many applications) to get around the possible
multiplicity of eigenvalues.

3) Critical point theory and index bounds: The idea is to use as in approach 1) critical
point theory but to complement this by information on the index of the critical
points (see Bahri [4], Viterbo [64], Bahri and Lions [5], Coffman [21] for results
showing the relations between min-max critical values and indices). Then, we
obtain solutions of approximated problems with a fixed upper bound on the
number of negative eigenvalues of the linearized equations. This additional
information (at least when Z = N) enables us to avoid the continuous spectrum by
appropriate verifications on the number of negative eigenvalues of Schrodinger
type operators: in some vague sense, the spectral problem described in 1) above is
replaced by a much easier spectral problem where we only have to check that certain
operators have enough negative eigenvalues (verification which is also at the basis
of the approach 2)). This approach is developed in Sect. IV and this is the one which
enables us to prove the above theorem in full generality. Let us mention that this
approach is also used to give a new proof of the existence of a ground state for
Hartree and Hartree-Fock equations in Sect. I1.3 (reproving thus the results of Lieb
and Simon [37]).

We conclude this introduction by mentioning first that a preliminary version of
the above theorem was announced in Lions [40]. Let us also point out that
somewhat different Hartree-Fock equations — namely those occuring in Nuclear
Physics — are studied in Gogny and Lions [25] and that we hope to come back on
important variants of Hartree-Fock equations in future publications (Hartree-
Fock equations with temperature in Atomic and Nuclear Physics).
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To simplify notations, throughout this paper we will denote by

1
D(p,y)= 11{3{]1113 @ (x) x—y| v (y) dxdy

whenever this double integral makes sense.

II. Minima

In this section we want to consider the existence of minima for the various problems
described in the Introduction. In the first three sections we treat the Hartree
minimization problem (6)—(8) and the Hartree-Fock minimization problem (6)—
(10). Werecall in Sect. II.1 the results due to Lieb and Simon [37, 38] and we present
briefly a list of open questions on the existence and qualitative properties of
minima. In Sect. II.2, we detail the proof of the existence of these minima (in
particular because, as remarked in Lieb [34], the proof of the existence of a
minimum for HF problem sketched in [37] has to be corrected and supplemented
with a few details). Another reason to present this argument is to show the
difference with another approach that we describe in Sect. I1.3: the argument we
will use there will be one of the basic tools needed to prove the existence of infinitely
many solutions. Finally, in Sect. I1.4 we consider variants: we first treat briefly the
case of generalized restricted Hartree equations and we then consider the Thomas-
Fermi-Von Weizidcker (TFW in short) equations and the Thomas-Fermi-Dirac-
Von Weizdcker (TFDW in short). We will give existence results for TFW and
TFDW equations which are contained in R. Benguria, H. Brézis and E. H. Lieb [10]
in the case of TEFW equations and which seem to be new in the context of TFDW
equations. In order to do so, we will use the concentration-compactness method
(Lions [43, 44]), arguments introduced in Sects. I1.2—-11.3 and we will need to make
general observations on the concentration-compactness arguments that we develop
in the Appendix.

II.1. Main Results for H and HF Problems

Theorem IL.1. Let Z > N — 1, Then, every minimizing sequence* of the H problem
(6)-(8) or of the HF problem (6)—(10) is relatively compact in (H*(R3))N. In
particular, there exists a minimum and any minimum (@, ..., @y) is (up to a unitary
transform as described in the Introduction in the case of HF problem) a solution of H
equations or HF equations.

Andin the case of the H problem, each g, is the minimum eigenvalue of the operator

1
Hi=—-A+V+Y, <|(le2*|71») (16)
and g;> 0. Ix
2 A minimizing sequence (¢},...,¢%) is a sequence satisfying: &(@%,...,0%) — Inf(-),

(o1,...,0%) €K
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In the case of the HF problem, ¢, ..., ey are the N lowest eigenvalues of the
operator

— 1
H=—A+ V+Q>z<——|)1€] —R, Rp= f o(x,y) —lx 3 o()dy for all peP(IR?) 17)
R3 -

and &, ..., ey>0.

Remarks. 1) Thefact thatif a minimum exists it is a solution of H or HF equations,
is standard and the study of its regularity is also standard: one shows that
@1s.... oneCP(R?*—U), where U is any neighborhood of {x,...,Z%,},
@1y, oy €WHP(IR¥) forall2 < p < 3 (in particular ¢, ..., oy C**(IR?) for all
o €(0,1)). In addition, if ¢ >0, then ¢; has an exponential fall-off. All these
properties are valid for any solution in H' (IR?) of the H or HF equations (or of
TFW. TFDW, restricted Hartree equations...).

ii) It is not known if the condition Z > N — 1 is necessary. In fact, few non-
existence results seem to be known. These questions together with similar questions
on the exact N-body problem are developed in Lieb [34] where it is proved that no
minimum exists if N > 2Z + m. We also make some comments on these questions in
Sect. 11.3 below.

iii) All the questions related to uniqueness or non-uniqueness of minima,
symmetry breakings seem to be open. For instance, if N = 2, is the minimum (u, v) —
when it exists — of the H problem unique and thus v = «? Even if the minimum is not
unique, do we have u = v? In the case of an atom (x; = 0 for all /), the minimization
problems are invariant under orthogonal transforms of IR®: a natural and open
question is to determine when the minima have spherical symmetry or when there
are symmetry breakings... If m =2, similar questions may be raised with the
axisymmetry around the axis x; X,. For general m, we may have some particular
geometric configuration of the points X; which leads to some invariance of the H or
HF minimization problems and again the possible symmetry breakings are to be
investigated.

iv) The reason why we insist on the fact that all minimizing sequences are
relatively compact (and thus convergent to minima up to subsequences) in the
above statement is that this yields easily the orbital stability of such minima for the
time-dependent H of HF equations (see Cazenave and Lions [19]). This might also
be useful for numerical analysis purposes.

v) It seems important to study numerical procedures to find solutions of H and
HF equations (in particular the minima). Physicists are using some iterative
methods which roughly speaking correspond to build (¢2*!,..., p%"') as the N
lowest eigenfunctions (for the HF problem) of the Hamiltonian H" obtained
through the preceding configuration (¢f,..., @k). U

We conclude this section by a few notations: we will denote by 7 the infimum
given by (6) and we will also use the notations /¥, IHF to make the difference between
H and HF problems when necessary. Finally, the potential 7 being fixed, we will
denote by I (or I¥, IfF) the infimum corresponding to the N-body Hamiltonian H
considered in the Introduction.
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11.2. Lieb-Simon’s Approach

We start with a remark: the infima /Y, /HF are also given by

1H=Inf{to@H(%,.-.,(oN)/q)iGHl(1R3) Vi, f!(Pflde.SJ}, (18)
R3

1HF=Inf{®@HF(<01,---,wN)/qoieHl(lRS) Vi, <I<0i<ﬂ}"dX)§(5i,-)}-3 (19)
R3

Thisis a general observation due to the facts that the minimization problems are set
in IR3 and that 7" — 0 as | x| — co. We could ignore the proof of these equalities and
prove Theorem II.1 as follows (in doing so we would in fact prove the equalities for
Z > N — 1) but we prefer to show them since we believe the argument involved illu-
minates the nature of the functionals &%, &1F, We prove (19) (the proof for (18) is

similar and simpler): clearly we just have to prove thatif (¢, ..., @y) e H* (R%)and

<§ @, 0F dx) < (9;) then E¥F (g, ..., @y) = [¥F. Indeed, let a;=0,;— j @; ¢F dx,
R3

the matrix (a;;) is hermitian and nonnegative. We consider (v, ..., z//N) €2 (R?)

such that | y, widx=a;. By a trivial scaling argument, we may choose
R3

(Wy,-..,Wwy) such that for any given ¢ >0

1 1
A= Z [ 17yil? dx+ ;D@0 —3 §f leGenl? i dxdy <, (20)

i=1 R3 R¥x R? b
where §(x)= Z [y, ()%, 0(x,y)= Z v;(x)w¥(y). Let finally e, be any unit
vector in IR3 and let ol =0, +y;(- + neo) forall 1 £i< N. Itiseasy to check that

j Pf(@D*dx— 8, ETF(@,..., QR)—> A+ EW 0y, ..., @x),

and this enables us to deduce
IHFégHF(¢19""¢N)+A’ (21)

and we conclude using (20). Observe also that (18), (19) immediately yield that
I8, JHF < (),

We now really begin the proof of Theorem II.1: we will do so only on the HF
problem (the proof being much simpler for the H problem). There are several steps
in the proof: the first one consists in showing that minimizing sequences of problem
(19) are weakly convergent in H' to minima of (19), then one characterizes minima
as convenient eigenfunctions, and one then concludes.

Step 1: Minima of (19). Let (¢%,..., ¢}) be a minimizing sequence of (19). We
first check that (¢7), , are bounded in H' (IR?). To this end, we remark that by
Cauchy-Schwarz inequalities we have

leenP<e(x)e(») on R*xIR?, (22)

3 In the sense of hermitian matrices
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and we recall the following inequality which holds for all xeIR?, ¢ e H* (R?)

j ! — o (x) |2 dx=Cllo ”L2(1R3) Ve ”L2(]R3) (23)
R | X — X|
for some Cindependent of X, ¢. Combining these inequalities with the information
that &(¢%, ..., ¢%)is bounded from above, we deduce the H* bounds. Extracting if
necessary a subsequence, we may assume that ¢7,..., ¢§ converge weakly in
H'(IR?®) and a.e. to some ¢, ..., @y which obviously satisfies

< f ®?; (P;'k dx) = (51',') .
R3

To conclude, we check that & (¢4, ..., @y) is weakly lower semi-continuous on
H*(IR®). In view of (22), it is easy to show that we just have to check that
| Vlg|*dx is weakly continuous on H* (IR®) and this is a standard fact (notice for
R3

example that V' — 0 as | x| — o0, Ve L}, with p >3...). Therefore, we proved that,
up to subsequences, any minimizing sequence of (19) converges weakly to a
minimum. To prove the existence part of Theorem II.1 we just have to show that
any minimum (¢4, ..., @y) of (19) satisfies

| oiordx=6, Vij.
R3

Step 2: Characterization of Minima of (19). We first observe that, since &%F is
invariant under unitary transforms of (¢, ..., ¢y), we may assume that

j @i(p_;kdxzyiéij’ Vi,j,
R3

where 0 <y, < 1. By the same argument as in the Introduction, we may also assume
that (¢y,..., @y) solve (13) for some (g, , ..., ey) € RY. Of course, either ¢, =0,

or ¢; is an eigenvalue of the Hamiltonian H, for each i.
We now claim that for each i, ¢; is a minimum of

Inf{<ﬁw,w>/wef11(m3), [lplPdxs1, | pp}dr=0, w#z}, (24)
RR3 R3

where (Ho, v denotes the symmetric bilinear form on H* (IR?) associated with H,
and the value of the infimum is precisely —¢;y;. Indeed, one just needs to observe
that we have for each i

ElQ1,ees 01,0, (pi+19"'9(PN]=éa[(p19--'a(pi—laov(pH—19'--=¢N]+<ﬁ(pa(p>—Q((pi’q))’
(2%5)

where

091, 0)= D(lp:l* 19 |2)—R61R3”R3 () f () *(X)@(y)dxdy. (26)

| — I
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Next, by Cauchy-Schwarz inequalities

Il o) 0r) ¢ (X)q)(y)dxdy'
R3x R3 | l
< |f {I(P(X)H ML Icv(lf)l} {I(p (V)II Il/z Iw(X)II’Z}dxdy
R3x R3
= H3I<P,( )IZI ll(ﬂ(y)lzdxdy,
and thus
Q(pi,9) 20, Qi 0)=0. @7
This proves our claim on ¢,. In view of this claim, we just have to show that /
admits at least N negative eigenvalues and this will imply that (—¢,),..., (—é&y) are
the N lowest ones (counted with multiplicity) and that y; =...=yy=1, proving

thus Theorem II.1.

Step 3: Conclusion. We start with a general lemma (whose proof is postponed until
the end of the proof of Theorem II.1).

Lemma IL1. Let u be a bounded nonnegative measure on IR® such that u(R>) < Z.
Let H, be the Hamiltonian given by

1
Hi=—-4+V+{pux—].

Then H, admits an increasing sequence of negative eigenvalues A, converging to 0 as n
goes to +oo0. [

Observing that A < H, where u = ¢ (x), we deduce from this lemma that if one
of the functions ¢; vanishes, say ¢y, then u(R* = [ o(x)dx=N—1 and the
R3

condition in Theorem II.1 implies in view of the above lemma that H admits a
sequence of negative eigenvalues. Therefore, ¢,, ..., &y > 0, and because of (24) we
deduce a contradiction: ¢, cannot vanish since the Infimum in (24) is negative.
Hence, we proved that y,,..., yy > 0. Observe also that each infimum in (24) is
nonpositive

<use for instance a standard scaling argument: (Ho,,¢,>, where ¢, =a " *?¢ <;> . .),

and thus ¢,,...,ey=0.
Now, if one of the constants ¢; vanishes, say &y, we deduce from (24) that

<H.¢N3¢N>=Oa @N*O’
and thus in view of (25), (27)
éo(@l!"'?@N)zg((pl"'w(pN—l:O)
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and the above analysis yields a contradiction. Therefore, ¢, ..., ey > 0; H admits N
negative eigenvalues; 7,,..., jy=1. O

Proof of LemmalIl.l. 1t is enough to find for each integer k a subspace of
dimension & that we denote by F such that

Min {(Hl(p,(p>/goeFk, ngs |q)|2dx=1}<0. (28)

To find such a F,, we consider an arbitrary normalized ¢ €2 (IR®) and we set

¢,=0 3¢ (/o) for ¢ > 0. Then we have
1 1 1 1
Hy0g 0 =— | IVolPdx+— [ V,(0)lo? )+~ | |4o* i )lol?dx,
0" R3 0 R3 0 R3 |)C|

m

where V,_(x) = — ——j_—~, -
( ) jgl ]x—xj/ol H

radially symmetric, we may write the last term as

1 ) 1
L dx = 2w — )du,
HL (ﬂ ]xl)lwl EL(I@I |x|> u

= {1001 max(lxl1y) " du, () dy
_ ;o0 o)1
r Y] |y]

where i = u(IR?). Now, choosing any k-dimensional space of radially symmetric
functions in 2 (IR*) and denoting by F, the space obtained by rescaling them
(¢ — ¢,) as above, we obtain (28) for ¢ large enough. [

=c>u(o-). In particular, if we choose ¢ to be

dy - p, (R?) =ﬂn£3 dy,

11.3. Another Method

First of all, we would like to make a few comments on the assumption Z> N — 1
and its use in the existence proofs. The potential ¥ being fixed, we consider the
sequence (Iy)y,, of negative numbers where I, is given by (one-electron ground
state energy)

11=Inf{j Vo2 +V|g|*dx/peH" (R?), | |qo|2dx=1}. (29)
R3 R3

Because of (18), (19), we obviously have
Iy, =1y, VNz1. (30)

Of course, I; < 0isachieved by a unique ¢, > 0 on IR?* (up to a multiplication by e”
for some 8 €IR). And Theorem II.1 implies that if Z > 1 then I, is achieved. We now
claim that even if we do not assume anything on V' (or Z, N...) we can make a few
remarks on the existence of minima for the problems 7y. We now restrict our
attention to HF problems (similar considerations hold in the H case). Indeed,
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assume that I, _, is achieved for some N = 2 at a configuration (¢4, ..., ¢y_,) and
that the corresponding Lagrange multipliers ¢,,..., &y_; are positive, i.e. the
operator

ﬁN—lz_A+V+QN—1* — Ky

1
x|

admits (N — 1) negative eigenvalues, where Ky_, ¢ = j on—-1(x,)

1
]x_y|<p(y)dy

and gy_,(x,»)= Z 0 () 0¥ (), ox-1 ()= Z @;(x) @} (x). Obviously, all

this holds for N= 2 (H = —4+7V). Now, cons1der the problem Iy: the proof
given in the preceding section (in fact only some part of it) shows that only two
cases may occur. Either Iy=1Iy_, and (Hy_, ¢, 0> =0, Vo e H' (IR%) such that
f po¥dx=0,Vi< N—1inwhichcase(¢,,..., @y_;,0)isaminimum of (19) and

there are some minimizing sequences which are not relatively compact in H* or in
L? (we do not claim that I is not achieved ...). Or Hy _, admits at least N negative
eigenvalues and then Iy </Iy_,, and the results stated in Theorem II.1 hold.
Combining this general observation and Lemma II.1, we see that in order to prove
Theorem II.1 we just need to prove it when the stronger condition Z > N holds
(indeed apply this case with Iy _, and we use the above alternative to go to Iy).
We now describe another method to prove Theorem II.1 in the case when Z = N
for HF problems (for H problems the method below works if Z> N —1). To
simplify the presentation, we will restrict ourselves to real-valued functions. The
main idea of this method will be crucial for the existence theorem we stated in the
Introduction. Roughly speaking, the idea of the method below is to avoid the
possibility of “‘vanishing eigenvalues” by writing down the second minimality
condition (“‘second derivatives have to be nonnegative at a minimum”’) at minima
(or approximated ones). For HF problems, this condition may be written as

N 1
Z j 'Vllfi|2+ VlWilz"i‘(Q*—‘) |‘//i|2dx

i=1 R3 [x|

1 N
H o(x,) |x~ |l//i(x)V/i(V)dXdJ/+ Y& § lwil?dx
i=1 R3
+5 D(K K) - ” |K(x, )12 dxdy
2 Réx Ix—y]
=0 (31)
for all (y,,..., wy) € H (IR?) such that
fwi@jdx=0 Vij; [yydx=0 Vi%j, (32)
RS R3

where K(x) =2 (Z @i(¥) V/i(x)>> K(x,3)=2 0:(®x)w:(y) + vi(x) :(y) and ¢; are

the corresponding Lagrange multipliers.
Of course, all this is a bit formal since we cannot start with a minimum and
various justifications detailed below are needed. At this stage it is worth pointing
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out the relations between (31)—(32) and the observation (24) which was crucial for
the proof given in the preceding section. In some sense, (24) is contained in (31)-
(32). Indeed, for each i, we may take y; = 0 for j # i, and we deduce from (31)—(32)

that for all w e H' (IR®) such that | y¢;dx=0 Vj,
R3

— 1
CHy,wy+e; | lwlzdle If (KPP —Kx) KO} ——— dxdy,
R3 2 pixme [x—y|

where K(x,7) = [0,(x)y () + () 9;0)], K(x)=2[¢,(x)y (x)]. But the right-
hand side is nonnegative since we have

iD(K,K)=D(¢;w,p;w) and ID(K K)=D(lo;l*[yl?).

The way we use (31)—(32) is the following: assume to simplify that Z > N, then
by an appropriate variant of Lemma I1.1 we will show that the constants ¢; have to
be bounded away from 0 and this will yield the compactness we need.

To make these vague arguments rigorous, we first claim that we can build
minimizing sequences which satisfy (31)—(32) (or variants): in fact, we will see that
one may assume that (31)—(32) “almost” hold for any minimizing sequence. The
second step is to prove that the constants ¢; are bounded away from 0, and the final
step consists in passing to the limit. We first treat the case Z > N and then we
explain how to modify the argument in the case when Z = N.

Step 1: Minimizing Sequences and Nonnegative Hessian. If one just wants to
prove the existence of a minimum, it is easy to build some minimizing sequences
of (6)—(10) such that (31)-(32) or close variants hold. Let us just mention two
possibilities.

i) Replace R? by a ball By of radius R < oo [i.e. set the problem (6)—(10) in the
space H} (By) extending by 0 all functions of this space]. Then, the analogue of
problem (6)—(10) immediately admits a minimum by standard functional analysis
[use the compact embedding from H{ (By) into L*(Bg)]. Equations (12) for such a
minimum (@%,..., ¢X) hold with IR* replaced by By and for some constants
(R, ..., e®). Finally, (31)-(32) hold with IR3 replaced by By, @;,¢; replaced by
@R, e} (Vi). Then, as R >0, (¢k, ..., ¢&) is a minimizing sequence of (6)—(10).

il) Use general optimization results: by a result due to Ekeland and Lebourg
[23] (see also Ekeland [22], Stegall [56], Bourgain [15]...) we know that for all
n =1, there exists (f), e H ' (IR®) [or even L?(IR*)] such that |||, < 1/n (Vi)
and there exists a minimum (¢4, ..., ¢%) of

N
Inf{éaHF(tpl,---,@N)—Z ;<f;)<0i>/(<,01,-.-,<pN)eH1(IR3)N5 (qol,-..,ww)eK}.
(33)

Then, the Hartree-Fock equations (12) are replaced by

1 .
dy>+e?<p?=f;‘
[x—yl

in 2'(R? (34)

1
—A@i+ Vi + (@” * m) @i — <n£Q"(x,y)coi~'(y)
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for some constants (7, ..., &y), where ¢"(x,y) = Z ot(x) ¥ (), 0" (x) = 0" (x, x).

And (31)-(32) hold with ¢,, ¢; replaced by go, , & And it is easy to check that, as
goes to oo, (¢7,..., Oy) is 1ndeed a minimizing sequence of (6)—(10).

Unfortunately (for the reader), we are interested in the behaviour of all
minimizing sequences: let (97, ..., $%) be a minimizing sequence of (6)—(10). Then,
by the general perturbation principle due to Ekeland [22], we can find another
minimizing sequence (@7, ..., ¢§) of (6)—(10) such that

“(P?‘QZ?HU(M)T 0, Vi, (35)

and (@1, ..., @Y%) is the minimum of

N

Inf{w@*“:(%-n, PN +0, 2, 10:= @l 2me/(@1s-.., oy)H (R, ((Pla""q)N)EK}
i=1

(36)

for some 4, > 0 such that 5, — 0. Then, “elementary” differential calculus yields

the existence of (¢%,..., &%) € RY such that the following holds

1 1
—A¢?+V¢?+<e”*—>cp?~<f 0"(x,7) ¢} dy>
[x] R3 [x—y|

+erpl—0 in L*(R?) (37)

and the existence of y" >0, " — 0 such that

N 1
X lVl//i|2+V|l//i|2+(Q"*m> i+ (eF + 9" Ly, | dx
i=1 R

- I "Gy v () () dx dy
R3x R3 I I
1
~3 3” . [K"(x,y) = K" (x) K" (»)] x |dXd)’ 0 (38)
for all (w,,...,wy) e H' (IR?) satisfying
]ga y;@idx=0 Vij; 11!3 Wiy dx=0 Yi%j, 39)

where K*(x, )=} @} (x)y;(») + y:(x) 9} (1), K"(x)=K"(x,x). (The equality

(37) just uses the differentiability on H* (IR*)" of &HF while (38) uses the fact that it
is uniformly twice differentiable on bounded sets of H* (IR3)Y.)

Let us finally observe that these considerations are totally general and have
nothing to do with HF (or H) problems.
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Step 2: Bounds from Below on ¢!. This is where we use the information given by
(38). To simplify the presentation, we observe that (38) implies in particular (see a
similar argument above) that we have for each fixed 7,

1
fIVWIZ+VIWIZdX+<Q"*m> lw[?dx+ (e +y") [ ly[?dxz0, (38")
R3 R3

for all y e H' (IR®) such that
[woldi=0 V. (39"
R3

Now, this implies that the Schrédinger operator H,

1
— Ry
A4+V+o ]
has at most N eigenvalues strictly less than —(e¥ + y").

For the reader’s commodity, we give a simple proof of this trivial algebraic
observation at the end of this step.

Now, if Z > N, we use Lemma II.1 and its proof to deduce that there exists 6 > 0
such that H, admits for all n at least N eigenvalues strictly below (—9J). And this
vields

e +y"=0.

Since P 0, we deduce for n large enough

gfze>0, Vi. (40)

Lemma I1.2. Let A be a bounded, self-adjoint operator on an Hilbert space H, let H, ,
H, be two subspaces such that H=H, ® H,, dimH, =k < o and P, AP, 20,
where P, , P, denote the orthogonal projections onto H,, H, respectively. Then, A has
at most k negative eigenvalues.

Remark. The assumption that 4 is bounded can easily be disposed of in order to
accomodate the operators H, on L?(IR?).

Proof of Lemma I1.2. Multiplying if necessary A by a positive constant, we may
assume that P, AP, > —P,. Then we set A= —P, + P, AP, + P, AP,; 4 is also
self-adjoint, bounded and 4 < A. Itis of course enough to show that 4 has at most k
negative eigenvalues. Now, if A is an eigenvalue of 4 different from 0 and if x is a
corresponding eigenvector, we check easily that

1
P,x =IP2AP1 X, PLAP,AP (P, x)=A(A+1)P; x.
And we conclude easily observing that P, 4P, AP, is a nonnegative, self-adjoint
operator on H, and that to each eigenvalue of this operator corresponds only one
negative eigenvalue of 4. [
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Step 3: Conclusion. Recalling that minimizing sequences are bounded in H* (R?),
we deduce that &/ is bounded, and thus we may assume (extracting subsequences if
necessary) that @ converges weakly in H* (IR®) (and a.e. in IR*) to some ¢, and that
¢! converges to ¢, which satisfies ¢; = ¢ > 0 because of (40). It is an easy exercise to
pass to the limit in (37) and to recover with obvious notations

1
[x—yl|

1
—A<pi+V¢i+(Q*—~ e;(»dy=0. (41)

x|

In particular, we find that

lim Yoer | lot*dx= —lim {Z [ IVerl>+ Vet *dx
noi RS "

i R3

>(Pi+8i(pi_ j o(x,y)
R3

1
[x—y|

and by the same arguments as the ones used to show that &HF is weakly lower semi-
continuous on H* (IR?), this yields in view of (41),

lim Y& { |of)?dx
n i R3

Ll @) -l mw}
R3x R3

1
[x—y|

é—{z HL Veol? + Vl(/)ilzdx+m3ﬂms {e( e —lexnI*} dxdy}

=Z‘9i f l@;|? dox.
TR

Hence, ¢ converges strongly in L* (IR?) to ¢, and it is easy to conclude the proof of
Theorem II.1.
If Z = N, we just have to modify slightly the above argument by passing first to

. . 1 .
the limit weakly in H'(IR3). Then, the operator H= —A+ V + <Q*'—;—l~> still

has at most N eigenvalues less or equal than —¢;(Vi), where ¢; is the limit
of &!. Now, if | ¢dx= N, this means that ¢} converges in L?* to ¢; and the proof
R3

is over. Or [ gdx< N and we apply Lemma II.1 to show that ¢ >0 (Vi): this
R3

enables us to conclude as before.

Remarks. 1) If we compare the two proofs of Theorem 11.1 we gave, the new one is
clearly more complicated! However, the arguments we use there turn out to be
crucial in Sect. II.4 for more nonlinear problems or when dealing with non-minimal
solutions. In fact, the reduction from (38) to (38") strongly uses the positivity of the
Coulomb potential (as a function and as a kernel) but is not at all necessary in the
above analysis provided one extends a bit Lemma II.1 (see also the next section).
With this reduction the two proofs are quite parallel, but major differences can be
seen on their applications (other nonlinear problems, critical points, other 2-body
terms...) in particular because the reduction we did above is by no means
necessary. Of course, the key point behind all the proofs is Lemma I1.1 (and its
extensions as we will see below).
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il) The proof in the case of Hartree minimization problems is slightly different
but does not present any additional difficulty. Therefore we skip it. []

I14. Related Minimization Problems: Restricted H, TEFW, TFDW Equations

We begin with a generalized version of the restricted Hartree minimization
problem. We consider the minimization problem (6) for the functional

N 1 N
E@r,..,on)=2 [V, +VIp|*dx+= Y a; D% 1015,  (42)

i=1 R3 2i,j=1

and where K is given by

K= {%GLZ(IW)N/f l¢i|2dX=ii}, 43)
R3

and we assume a;=a; 20, 2,>0 forall 1 <i,j< N.

We will call this problem the RH problem: the usual restricted problem (14)
corresponds to N=1, A, =1, a;; =1 while the standard Hartree problem
corresponds to A, = ... =Ay=1, a;=1~0; Vij We have the

ij

yty = yJ

Theorem IL.2. We assume that, for all1 <i< N, Y a;;A; < Z and either Y a; 1, <Z
j J

or there exists j such that ). a;, A= Z and a;; > 0. Then, all minimizing sequences of

k
(6)—(42)—(43) are relatively compact in H* (IR®) and in particular there exists a
minimum.

Remark. 1) Of course, any minimum satisfies

N 1 ' '
—4¢;+ Ve, + Z aij<|€0jlz*m>q0i+8iqoi=0 in R3, Vi
i=1

and the arguments below show that ¢;,=0 Vi. Furthermore, in general we can
prove that ¢ >0 only if Z>} a;;4

j.
J
i) If N=1, the condition on Z reduces to Z=4,a,,. U
Proof of Theorem 11.2. We follow the arguments given in the preceding section. As

in step 1, we see that we just need to consider minimizing sequences (@1, ..., @y)
such that

N 1 )
—AgI Vel + Y aij<l¢;12*m> Gleol—0 in L2(RY)  (44)
i=1

forallie{l,..., N} and

o

N
WPwsl® + VI P+ 6+ sl dx+ Y a; D (19712 9:]?)
i=1

1 R3 i

1)

2

N
~2 ), a;DRe(pf ), Re(pj ) (45)

=1
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for some y" >0, y" — 0, for all w, e H' (IR®) such that Re ” v dx=0 (Vi)
where ¢! is given by R3X R

& = _T [ Vorl2+Viel]? +Zau<!<ﬂ,12 Ix |) lo?] dx. (46)
1 R3
One easily checks as in Sect. I1.2 that minimizing sequences are bounded in
H' (IR®) and thus ¢! is bounded (Vi). In particular, if we choose for each i fixed
y;=0 for j+ i, we deduce for all y € H' (R?) such that Re | y ¢{*dx=0,
R3

N
j"3|l7u/|2+ Vigl?+ e+ lwPdx+ ) a; D(1951% lw]?)
R

j=1

+2a; D(Re(piy™), Re(iy*) 20,

. N 1 .
H;—_— —A+TV+ Z aij<|¢f|2*m>+2aiiK;
j=1

admits at most one negative eigenvalue (in fact using the positivity of — as a
kernel H! is nonnegative), where K. is defined by x|

K,i(p(x)=(n§3Re<cp¢<y><p*<y>) — dy)go;‘(x), Voea (IRY).

Yl
To show the analogue of step 2, we will treat only the case when

zZ> Zau ;» Vi (the general case being a modification along the same lines as in

the case Z = N in the preceding section). In order to do so, it is clearly enough to
show the following extension of Lemma II.1:

Lemma I1.3. Let u be a bounded nonnegative measure on IR® such that u(IR3) > Z,
let ge L*(R®) + LF(IR3), ¢=0 with 1 <o, B3 and let R be the nonnegative
operator defined by

Ru(x) = (f Re(y () u* () ,xi
R3

where y e L* (IR®).
Then, for each k=1, there exists ¢ >0 depending only on bounds on

)] dy> v(x), Vue2(R?),

1
(Z—u(R*)™Y, qin L*+ L, y in L* such that the operator H= — A+ V + p# —
+ g+ R admits at least k eigenvalues below —¢,. x|

Remark. If ge L' 4+ L3, the conclusion still holds, but ¢, depends on g¢. It is possible
to replace w € L* (IR3) by w € L' (R?) + L*(IR®) for some r € (%, 2).

Proof. We follow the proof of Lemma II.1 and with the same notations we find

lo|?
|y

1 . . 1 .
ts mijjms Re(y, () ¢* () =l Re(y, (x) ¢*(x))dxdy,

<H<oo,<og>— f!chlzdx+— j(V (X)+q¢(X))|<pl2dX+— f dy
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where ¢,(x)=0q(cx), w,(x)=0c**y(ocx). Therefore, we just need to find a
k-dimensional subspace F, of spherically symmetric functions ¢ in 2 (IR?) such
that

Sup. Lés 4|1 dx + “ Rely,(0)9*(x) =] Re(y,(») 9*(») dxdy] -0

as g — 0.

We choose an arbitrary k-dimensional subspace F, of spherically symmetric
functions ¢ in 2 (IR®) supported say in {1 <|x|<2}. All norms on F, being
equivalent, we just have to show

| q.dx+ H Iwa()l

1£]x]£2 |

|Wa(y)I1(1<|x]<2) 1(1<|y|52)dXdy ——> 0.

And we conclude since

1 1/a .
i gedax= | ;zlJ(y)dy§C(f Iql"dy> e —— 0

1<|x52 sSlyIS2e yizo e

(and similarly if g e L* + Lf) while

5/3
A e g I%(y)li1<|y:<zdxdy<c< | |wa(x>|6/5d">

1=lx]=22

E
5/3
=C[a_6/5 i It//(y)|6’5dy:l <C | WOl
=]

SlylS20 c=|yls20

and this quantity goes to 0 if y e L%

To show the uniformity in ¢,y of the above construction we may argue as
follows. Let g,, w, be bounded in L* + L®, L* and assume that the k™ eigenvalue !
of the corresponding operator H, goes to 0 as n goes to co. Without loss of
generality, we may assume that g,, y, converge weakly to some g,y € L*+ L3, L2,
and since the above construction shows that the corresponding limit operator H
admits infinitely many negative eigenvalues, we reach the desired
contradiction. []

Remark. If we are interested only in the existence of a minimum, it is possible to
avoid the use of Lemma II.3 by building some special minimizing sequences
(X, ..., @R) as, for example, the minima of the same problem in a ball By, then
o%,..., e8>0 on By by standard arguments and thus if ¢X are the associated
Lagrange multipliesrs, the operator

N 1
—A+V+ Y aij<|qof|2*—>+af
j=1 |x]
is nonnegative on Hj (Bg). Then, a simple adaptation of Lemma II.1 shows that
N
ef 2 ¢>0 | at least if Max ) a;4;< Z>, proving thus the compactness as in the

i =1
preceding section.
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However, since the above argument is not much more complicated and yields a
stronger result, we prefer to emphasize the use of Lemma I1.3 for we will need below
the full force of Lemma I1.3. [J

We conclude this section by the study of a related problem: we consider the
following minimization problem

IA=Inf{é”(u)/ueH1(IR3), f[ulzdx=l}, (47
]RS

where & is the functional given

Ew) = [ |Vul*+ Vu* + F(uydx + 3D (lul?, |ul?), (48)
R3
and the functions u are taken to be real to simplify. We assume that the nonlinearity
Fiseven, Fe C*(IR%), F(0) = F'(0) = F”(0) = 0 and we denote by f= F’. Finally, in
order to have a finite infimum (47) and to be able to write simply a meaningful Euler
equation (and 2" order conditions)

Fo@=o0(t]"), If'®Ol=0(t]*) as |t]>w (49)

(all these conditions are not really necessary for most of the results below but we will
skip such easy extensions).

Replacing the unknown u by the density ¢ = |u|?, one sees that the above
minimization problem is equivalent to

— 1
IA=Inf{f |VQ”2|2+VQ+F(VQ)dX+§D(Q,Q)/Q;0
R3
ae. in IR3 jQ(x)dx=A}. (50)
R3

And when F(s)=c|s|'*® (with ¢>0) — respectively F(s)=c,|s]*%%—c,]|s|®3
(with ¢, ¢, >0) — this problem is the Thomas-Fermi-Von Weizécker problem
solved by Benguria et al. [10] — respectively the Thomas-Fermi-Dirac-Von
Weizacker problem (see Lieb [31]). These two problems occur as modified versions
of the so-called Thomas-Fermi approximation of the N-body quantum problem
considered in the Introduction — see Lieb [31] for further comments on the origin of
these problems. Observe also that if F=0, (47)-(48) is nothing but the restricted
Hartree problem (42)—(43) (with N=1).
The fact that the infimum 7, is finite comes from the following facts

Ve>0,3C,20, F- () <e|t]'3 + C,|1]? (51)
and there exists C, = 0 such that for all ue H' (R?)
2/3
| |u|10/3dx§C0<j |l7u|2dx><j |u|2dx> ; (52)
R3 R3 R3

therefore
Ew)z(1—Cod*Pe) | |Vul*dx+ [ Vutdx— C,A.
R3 R3
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This shows not only that 7, is finite but also that minimizing sequences (u,) are
bounded in H'(IR?) [and F* (u,) are bounded in L'].

To analyze the problem (47)-(48) we use the concentration-compactness
method [43, 44]: we first introduce the problem at infinity,

1;°=Inf{é"°°(u)/u eH'(R®), | |u12dx=/1}, (53)
R3

where

E° )= | [Vu|2+F(u)dx+%D(|u|2, [u|?). (54)
R3

And by the techniques of [43], we find that one always has [, <[ + 172,
Va €0, A] while the following holds.

Theorem 11.3. Every minimizing sequence of (47)—(48) is relatively compact in
H'(IR®) (and F* (u,) is relatively compact in L' (IR®)) if and only if the following
condition holds:

L<I,+17, Yoael0,Ai[. (S.1)

In particular, if (S.1) holds, there exists a minimum of (47)—(48).

Our goal in the remainder of this section is to give conditions which ensure that
(S.1) holds. We begin by observing that if F = 0, then one can check that I;° = 0 for
all 1= 0. In fact, it is possible to generalize the condition F = 0 as follows: we first
recall that |Vul,. is the norm of the Hilbert space 2%(IR%) (= {ue L2 (R?),

Vue L* (IR%)}), while up to some irrelevant constants the norm on the dual space
(2" %)* may be written on its dense subspace L°/ as

D(v,v)*?, VvelS’(IR?

[recall that @12 L°and thus L%° < (21 ?)*]. Therefore, there exists a constant
C, 20 such that for all ue 2 (IR?),

1/2
jlm%ugcx<quPw> 3 Dul, ), (59)
R3 R3

and we denote by C, the least constant such that the above inequality holds. Hence,
if F satisfies

F)z -2 11° on R, (56)
c,

we deduce easily (1) =20 and ,° =0 for all A= 0. To check that in this case
I* =0, we simply consider ¢ e@(IR3) such that such that j |@|*dx =4, and we
compute for all ¢ >0,

- . 1
& <G 3/2<p<—>> =— | Vol*dx+ [ a*F(a™? o(x)dx+5-D(o[* ||,
g 0" R3 R3 20

and we conclude letting ¢ go to + oo, recalling that F(s) = o(s%).
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Corollary IL.1. We assume (56).
1) Every minimizing sequence of (47)—(48) is relatively compact in H' (R®) if and
only if
L<I, Vae(0,4). (57)

In particular, if (57) holds, there exists a minimum of (47)—(48).

i) There exists a constant 1, €(0, 0] such that for A < 4. (57) holds and there
exists a minimum of (47)—(48), and Sfor A> 4., A near A, I, =1, .

iii) If f(2)/t is nondecreasing for t 20, 4. < oo and I, = I, for A> 2., and there
does not exist a minimum of (47)—(48) for /1 > .

iv) If f satisfies
VR<o0,ACR=0, (f' ()T S Crt*?® for 0=Z:=ZR, (58)
then 1,2 Z.

Remarks. 1) Part iii) of the above result corresponds to the case treated by
Benguria et al. [10].

ii) Infact,itis possible to interpret Theorems I1.1 and I1.2 in view of the general
concentration-compactness principle. For example, in Theorem I1.2, denoting the
infimum by I(4,,..., Ay), weobserve that /° (o, ..., ay) = 0 forallo; = 0, and thus
the necessary and sufficient condition given by the concentration-compactness
principle reads

I(Ay, ..., ) <I(oy,...,ay), forall «;€[0,4]

such that Z o < Z ;. And the condition given in Theorem I1.2 is just a condition
i=1

which ensures that the above holds. Similarly for HF problems (Theorem I1.1), the
concentration-compactness principle yields the following necessary and sufficient
condition — see Gogny and Lions [25] for related considerations —

N
IA,..., ) <I(Ay,..., Ay), where 02,1, ) 4, <N,
i=1

where I(4,,...,Ay) corresponds to the same minimization problem with the
constraints | ¢, @¥dx = 4;4,;;. Again, the condition Z > (N — 1) is only a condition
R3

which ensures the above strict inequality. [

Proof of Corollary II.1. Since I;>=0 for all y=0, part i) is an immediate
consequence of Theorem I1.3. To prove part ii) we just have to show that (57) holds

I
for 2> 0 small enough. To this end, we prove below that f converges to

E1=Inf{f |Vul*+V|u|*dxjue H (R3), j]ulzdx=1}<0
R3 R3

as A goes to 0 ; and that this implies our claim on (57).
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An upper bound on E; is easy to obtain: recall that E; is achieved for some
@, >0o0n IR3 ¢, e H'(R* N C,(IR?), and observe that

LEEVIQ)SAE +CA>+ [ F(1/ A dxSAE, + CI2 +)e(2),
R3

where ¢(1)—»0 as A-0,,

since F(t)=o0(t?) as t — 0. Therefore, we have

— I
lim < E,.
A=0, /{

The lower bound may be obtained by observing that (55) implies
1
Ewyz | Vul>+V]ul*dx—c¢ | |l7u|2dx+gD(|u12, [u]?),
R3 R3

while we have for all 6 >0,

Lo W@

€ R3IxR3 ‘x_'y

|
1 )1 lu|? (x) [ul? ()
< d. o
S P R T e e
1 1 1
§§<R£3|u|2dx> +- |U|2*(milxl<é> L“|||ulzl|y
§1—<f 1u|2dx>2 <§ ledx) s <§ IVMZdX)
0 R3 |x| L
§L<I Iulzdx> —9 <I |u|2dx>< VuIZdX>
é R3

Therefore, we have for all ue H' (IR®) such that | |u|*dx=4,
R3

2

A
ﬁ(u)g<1—8—§§—1> [ WVul?dx+ | Viul?dx ——,
& R R3 gd

. . . I
and we conclude easily by convenient choices of ¢, § > 0 that not only —;— — FE, as ]
goes to 0, but also that if u, e H' (IR?) satisfies

LEEw)SL+o), | |luPdxs4,
R3
then ““isa minimizing sequence of the minimization problem giving E, , and thus
(up to a change of sign) % converges in H' (R?) to ¢;.

To conclude the proof of our claim and thus of part ii) we claim that for all 1 > 0,
there exists u, = 0 in H* (IR®) such that

L=6Ww), [lulPdxsi. (59)
]RB
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This is another consequence of the fact that /;° =0 for all # = 0. It is deduced from
the general arguments of the concentration-compactness method [43, 44]: let us just
explain the basic idea behind that fact. First, observe that since [, < 0= 1°,ifu,isa
minimizing sequence for the problem I,, then for some R >0,

[ lu,l?dx=8(R)>0

BR
for some 6(R)>0 independent of n. Therefore, the only way we can lose
compactness is when u, splits in (at least) two parts: u! and »2, where u! remains
compact, while ? is, roughly speaking, supported outside a ball whose radius goes
to co. Then, u! converges (in fact strongly in H* (IR?)) to some u, satisfying (59) - u,
may also be obtained as the weak limit of u, in L? orin H' and (59) may be deduced
from careful arguments involving (55). Finally, since I, < I, for all a €[0,4], u,
minimizes & on the set {|u|7> < 1} and thus by standard arguments u; is of constant
sign, say positive. Once the existence of u;, is proved, the proof of ii) is easy. Indeed,
by standard arguments u, satisfies

1 1
—du, +Vu, + (I”ﬂlz *m) “A+§f(”1)+9,1”/1=0 in R?, (60)

where the Lagrange multiplier 6, vanishesif |u; |7: < A. Furthermore, when A goes to

u . .
0., we know that —% converges in H' to ¢, which solves

—Ap,+Vo,=E ¢, in IR>. (61)

And this yields (to be rigorous one may use the fact that |f(2)|<et?+ Ct
for all rfeR, ¢>0): 0, > —E, >0 as 4 goes to 0, . Hence, for A small enough,
| luy|?dx = A
R3

To prove part iii), we just adapt the method of Benguria et al. [10]. Using the
formula (50) and the fact that the assumption on fimplies that F( ]/ t)is convex — see
also for related considerations Brézis and Oswald [18] — we see that the functional
occurring in (50) is convex and that

- 1
IA=Inf{j IV ol*+ VQ+F(fg)dx+§D(@, 9)/ez0, | degxl}
R3 R3

isa convex function of 1. Furthermore, one checks easily that the infimum of 7, over

all 2> 0 is achieved for some (unique) g,. And, finally, ¢, € L' (IR?). Setting

A= f 0o dx, we conclude easily, and we refer the reader to [10] for more details.
R3

To prove part iv) we observe thatif 1 < Z and if |u, |7- < A — where u, is the weak
limit of any minimizing sequence — then & (u,) = I,, u, is nonnegative (up to a change
of sign) and u, satisfies (60) with 0, = 0. Finally, we have for all y € 2(IR?)

1 1,
H,LIVWIZ+<V+1%|2*W+§J‘ (w))lwlzdx+2D(W//,uﬂ//)20 (61)

(this is nothing but the 2" order condition associated with the fact that u, is a local
minimum of &). We conclude using Lemma I1.3 with u=|u,|?, ¢=3%1"(u,)",
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w =2u,: observe indeed that u, € C,(IR?) because of (60) and thus (58) implies
that ¢ < Clu,|*® e L* (IR?). Then, Lemma II.3 (and its proof) contradicts (61):
the contradiction shows that |u, |7 = 4 and this means that minimizing sequences
are compact. [J

Remarks. i) In part iv) of the above result, the above proof shows that 6, >0
ifA<Z.
il) It is possible to replace (58) by

VR<o0,3Cr=0, (f(2))* £ Crt’?® for 0=Zt<R, (589
if we use the positivity of u,. Indeed, u, being positive, (60) implies that — 0, is the
lowest eigenvalue of the operator

1
AVl 5 (),

and we can prove that |u, |?: = 1 as above using also Lemma I1.3 and its proof. [J

Before giving the last application of Theorem II.3, we want to comment a bit
(56): we wish to point out that (56) excludes interesting situations like the TFDW
problem and that in general I;° does not vanish identically. For instance, if

2k
Fi)= e [£]? in a neighborhood of 0 for some k € (0, 1) —and this is the case for

1
the TFDW problem — one checks that /° <0 for all A>0. When I* is not
identically 0, the analysis of (S.1) is much more complicated. We can prove the
following

Corollary I1.2. i) The condition (S.1) holds for A > 0 small enough, and in particular
there exists a minimum for such A.
ii) If (58) holds, then (S.1) holds for 0 < A £ Z, and thus there exists a minimum.

Remarks. i) In the TFDW case, (58) holds and we have proved the existence of a
minimum for A < Z.

ii) The proof of part i) above relies upon the fact that 7;/4 converges to E; and
I/ convergesto 0 as A goes to 0, . This enables us to use general arguments for the
verification of (S.1) described in P.L. Lions [45].

iii) The proof of part ii) combines an easy extension of the arguments developed
in the concentration-compactness method with the arguments developed in the
preceding sections. This extension is described in the appendix — and uses in a
fundamental way the fact that the Coulomb potential " decays to 0 at infinity only
in a polynomial fashion, while the condition A<Z will imply by similar
considerations to those given in the preceding sections that the tentative solutions
decay exponentially at infinity. In fact the condition Z = A will also be used to

1 . . e
“deduce that ¥ + |u|* * — is negative and decays slowly at infinity.” The role of

x|
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such conditions was observed in Lions [46] and the argument we use is very much
related to those developed in Taubes [60, 61] and Berestycki and Taubes [12].

iv) If (58) is replaced by (58’), we still have a minimum A < Z by an argument
given above using the positivity of minima.

Proof of Corollary I1.2. We first prove part i) of Corollary I1.2: as we said in the

o0

. I I
remarks above, we will first show that f - E,, —1— — 0 as 4 goes to 0. The upper

0

— 1 . . o= 1 .
bound lim f—§ E, is proved exactly as in Corollary II.1 while lim 2~ <0, since
A-0, A0,

I» £0. To prove the lower bound we first observe that for all ¢ > 0, there exists
C, = 0 such that

F (1) Ze|t]*+ C,|t)*°? on R.
Therefore, we deduce using (52) if |u|2: = 4,
Wz —CoCaR) [ (Vuldx+ | Vul*dx— e,
R3 R3

E°W)z(1—CoC,A*P) [ |Vu|*dx —eA,
R3

L, L7

A2
Next, we argue by contradiction, and we assume there exists a sequence

An—n—> 0 such that (S.1) does not hold for 7, . We are going to use modifications of

and the convergences of to E,, 0 respectively are then easily obtained.

arguments introduced in [43]. In view of the above convergences, we may assume
without loss of generality that /; <I;?. Therefore, o, =inf (0 <o <4,/I, =1,+1;_,)
exists and o, > 0. We claim that (S.1) holds for 7, . Indeed, if 7, = I; + I;7_,; with
0<8,<ua,, we deduce

Ly=Ip + Ly g+ I o, 2 Iy + 15,21,

and this contradicts the choice of «,. Hence, there exists a minimum v, of /, , and
we may assume that v, is nonnegative. From the above arguments we deduce that

v . . Loa, 1 o, \ 12
"_ converges in H' to ¢,, and since ~= =" % 4 <1 - —'1) —InZinwe see that
o n An Oy ) A

n n " Oy

o s
/1—” — 1. Furthermore, v, satisfies for some 0, € R,

n n

1 1 .
—Av, + VUn+<lvn|2 *m> v,,+§f(v,,)+ 0,v,=0 in IR3,

and exactly as in the proof of Corollary II.1, the convergence of U to ¢, implies

that 6, converges to (—F;) > 0. n
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To conclude, we argue as follows

I,1<£<</1 )1/2 )
_1, +<—— ){j o+ V[, P+ (lu,.ml—>lv,,|2+1f<v,.)v,.dx}
] 2

< L |0, 12 () dxdy

R3x R3 | I

+§F<< ) ) F(v)—i(ﬂ2 )f(v,,)vdx
.S_Ia"—ﬂ,,(/l" a,) + C(4, —ot,,)z << )1/2 >
} I[f(vﬁt[(i) -1] ) f(v):ludtdx,

LS L= 0,0, = 8+ CUy— o) + €% o, + G,

n

where we use the inequality |f(¢)| £ e|t|+ C,|¢]°, hence

El
L=l +—

> (in - OCn)

for n large enough. By assumption, this implies

1

0
(/ln - Ocn) =

Ilw—a El
[, — 1 1= fno <"1
L, — 1. Ap— 0y 2
- Lr .
contradicting the convergence of = to 0 as 4 goes to 0,. The contradiction
- A
proves part i) of Corollary II.2.

We now turn to the proof of part ii) of Corollary 11.2. We begin with the simpler
case when A < Z to keep the ideas clear. The same argument as in Step 1 of the
method described in Sect. I1.3 (see also the Appendix) shows that, to analyze
general minimizing sequences, it is enough to consider some particular ones (see
also the Appendix) which here are sequences (u"), in H* (IR?) satisfying

Ew—m by | WP dx=4, (62
R3

—Au”+Vu"+<lu"|2*1_>un+%f(u")+9n“”TO in H7Y, o (63)

x|

where

1 1 1 1
0, = —=K&W)u"y= —I[f I1714"I2+VIL!"IZ-I-(W"I2 * ~> Iu"|2+§f(u")u"dx],
R3

x|
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and for all y e H' (R®) such that | u"y dx=0,
R3

1 1
| IVW|2+[V+ Iu”|2*m+§f’(U”)+(9n+Vn)J |l |?dx
R3

12 ] u(Ue) —— ()0 dxdy 20 64)
REXR3 [x—y]

for some y, — 0.

We next use (64) in conjunction with A < Z and (58) to deduce that 6, (or 6, + 7,)
remains bounded away from 0:

Iy>0, 6,=2v>0,

and since u, is bounded in H'! (IR?®) we may assume without loss of generality
that 9n —n—‘) 0>0.

And from the results of the appendix we deduce the existence of an integer
K=1, real numbers «,..., o, sequences yj for 2<;j< K, and functions in
H'(IR?*) N Cy (R?) u;(x) for 1 £j < K satisfying

K
o, 20,0,>0 for 25K, Y a;=4, [V} — o0 for
=1

2SJEK Y- Yl—— o for 2Si+j<K,

K
w—uy— Yy u(-+y)—0 in H'(R®), [ |u|*dx=uq,;
n 3

= (65)

K

@@(ul)zlala éaoO(uj)zlac;o fOf 2§J§Ks Ilzloz1+ ‘Zz Iaojo’
j=

1 1 .
—Auy + Vu1+<|”1l2*m> Uy +§f(”1)+6“1 =0 in R?,

—Au; + (]ujl2 *|)1€_|> u;+ %f(uj)+9uj=0 in R3 2<j<K.
Of courseif o; = 4, then the compactness is proved, and to prove that (S.1) holds we
are going to show that such a decomposition of 7, with minima satisfying the Euler
equations with the same Lagrange multiplier is not possible. Before going into this
final argument, we would like to comment on the information given in (65): the
concentration-compactness arguments yield in fact the decomposition of a
minimizing sequence in a finite number of pieces converging to minima of
subproblems as before, the only new information comes from the Euler equations
satisfied by those minima. Indeed, all the minima share the same Lagrange
multiplier 6 which is of course the limit of 8,, the Lagrange multiplier occurring in
(63). In fact, we will not use here the full force of this decomposition since we will
only use the fact that this implies that all the Lagrange multipliers associated with u;
are strictly positive (if we were able to prove directly this fact, we would not need
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such a precise decomposition). However, the full information may be crucial on
other problems. Let us finally mention that related decompositions (with different
types of lack of compactness) were investigated by Sacks and Uhlenbeck [52],
Uhlenbeck [62, 63], Brézis and Coron [16], Struwe [S7]....

We may now conclude the proof of Corollary I1.2: the idea is simple, we take K
points ¢;(1 =j = K) such thate1—0 le;] =1 for j=2, |e —e¢;|>0if i+, and we

consider w,=u; +u,(x+e,1)+ Z uj(x+e;1%), v,= V4 for 1=0. By

| t‘LZ
definition I, < &(v,) while |v,|?:= /1 Since we have easily

[w, |22 P i, ), E(w,) = 1, + Z Ir=1,

i=2

if we prove that for ¢ large, & (v,) <1, + Z , we reach a contradiction which

proves part ii) of Corollary I1.2. To 1nvest1gate the behaviour of & (v,) for ¢ large, we
first remark that since f* (0) = 0 we deduce from (65) by standard arguments that for
every ve(0,0%/?) there exists a constant C =0 such that

|Vu;(x) | + |u;(x) | < Cexp(—v|x]) for |x|=R, (66)

where R> max |X;|. In particular, this implies
15jsm

ASIwli=4+2 Y [ uwude< i+ Cexp(—vi)
1gi<j<K R3

for some C =0 depending only on v € (0, 0/%). Therefore, we deduce easily

= 4w,y 1A(8) = 1] = Cexp(—vi)
and
|&(v,) — E(w,) | = Cexp(—vi).

Next, we claim that

Ew) =&y + i é”"o(uj)+%{ocloc2—Zoc2}+o<1;>, as t— +o0. 67)

ji=2
At this point, we just observe that in view of (65), &(u)=1,, &(u;)=
K
for 2<j<Kand since Z= A= Z o;, we have proved the desired behaviour of
é (v,), and we may conclude. e
Hence, it just remains to prove (67). Using (66) one obtains in a straightforward
way denoting by @, =uy, dy =u, (- + e, 1), #;=u;(-+¢;1*) for j= 3

&)= &)+ Z &« (u;) + Z j V(x) |4 |2 dx
+ z D(l”ilz’ Iujlz)

1gi<jsK

+o(exp—vi)+ | {F(vt)—— i F(ﬁj)} dx
R3

j=1
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We first bound the last term: we have for ¢ large enough
K

{ {F(vt) -y F(ﬁj)} dx

R3 j=1

L[ F@)I+ Y IF@)|dx,

N(lx+e )] >1/2) j=1

=X [ 1F() - F(i)|dx

i=1 xtenls 2

where e, (1) =0, e, (1) =te,, e;(1) = t?¢, for j 2 3.
Each term in the sum may be bounded by

{ {Z |u|+CZ |u|5}<2ﬁi)dx§Cexp(—vt),
x+e@)sy2 Li=1 i%j
while the last integral is easily bounded by
K
C f lo*+ Y ld;|*dx £ Cexp(—vi).
A(lx+e¢(n)]> 12 ji=1

To conclude, we just have to prove

leﬁzlzdx::—fﬁg—i-o(i),

~ 1
Va2 dx = — 0<t_2> for j=z3 as t— o0,
1
D(i), |ﬁj|z)_‘*°‘_°‘_i_ﬁ+o<t) for i+j=3,

D(luy|?, |d; lz)—

<tl) for j=3,

D(ju, I, (ﬁ212)=°‘1l°‘2 +o<1),

<1> for j=3.

All these equalities are simple consequences of the following observations

D(li, 1%, 14 Iz)—

2] j Iu(X)Izdx rwady| flu(X)lzdx

NRCIRIOE —l—d dy ——> (f |u<x>|2dx> (5 |v<y>|2dy>
Rx 3 |x—y—z| lzi - 0 R

which hold for general u, v e H' (IR®) n C, (IR*) provided u, v ““decay fast enough at

infinity”, in particular if u, v decay exponentially at infinity as it is the case here.
Next, we have to explain why (62)—(64) imply that 6, remains bounded away

from 0 even in the case when Z = /1 if " is not compact. Indeed, we may assume that

" is not relatively compact in L? (IR?) and this means (up to subsequences) that "

converges weakly in H* (IR*) and a.e. to some u such that | |u|*dx =o < A. Then,

IR3
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|u"|? converges weakly in the sense of measures (and in L*) to |u|* and f (u")
converges weakly in L + L3/* (for example) to f” (u). Next, we observe that the
1 1 1 .

operator —A + V + |ul? *m—l-zf’ (u) + 2 K, with K(,(p:[(u(p)*m]uadmltsm
view of Lemma II.3 infinitely many negative eigenvalues. And if 6, — 0, we
reach easily a contradiction with (64).

Let us finally mention that (58) is basically optimal since one can show (see Léon
[30]) that for any 1 < g <3 and for any Z > 0 there exists a constant C(z) (going
to 0 as Z — 0) such that any solution v of

Z
—Av—mv—l-lvlq_lv—f—)»v:O in R3 vwveL? (R?

for some 4 2 0, satisfies | |v|*dx < C(2). Related results obtained previously may
R3

be found in Lieb [35], Lieb and Liberman [36]. On the other hand, the above
arguments yield the existence of a positive solution of this equation with | |v|*dx
arbitrary when ¢ >3. 2

III. Partial Existence Results

Our goal in this section is to present two methods — which were briefly described in
the Introduction — which do not seem to yield the same generality of results as the
method introduced in Sect. IV. The first method relies on some easy critical point
results where some compactness condition, namely the Palais-Smale (P.S.)
condition, is assumed to hold: these results are given in Sect. ITI.1. The application
to H problems is given in Sect. IT1.2. And finally in Sect. I11.3 we consider a fixed a
fixed point approach (2m approach described in the Introduction). These two
approaches seem to work only in the spherically symmetric situation.

II1.1. Some Abstract Critical Point Results

Let E be an infinite dimensional Banach space and let H be an infinite dimensional
Hilbert space; its dual space H* is identified with H and we assume that E is
continuously embedded into H. We denote by ||+ || the norm on E, ||« ||, the norm on
E*,|+| the norm on H and (-, +) the scalar product in H. Let N = 1, we denote by
My, My the following manifolds:

My={u=(uy,...,uy)€EN/|uy;]=1 forall 1=Zi< N}, (63)
Myp={u=(uy....,uy) €EY(uu) =5, forall 1<ij<N}.  (69)

J
And we consider an even C! functional & on EY. We will need a few more notations:
we denote by Xy (respectively 2 ;) the collection of all compact symmetric sets
included in M, (respectively M), ' (respectively ') the collection of all sets 4
in X (respectively X ) whose genus is more than %, i.e.

7(4) =inf{j = 1/3h odd, continuous from 4 into S/ '} 2k *

4 For the main properties of the genus, we refer to Krasnosel’skii [29], Rabinowitz [50],
Ambrosetti and Rabinowitz [2]
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and @ (respectively ®%;) the collection of all odd continuous maps from S*~ ! into
M (respectively M ;). Here and below k denotes some integer (k = 1). We then
introduce two sequences of values, which at this stage are possibly infinite,

b= inf max&w), Vkz=1 (70)
Ael* ued

= inf max E(h(¢), Vk=1 (71)
he@* EeSk 1

and, when needed, b, b%g, &, ¢ will correspond obviously to the H of HF
choices. Notice also that if 4 € @, then y (h(S*~ 1)) = k, therefore

Br<ck, Vkz=1. (72)

Finally, we will say that & satisfies (P.S.-c) on My, (respectively M) where
¢ € R if the following condition holds:

for each sequence u" in My (respectively Myg) such that

&) — cand (&1y,) @")—0in EN* (respectively
(€ lype) @) — 0 in E™*) then u" is relatively compact in E¥. (73)

Then, we have the

Theorem I11.1. Assume that & is bounded from below on M (respectively M yy).
1) Letk = 1. If & satisfies (P.S.-b*) or (P.S.-c¥) on My (respectively M yy) then b*
or c* is a critical value of & on My (respectively Myy).
2) Assume that E is separable and dense into H, that b* < &(0) for all k =1 and
and that & satiesfies the following condition:

for each sequence v* in My (respectively M yg) such that & (v*) < &(0)
for all k=1 and v* — 0 weakly in HY, then lim &(*) = &(0) (74)
k

then b*1 £(0) as k1 + 0.

Remarks. 1) We will need part 2) of the above result in Sect. IV.

il) These results are variants and adaptions of results given in Berestycki and
Lions [11].

iii) As usual, if P*=5b**1=_. . =b**" for some r=1 then the genus of the
critical points associated with &* [we assume of course that (P.S.) holds] is more
than »+1.

iv) If in (73) u" is bounded in EV, then the condition

(€1y,) @) —0 in EN*  or (€lp) @) —0 in EN*
is equivalent to
& W) =& W), upui— 0 in E¥, VIZiZN
or

N
S/ — Y (& W) uyw—0 in E* VISiN.

j=1
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We will only sketch the proof of Theorem II1.1 since it is an easy adaption of the
corresponding proofs in Berestycki and Lions [11]; and, of course, these schemes of
proofs originate from Ljusternik and Schnirelman [47], Palais [48, 49], Clarke [20],
Rabinowitz [50], Ambrosetti and Rabinowitz [2]....

The proof of part 1) is a standard deformation argument: some attention has to
be paid to the fact we are dealing with two spaces E, H but this is solved exactly asin
[11], and also to the fact that we have multiple constraints in the definitions of M,
M . This second difficulty is also solved as in [11] by building a pseudo-gradient
vector field v(x), i.e. a mapping from My (respectively Myp) into T (My)
(respectively T'(Myg)) which is locally Lipschitz on the complement of critical
points of &1,, (respectively &, )and such that for all u € My, (respectively My),
v(u) e T, (My) (respectively T, (Myg)), i.e. v(u) € E and

VIZiEN (v;(W), u)g=0 in the case of My

VI<ijEN (©; (W), u;)g=0 in the case of My
and v(u) satisfies

lv@llz=211(ly) @)l (respectively || (&']a,,)" ) )
S la) @), v(@)> Z 1(Ea) @I

replacing obviously My by M in the other situation. The remainder of the proof
follows the one in [11].
To prove part 2) we consider a nested sequence E, of finite dimensional

subspaces of EV such that | E is dense in EV and thus in H™ and dim E, = k.
k=1

Then, for each k=1, we choose 4 eI'* such that
&(0) + b*
b*<max &) < %i—

ucA

(75)

Next, we consider the space F, = E;-_, (orthogonal complement of E, _, in H). It is
standard that F, n 4 & 0: we recall the argument since we are dealing with two
different spaces EN, HY. By way of contradiction, assume that F, N 4=, then
denoting by 7, _; the orthogonal projection in HY onto E,_, we deduce that

- (A) = E . — {0}.

And since 7, _, is continuous on EV and obviously odd we reach a contradiction
with the choice of 4 in I'*.
Hence, there exists v* in F, N 4: because of (75), £(v*) < £(0), and obviously
v* e M, v* — 0 weakly in H~. Therefore, lim & (v*) = &(0) by assumption (74) and
k

we conclude since

&(0) + b
2

EWM) < . b< &(0).
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111.2. Application to Hartree Equations
We want now to apply the above results to the simplest example of the restricted
Hartree equation (14), i.e. we take E=H'(IR3), H= L*(R?%), N=1, and

1 1
E@)=[Vel>+ViplPdx+5 [ lol>®)Iel*(»)
R3 2 RixR |x—y|

dxdy.

Since & is bounded from below on My, we just need to check (P.S.-b%) or (P.S.-c¥),
that * < £(0) =0 and that (74) holds. As we will see below the main difficulty
lies with (P.S.) that we are only able to check in the spherically symmetric situation,
ie. X;=0 for all j. And furthermore we will only consider radial functions
o (x)=¢@(]x]), i.e. we will work with

E=H} (R’ ={peH"(R*/p(x)=0(x])}
H=L}(R%={peLl*(R%/p(x)=¢(x])}. (76)
With these notations, we have the

Theorem IIL.2.

1) If E= H'(IR®), H= L*(IR?), then b* < c* <0 and (74) holds.

2) Assuming that X;=0 for all j, Z =2 1 and taking E, H as in (76), then the new
values b*, ¢* still satisfy b* < ¢* < 0 and (74) holds. Furthermore, & satisfies (P.S.-c) on
My for all ¢ <0.

Before proving Theorem II1.2, we give the following

Corollary IIL.1. Ifwe assume Z = 1 and X; = 0 for all j, and if we take E, H as in (76),

then the values b*, c* are critical values and b*1 0, c*1 0. To each critical value
k k

corresponds at least one solution @* of the restricted Hartree equation (14) such that
|@* 2wy =1 for all k=1, ¢* is radial, the Lagrange multiplier & in (14) is
nonnegative andif Z > 1 it is positive and thus o* decays exponentially fast at infinity.
Finally, as k goes to oo, ¢* converges to 0 in LP(IR®) (for 2 < p £ ), V ¢* converges
to 0 in L*(IR®) and &* converges to 0.

Remarks. 1) Itis possible to treat by the same method some equations like TFW
equations but the unnecessary (in view of Sect. I'V) restrictions on the nonlinearities
make such statements almost useless.

2) At least for scalar problems, we will see below that the main difficulty lies
with the (P.S.) condition and that, for instance, we would be able to treat by similar

. . . . V4
arguments the general restricted equation (14) without restricting ¥ to be — m as
we do above provided one could answer positively the following question: let
0 €L’ (R?) be such that ¢ = |v|* withv e H' (IR*) and let u e H* (IR?) be a solution
of

1 .
—Au+ Vu+<g*m>u=0 in R3.

Then, does the condition Z > [ ¢ dx imply u=0?
R3



68 P.L.Lions

3) Infact, the above result also yields the existence of infinitely many solutions
for the general Hartree equations (11) provided Z = (N — 1) (and if Z> N — 1 the
multipliers ¢ > 0). Indeed, observe first that by a simple scaling we may replace the
constraint | |p|?dx=1by | |@|*>dx= A, where A > 0 and the above result holds

R3 R3

. . 1
if Z= /. Then, if we choose for all 1 £i< N, ¢f = == ©" where ¢" are the
1

solutions corresponding to the constraint A = N — 1 we obtain the desired solutions.
Of course, similar considerations, hold for the more general restricted Hartree
equations corresponding to the functional (42) and we will skip them.

4) One possible way to avoid some of the difficulties encountered below in
checking (P.S.-c*) and thus solving the question mentioned in Remark 2) above
would be to check and use a condition like

N
<Ay, Ay) forall 0=A4,<1 with ) A4, <N,
i=1
where ¢*(4,, ..., Ay) corresponds to the same inf-max value where the constraints
defining M, replaced by

[ lo;|?dx=4, for 1 gigN(f @;0Fdx=4;0, for all 1 <i,j< N for HF problems).
R3 R3

Since we do not know how to check the above condition, we will not pursue this
matter here.

5) Now, if we want to treat the H equations for N = 2 without restricting a
priori the form of the solutions or if we want to study the HF equations, there is
another difficulty in addition to the spectral problem mentioned in Remark 2)
above: even if this spectral difficulty is solved then for N = 2 (P.S.-¢) does not hold
for all ¢ < 0. Roughly speaking, this is due to the possible convergence of Palais-
Smale sequences to points of the form (¢,,...,¢,, 0,...,0) for some 2<p <N,
where (¢4, ..., @,) are solutions of the Hartree equations with N replaced by p.
This may be rigorously justified as follows: let 2<p <N, (¢4,..., ¢,) a solution
for the Hartree equations with N replaced by p and c¢= &(¢4,..., ¢,,0,...,0).
Then we consider y" in 2 (IR?) such that j [w"|?dx =1, y" converges to 0

in LP(IR%) for 2 <p < oo, Vy" converges to O in L4(IR%) for $<¢g< oo, D*y"
converges to 0 in L' (IR3) for 1<r<o. And our claim is proved since
E@1sees @p ¥, W) —0 and

(L) @1y @y y") =0 in (BN,

To avoid this loss of compactness at least when the spectral problem in Remark
2) above is solved, as it is the case in the spherically symmetric case, it is in a vague
sense sufficient to show that

f<ct forall 1Zp<N,

where ¢k corresponds to the same problem but with N replaced by p

(and thus ¢* = c§) — observe that ¢ corresponds to the choice 4, = ... =1,=1,
Apr1=...=Ay=0 in c*(4;,...,Ay) above. Again, we can solve this
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difficulty in the spherically symmetric situation. Indeed, let p < N, to each
(@1,..., 0,) eH' (R*)? satisfying | |¢;|>dx <1, ¢,is radial for all , we may asso-
R3 1
ciate in a continuous way the £ first radial eigenfunctions of [— A+V+ox* m}
r
—where o= ), |¢;|*—that we denote by y,,..., ¥, ¥, ..., ¥, are chosen such that
i=1

i

vi©)>0, [ ly;lPdx=1.
R3

Their existence is deduced from Lemma II.3 and the fact that Z > N — 1 = p and the
continuous dependence comes from the fact that we are dealing with radial
eigenfunctions (all radial eigenvalues are simple). Then for each & € S*~ !, we have
for all Ae R,

k k 1
éd(@’n---»‘/’p”1 Z 5i‘/’i>+}'2 Z &t j |VW1’|2+V'Wi|2+<Q*E[—>]WiI2dx9
i=1 i=1 R3

and using again Lemma I1.3 this yields for all R < oo,

k
(5’<¢1,...,<pp,/1 Y fil//i>§fo@((p1,...,qop)—lzvR, for some v>0
i=1

)4
for all (¢,,..., ¢,) satisfying >* | |¢;|>dx <p. And this implies in a straight-
i=1 R
forward way ¢y, <ck, bk, <bj....
Again, to restrict the length of this paper and to avoid unpleasant technicalities,

we will not make precise this matter here. [

Proof of Theorem II1.2. We first prove that ¢* < 0. Exactly as in Sect. II1.2 we can
prove that for all 0 <A <1,

< ()= Inf Max &(h(&)),

he®} EeS*!

where @% is the collection of all continuous, odd mappings from S*~! into
M},:{q) eHI(IR3)/j |<p|2dx=l}.
R3

Hence, it is enough to prove that for A small enough ¢* (1) < 0. To this end we recall
(see also Lemma II1.1) that there exists a k-dimensional subspace ¥, of H' (IR%)
such that

VoeV, [lolPdx=1, [ [Vol?+V]p|?dx< —v
R3 R3

for some v > 0. The collection of those ¢ yields a sphere that we denote by S¥~!

identifying ¢ and . Then, we consider the mapping / € © defined by 4 (¢) = 1/ AE.
And we compute

Max &(h(§) < —Av+ CA%;

FeSk-t

obviously this is negative for A > 0 small enough.
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Observe also that even if we take E, H asin (76), the above argument still yields
the negativity of c*.

Next, we show (74). Obviously enough the condition & (¢*) < & (0) = 0 implies
that ¢* is bounded in H' since ¢* € M. And as we have shown in the preceding
sections the fact that ¢* —— 0 weakly in L? implies that

[ 1V 1¢*? dx—0,
R3
therefore

lim & (¢*) =lim * (¢*) 20,
k k

and (74) is proved.
To conclude, we just have to prove that (P.S.-c) holds for all ¢ <0. Indeed, if
(™), = My satisfies

(Ely) (@N—0 in (B)Y, &(@)—c
we deduce that ¢" is bounded in E and thus
1 .
—A¢"+ V¢"+<|¢"|2*m> ¢"+e"@"—>0 in HY,

where ¢"= —{&"(¢"), ") is bounded in IR. Extracting enough subsequences if
necessary we may assume that ¢” converges to some ¢ € IR, ¢" converges weakly in
H'(IR®) to some ¢ e H! as n goes to + co. Passing to the limit in # we obtain

1 .
—A¢+V<p+<|¢|2*m>¢+8<p=0 in R® [ |o?dx=<1.
R3

And, in addition, recalling that & is weakly lower semi-continuous we deduce
that &(p) < c <0, hence ¢ £ 0.
Next, if | [¢|?dx=1, ¢"— ¢ in L* (IR*) and from the equations we deduce
R3 "
lim {ui Vo> dx+D("|?, pr"lz)}
== [VieP* +elpl?dx= | [Vol*dx+ Dol lo]*),
RR3 R

hence ¢" converges to @ in H' (IR?) and (P.S.-¢) is proved. Therefore we argue by

contradiction and assume that 0 < { |¢|* dx < 1. In addition, we may assume that
R3
¢ =0, since if ¢ >0, we deduce again from the equations

lim {j V9" >+ 20" |2 dx+ D(jg"|%, |<p"|2)}= — [ Vig|dx
R3 IR
= [1Vol*+elolPdx+D(ol% o),

and we reach a contradiction since this implies the convergence of ¢" to ¢ in
H'(R?*). And we conclude with the
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Lemma IIL.1. Let ¢ e H' (R®) be a solution of
—A(p——Z—<p+<Q *—1—>q>+a<p=0 in R3,
[x] [x]
where ¢ <0, g e L, (IR?), ¢ is radial. Then, if Z> | gdx, ¢ =0.
R3

— 2 dy and we appl
H & max (|x|, y]) i

Theorem 3 of S. Agmon [1]: the conditions stated in [1] are verified as follows,

1
Proof. We first rewrite (g*—) as | o)

VA 1 . .
let p(x)=py(x)= m —o* m + |e|, then choosing « in (0,3), we compute

2 <a£+2(1r—a)p>g(1—2oc) <Z— | de)—2(1—oc) [ o(x)dx
R3

or |x|=r

=20 for rlarge enough.
And thus by [1], we deduce that if ¢ =0
2
im R [ 2@

R 1sixsk X

dx >0,
contradicting the fact that ¢ e L2 (IR3). [J

111.3. The Fixed Point Approach

We discuss in this section another approach to the existence of solutions of H, HF
and related equations. This approach is, in some sense, the mathematical analogue
of one numerical method often used by physicists to solve these equations. It was
first studied mathematically by Wolkowisky [65] who proved the existence of
solutions for (essentially) Hartree equations in the spherically symmetric case.
However, our treatment of the existence of fixed points is somewhat different and
probably simpler.

In order to illustrate the method, we start with HF equations and explain on this
example the idea of the method. Then, we give and prove our main result. Finally,
we conclude with a brief, non-exhaustive list of results which can be obtained for
various equations by these arguments. We will define a mapping whose fixed points
will yield solutions of HF equations (13). In fact, since we will have some spectral
information on each ¢, the mapping will depend on some set of integers: more
precisely, let n, <...<ny be N distinct integers. We may now define a mapping T
=T(n,,...,ny) on a convex, closed subset of L*(IR* x IR*) x L' (IR*): we first

consider the set K= {Q eL?(R*xR?*, 1eL'(R%/g=0ae,t20ae, |rdx
R3

=N, o(x,y)=0(,x) ae and Voe2(R?), 0= [ o(x,») 0 (x) o) dxdy

R3x R3
<N lo(x) Izdx}. Then, we consider the operator
R3

1
—A+V+rx—— [ 0(x,) dy.
R3

1
[x] [x—yl
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Observing that the self-adjoint operator given by

t//—ﬁ@(vy)' v () dy

g

is nonnegative, (indeed this is obvious if ¢ (x, y) = Z v; (x)w,;(y) for some M < oo,
i=1

w;€L* Viand the general case follows), we deduce from Lemma I1.3 thatif Z > N

the above operator has infinitely many nagetive eigenvalues (4,), = 1 (counted with

their multiplicity). We then select the eigenvalues 4, ,..., 4, and consider the

associated normalized eigenfunctions y,,..., yy. We then set

N N
T(g,7)=(0,7) where @(xay):AZIWi(x)Wi(y)a f(x)=@(x,x)=.;l%(X)|2~
(77)

Of course, only the last step is heuristic since in general eigenvalues may not be
simple, in which case T is not properly defined. This is where we will be using the
spherical symmetry (and it is the only place!): in general we do not know how to
define T in a meaningful way or to avoid the possible multiplicities.

Hence, from now on, we will be dealing in this section only with the particular

case when V(x)= —IZT and when all functions are radial (a better way of
x

implementing spherical symmetry is described in the remarks below). More

precisely, we denote by K the closed convex set of L2 (IR3 x IR?) x L' (IR?) defined

by

K= {(Q,‘E) el (R*xR*)x L' (R%/9=0 a.e., 20 ae., o(x,y)=0(,x) a.e.,
0(Rx,Ry) = 0(x,y), t(#x)=1(x) a.e. for all rotations # of R>, [ tdx <N,
R3

0= ] et y)o(xe@)dxdy<N [ |¢|*dx for all ¢€@(IR3)},
R3x R3 R3

and we now pick the simple eigenvalues 4, <... <A/, of the operator —4+V
1
+ <‘L’ * |—> j o(x,y) —— =yl - dy acting on the space L} (IR*) = {feL*(R%)/

S(#x)=f(x) a.e. for all rotations # of R>}. Let y, ,..., v, be the associated
(radial) normalized eigenfunctions which exist by Lemma I1.3 at least if Z > N: the
w; are well-defined (up to a change of sign), are orthogonal and thus 7'(¢, ) = (2, 7)
is still defined by (77). In view of Lemma I1.3, the continuity of T'is an easy exercise
in functional analysis. If we show that T is compact on K, then by the Schauder
theorem we obtain the following result.

VA
Theorem IIL3. Assume X;=0 for all j,i.e. V= — I—x—i and Z = N. Then for each set

of integers 1 <n, <n, <...<ny, there exists a solution (¢,,..., py) in H' (IR?)
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of HF equations (14) such that | ¢, @;dx=206,; for all 1Si,j< N, @y,..., @y are
R3

radial and for each i the Lagrange multiplier ¢, in (14) is nonnegative and is the
opposite of the radial eigenvalue A, of the operator

1
—A+V+o*x——[o(x,y)

. dy
[x]

L
|x =]
with ¢ (x) = 0(x, x), 0(x,y) = Z @;(xX) @; (). Furthermore, if Z > N, the eigenvalue

(—¢;) is negative and ¢, decays exponentzally Sfast at infinity for all 1 i< N.

Remarks. 1) We provein fact below thatif Z > N, T'is compact and thus we obtain
the above result in the case Z> N. The case Z= N is obtained by a limiting
argument below.

2) There is a better notion of spherical symmetry than the one above (which
corresponds to the real meaning of spherical symmetry in Physics). This
notion may be easily explained on solutions of HF equations (14): assume that
(¢15..., @y)is a solution of (14) such that g9 (Zx, Zy) = ¢(x, y) for all rotations #
of IR? (in particular g is radial), then (take Z > N to simplify) the eigenvalues of
H=—-A+V+y *l)lc—l—R, where Rp = | o(x,) |x1 )] o(dy (Noe2(R?)

R3 -

may be classified as follows: let g, (k=1) be the eigenvalues of the Laplace-
Beltrami operator on S2, i.e. 4, = k (k — 1) with multiplicity 2k — 1, then for each

k=1 consider the eigenvalues 4, ,(n=1) of # + |ﬂ|2
eigenfunctions. Then, as it is standard, the collection {1, ,/n=1, k =1} is the
sequence of eigenvalues of s#. Hence, the Lagrange multipliers ¢,,..., ey are in
that set and the consistency of spherical symmetry requires that if one of the ¢,
corresponds to some k=1 then there are (2k —2) indices distinct from i in
{1,..., N} such that the corresponding ¢; are equal to ¢; and the associated y;, y;
span precisely the eigenspace. In other words, instead of requiring in the definition
of T all the ¢; to be radial and choosing the eigenvalues 4, ,,..., 4, ;, we may
choose 4, 4...., 4, o Withp =1, m 21, k; 2 1for1 Si<pandn; +n;ifk; =k, for

corresponding to radial

)4
all 1<i#j<p, and where p, n;, k; are such that ) (2k;—1)=N. Then, we
i=1
define 7 as above, selecting the eigenfunctions as follows: for each k; equal to 1 we
take the normalized radial eigenfunctions and for each k; = 2 we take the 2k, — 1)
normalized and orthogonal eigenfunctions spanning the eigenspace corresponding
to A, ;. Then, we form g(x,y) with these N normalized and orthogonal
eigenfunctions.
One checks easily that the above theorem still holds for such choices.
3) Let us recall that in the above result, ¢; has precisely (7, —1) simple
nodes. [J

Proof of Theorem I11.3. We first show that, if Z> N, T is compact, and then we
consider the case Z = N. To prove the compactness of 7, it is sufficient to show that
T(o,,,7,) is relatively compact in L?(IR3x IR®) x L' (IR%) if (g,,.1,)€K is
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bounded in L2 (IR3 x R*) x L*(R?). Since Z> N, Lemma II.3 implies that
eigenvalues A4}, ..., A} and the corresponding eigenfunctions y7,..., v, satisfy

(W7, isbounded in H'(R’) Vj, Al<..<it<—g<0 Vm21

for some ¢, > 0 independent of m. This implies obviously that 7'(g,,, t,,) is relatively
compact in L (IR® x IR*) x L, (IR®). Hence, we just have to check that

| ly"?dx—0 as R— oo, uniformly in m for all j.
x|z R
If the exchange term (the operator K) were not present this would be almost
obvious since y' would be a normalized eigenfunction of —4 + ¢ — 477, where ¢ is
radial and ¢(r) — 0 as r — 00, and this would yield a uniform exponential decay of
7 using the fact that A} < —&, <0.

Here, we may argue as follows: letyeCP(RY), y=0if |x| 4, y=1if|x| 21,
0=y=1 (we may choose g radral if we wish). Then multiplying the equation
satisfied by y7' by the quantity w7 x%, where yx = x (+/R) and integrating over IR?,
we deduce

I3IVw;"|2x§+son;"I2x§dxé F (=" ik dx+2n£3 ViV e Wi yrdx
IR R3

1 m m
+ JI @) T v @ R@v0)
hence
2
<so——§—> w2 akdx
1/2
= f IV oarl? 1w} dx + C<R3HR ll//,l () xz ) 1w} O)1? dxdy)
C R 1/2
éR_ (ijfm I ()12 1k (x)m ly? (| dxdy> ,
c,. <

where C denotes various constants independent of m, and we conclude.

Having thus proved the existence of solutions for Z > N, we now treat the
case when Z = N. In that case, we approximate Z by Z+ ¢, find by the above
proof a solution (¢3,..., ¢§) of HF equations (14) satisfying all the conditions
stated in the theorem We denote, with obvious notations, by J#, the operator

Z .
A I:|8+Qs ~——§Q( ’J)Ix )] ~dy and by A, <...<A4, the eigen-
values of #, (of order Hy,...,Hy). The functions (¢4, ..., @%) are clearly bounded

in H* (IR?) (bounded in L? by definitions and the gradient bound is deduced from
the equation) and, extracting if necessary subsequences, we may assume that

@} — ¢; weakly in H' (IR®). If f odx = Z | 19;1?dx < N then the limit operator

i=1R3



Solutions of Hartree-Fock Equations 75

A admits infinitely many negative eigenvalues (use again Lemma I1.3): in parti-
cular, 4, <... <4, <0and 4, — 4,. But this means that there exists ¢, > 0 such
that for ¢ small enough

A <. <A S —gg<0.

Then, the proof above applies and we deduce the strong convergence of ¢ to ¢; in
L?(R) reaching a contradiction. Therefore, | ¢dx= N and ¢i— ¢, in L?(IR?)

R

for 1 £i< N. The strong convergence in H' (IR?®) is deduced from the equations as
usual and the rest of Theorem III.3 follows. [J

We now conclude this section with two applications of the above method: the
first one is a slightly more general form of the restricted Hartree equations
[Euler-Lagrange equations associated with (42)—(43)] and the second one is the
equation associated with (47)—(48) containing in particular the TFW and the
TFDW equations. Hence, the first set of equations we will consider is

N 1 )
=A@+ V,(r)p; + Z aij(“lez*m) @;+e0;=0 in R3,
j=1

forall 1<i<N (78)

with the constraints | |¢;|*dx = 4;, where 4, > 0, a;; 2 0 and a;; = a;; for all 4, j, and
IR3

for all i, V;(r) satisfies

35, €(0, 1), <V,. + i—ﬁ) e L* (R%) + L3 (IR?)

Z—ze\" 1,3 3/ 3
Ve>0, V.+ e L' (R + L°(IRY). (79)
¥

z
For instance, V;(r) = ———+ + satisfies (79) if @, > —%.
Then, if n, <n, < ... < nN are N fixed distinct integers, we define a mapping
T(g4,..., oy) defined on the convex set

= {(gl,..., oy) e LY (R*N/0 < g;, pi is radial, nj; 0;dx <), for all l}

by (@;,-..., @y), Where 9, = |@;|?* and ¢, is the radial normalized eigenfunction of the
N

1 . . .
operator hy= —A+V,+ Z a; (Q ;i * ﬁ) corresponding to the #, eigenvalue. This

is possible by Lemma II. 3 and (79) if Z > Za
procedure we prove as above the

;j4; for all i and again by a limiting

Theorem IIL4. We assume (79) and for each i either ) a; ;< Z, or Za =Z,

ijtj

J
and there exists j such that ) ay A= Z, a;>0. Then, for each set of integers
k

1<n,<n,<...<ny, there exists a solution (¢, ..., @y) in H* (R*)¥ of (78) such
that | |@;|*dx=4; for all i, @,,..., oy are radial and for all i the Lagrange
R3
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multiplier ¢; in (78) is nonnegative and is the opposite of the radial eigenvalue 1, of the

operator
1
—A+V+Z U(I(p,lz |x|>

Furthermore, if Z > Za ¢; >0 and @, decays exponentially at infinity.

ij j»

Remark. This result contains Wolkowisky’s result [65] which corresponds to the

Z
caseV(r)-——-l— " for some a; >0, a;=1—96;, =1, Z>(N—-1).

ij>

We conclude w1th the equation

| x|
with the constraint j |@|?dx = A, where 2> 0 and fis an odd C' function on IR
such that f(0)=f" (O) 0 and
lf(Ol=0(2]"?) as t—co, fT()=0(>°) as t-0, (81)

zZ 1 1 .
—Aqo———tp+<l<p|2*m><p+§f(¢)+w=0 in R (80)

(the analogue of (58)-(49)). Notice that (80) is the Euler-Lagrange equation
associated with the minimization problem (47)-(48). For

QEK:{ZGLI(IR3)/Z§O, z is radial jzdxg/l}

R3
we define a mapping T'by Tz = | @ |?, where ¢ is the radial normalized eigenfunction
corresponding to the eigenvalue A, (for some fixed integer k£ = 1) of

WENPELRRES
We claim that Lemma II.3 implies that such an eigenfunction exists if Z > A.
Indeed, denoting by ¢ =3/ (0'*) ¢~ /%, we deduce from (81) first of all that
q g _ Ce _ 8Q2/3
hence the operator is bounded from below on the sphere of L?, and next that
" SC@+ el + 1P,
and Lemma I1.3 applies. And we obtain the

Theorem II1.5. Assume (81) and Z = A. Let k = 1, then there exists a radial solution
in H' (R%) of (80) such that | |@|*dx=21 and the Lagrange multiplier ¢ is
R3

nonnegative and is the opposite of the radial eigenvalue A, of the operator

Z 1 1
—-A——— 2 o - —1.
. +lo|* * ] +2f(qo)<o

Furthermore, if Z> A, ¢ >0 and ¢ decays exponentially at infinity.
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Proof. Again, the case Z = 1 is obtained by a limiting procedure. If Z < 4, we just
have to check that T is compact on K and this is done exactly as in the proof of
Theorem II1.3. [

IV. General Existence Results

The organization of this section is the following: we first state our main existence
results for H and HF equations and we briefly explain the strategy of proof in
Sect. IV.1. The actual proof'is given in Sect. IV.2, and we explain in Sect. IV.3 how
this method also yields various existence results for related equations.

1V.1. Main Results and Presentation of the Method

Of course, when dealing with H equations (respectively HF equations), the
functional & will be the one given by (7) [respectively (9)]. With this convention our
main result is the

Theorem IV.1.
1) H equations: Assume Z>(N—1). There exists a sequence (¢%, ..., O§))iz1 of
distinct solutions of Hartree equations (11) in H* (R*)N which satisfy: | |@¥|>dx=1,
R3

V1<i< N, VYkz=1.Inaddition, the Lagrange multipliers (— &) are positive and ¢*
decays exponentially at infinity for all i, k. Finally, as k goes to o, & — 0,
V(pf.‘TO in L?(IR3), ¢pf——0 in L?(IR3) for 2<p< 0.

2) HF equations: Assume Z = N. There exists a sequence ((¢*, ..., <P’1§1))k;1 of
distinct solutions of Hartree-Fock equations (13) in H'(IR®)™ which satisfy:
| ofol*dx =06, for all 1 <i,j< N, k= 1. In addition, the Lagrange multipliers
R3

(—&¥) are nonnegative and if Z > N, they are positive and the functions ¢ decay
exponentially at infinity for all i, k. Finally, as k goes to oo,

g§——0, Voi—0 in L*(R%), ¢f—0 in LP(R?) for 2<p<oo. [

We next sketch the proof of the above theorem. To this end, we need a few
notations. We will approximate the H or HF equations by similar equations the
only difference being that we replace IR® by a ball B, and we willlet R — oo. We will
always consider H} (Bg) as a closed subspace of H' (IR?®) extending functions in
H{ (Bg) by 0 outside By. In the first step, we consider the values c% which are
defined by (71), where we choose H = L* (By), E = H} (Bg), and & is the functional
corresponding to H or HF equations. We check that for each k=1, ¢k | c* as
R 1 + o0, where ¢* corresponds to the same value where H = L? (IR%), E= H' (IR%)
and we recall that ¢* <0, c*T0as k1 co.

In the second step, we deduce from the results of A. Bahri [4] that if & is chosen
such that ¢, < ¢, , ;, then for Rlarge enough there exists a critical point (¢¥%, ..., ¢®)
of &1y, or &|y in Hg (Bg)" such that

R 8@k, ..., pR)< M, for some constant M, ind. of R, (82)
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and the number of negative eigenvalues of the quadratic form defined by

6" (%) — <& (9%), ¢*>,  with ¢"=(pf,..., o})

is bounded from above by £.

Finally, in the third step we show that @® converges in H' (IR*)" to some
solution ¢ of H or HF equations (this is where we use the assumption on Z) which
satisfies ¢, < & (p) < 0, where £ is still chosen as above. This enables us to conclude
the proof of Theorem IV.1.

We would like to mention that the convergence argument in step 3 is the same as
the ones introduced in Sect. II, and that step 1 is very easy. Let us also remark that
we could also have used the critical points results due to Viterbo [64] or Coffman
[21], modifying a bit the above scheme of proof but keeping the same basic
ingredient namely a bound on the Morse index of some convenient critical point.

To conclude this section, we wish to point out how the above arguments fail if
N —1<Z< N for HF equations. Indeed, in this case, we only build a sequence
(@, ..., @X))kzy of solutions of HF equations (13) in H'(IR’) such that
| @f p¥dx=0if i+ and for each k =1
R3

either | (@9*dx=1 for all i,
R3
N
or Z< Y [(¢hH*dx<N and for each i
i=1 R3

[(@H*dx<1 implies &=0.
R3

In the case of minima this alternative was sufficient to conclude (by excluding the
second possibility) but for more general critical points we were not able to get
around this difficulty. From the Physics viewpoint however, there is no difference
between the assumptions Z > N —1 or Z = N since Z is integer-valued!

1V.2. Proofs

Step 1. By the very definition of cX we see that cX | as R1 oo and that ¢X = ¢, for all
R < 0. Inaddition, we already know from Theorem II1.2 that ¢, <0 and thatc, T 0
as k1 co.

To conclude, we just have to show that ¢, = lim ¢R. To thisend let ¢ > 0 and let

Rt
he@* [i.e. an odd continuous map from S*~* into M, or My, with the choice of
spaces E= H' (IR%), H= L*(IR*)] be such that

a=Max &)= +e.
éesk—\

Then, we observe that /2 (S*~ ') is a compact set in H' (R*) and we wish to deduce
from this fact an approximated map Ay still odd and continuous from S*~ ! into the
manifolds My or My corresponding now to the choices of spaces E = H} (Bp),
H = L*(Byg) and such that

?AS%EE”h(é)—hR(‘:)”Hl(mS)"O as R— . (83)
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If this is the case, we conclude since we deduce
¢ < Max & (hg(£)) S Max &(h(£)) + dg S ¢, + &+ Og,
feSk! teSkt
where 0 >0 as R — o0.

Next, to prove (83) we first truncate the functions given by h(S*™Y), i.e.
we consider yeZ(R?), 0=y <1, y=1 on B,,, x=0if |x|21, and we set

Ir(X) =y (%), then we denote by

I (@)= (trhy (©)s- -, arhn(&), VEeSH,

where /; denote obviously the components of the map 4. Using the compactness of
h(&) it is straightforward to deduce

Max | A(&) = () Iy >0 a5 R oo,

In the case of H problems, we conclude by setting for R large enough (so that
Min i1 (6) sy > 0
hg (&)= (hig i (&) | g, (&) 1 2ts0)1 < s -

In the case of HF problems, we build the map /4y for Rlarge enough by a standard
orthonormalization procedure

hR, 1 (é) = ER, 1 (5) “ I:;R, 1 (é) “L—’%Bk)a
and for 2<i< N,

GE {ER,i@) NGHCYNCOR hR,j(é)} '

i—-1 -1

Fig, 1) = X (g 1 (&), g (€D 12 g 5(E)

j=1

b
L (Bg)

and we conclude observing that / is still odd and continuous.

Step 2. We choose k = 1 such that ¢, < ¢, ; . In view of the results proved in step 1,
we still have cf < ¢, ; < R, | for Rlarge enough say R= R, = 1. Then, choosing
R=R,, there exists h, € @& (odd continuous map from S*~! into the manifold
MZE or My corresponding to Hg (Bg ), L (Bg) such that

Ms?fk‘f“ E(ho () <Crsy-
¢e

We then chose é € Hj (B, )" such that

[ ehy (&dx=0 VeSS ! VIZij<N,

Bg,

[ eedx=s,,
Bg,

and we consider the set

A={1"2hE) + (1= ¢/te]0,1], EeSF 1) c My,
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(with a similar construction if we are in the case of H problems). Then, we denote by
M, =sup{&w)uecd}.

We now deduce from the results and methods of Bahri [4] that there exists for
each R= R, [notice that O@F @, since Hj(Bg) >H; (B, )] a critical point
(X, ..., %) of &R (the restriction of & to MK or M{y) and thus in H{} (Bg)" such

that
Cfé éo((pllzﬂ LR (pll\zl)éMk’

and the number of negative eigenvalues (counted with their multiplicities) of the
quadratic form &” (¢®) — (&' (¢®), @*) is bounded from above by k. In other
words, taking for example the case of HF problems with real-valued functions to
simplify notations, (¢%,..., ¢R) e H} (Bg)" and satisfy

1 1
~A¢§‘+V¢f‘+<@"*m)fpf‘—ja"(x,y)lx_ K FO0)dy +ef o =0 in By
(84)
JofoRdx=06,; for 1<i,j=N (85)

ul 1
2 5lei|2+ Vlwi|2+<e" * W) lyil” + & [y dx

+2 Z flofx)yi(x )l IQD,(J)W,()?)
i,j=1
1
= of (M) ) oy oF () y; () dxdy 20 (86)
for all (y,,...,yy) in a closed subspace of H{(Bg)¥ of codimension at
N N

most k+ N, where o%(x)= ) [of (M)’ o"(x,) =) ¢f(M) () and
i=1 i=1

0
&' = —<@(p- @F, .. o0 <p5‘>~

Step 3. We first show that @& converges in H* (IR*)" to some solution of H or HF
equations. Combining (82) and (85) we see that ¢ is bounded in H* (IR*)" and thus
¢R are bounded. Then, in view of arguments we did several times in the preceding
sections it is enough to show that lim &} > 0 (atleastif Z > N in HF problems, the

R—
case Z = N being treated by the same modifications as the ones we did several times
before). And this is achieved exactly as in the preceding sections by the combined
use of Lemma I1.2, Lemma I1.3 and (86).
Hence, we obtain a solution ¢ (depending on the integer k& we chose at the
beginning of Sect. II) of H or HF equations which satisfies in addition

[lg:il?dx=1, >0 forall 1<i<N, in the H case (87)
R3

[ @iorde=0,, =20 forall 1<ij<N, >0 (88)
R3

forall 1<i<N if Z> N, in the HF case.
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We next observe that ¢, < §(¢,,..., ¢y) and

N

&= Z _flV(pilz—l—VI(p,-]de

1 i=1R3

0= —

i

+3 D(lo;l?, I(pj|2)> E(py,...,py) 1in the H case,
i*j

M=

while in the HF case

-3 -

i=1

HV

an

[V >+ V| dx
1 R3

+ H {Q(x)e(y)—g(xJ)}

dxdy> E(@y,..., 0N,

since ¢(x) 0(y) — 0(x,»)> =0, =0 on IR x R>.
To obtain the existence of a sequence of distinct solutions we just observe that
once we have built m distinct solutions satisfying

= E@h s W) < S E@ L 0 <0

for 1 </< m,where k, < ... <k, are mintegers, then we choose an integer k > k,,
such that

E(@T, ..., 00) < <Criq-

This is possible since ¢, T Oask T co and & (@7, ..., @x) < 0. Then, we obtain by the

arguments above a solution (71, ..., p%*1) satisfying

Ckééa((PT+1>"'a(p%+l)<09

and we build the desired sequence setting k = k,, , ; . Observe also that the sequence
of solutions we built satisfies (87), (88) for all k=1 and

E@h, ..., )10 as kT .

And by the argument used above to show the negativity of &(¢p4,..., py) We
deduce

Y D(|gk)%, l(p;.‘lz)—k—>0 in the H case, (89)

1Fj

H {e" 0" ) =" )? }

dxdy——> 0 in the HF case.  (90)

On the other hand (87) and & (¢, ..., ¢%) < 0imply that ¢*is bounded in H* (IR?).
And this combined with (89)—(90) yields easily that

@f——0 weakly in H'(IR?) forall 1<i<N.
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Observe also that e — 0 for all 1 £i £ N. And then from the H or HF equations

one deduces easily that V¢ ——0in L?(IR?), and we may conclude.

IV.3. Related Equations

Using exactly the same method, we obtain the results presented below; hence, we
will only state them.
We begin with a general form of the restricted Hartree equations,

N 1 '

—dp;+ V()@ + Z aij<|¢j|2*m>§0i+8i(pi=0 in IR3,
i=1

forall 1ZiEN, 91)

with the constraints | |¢;|?dx =2, forall 1 i< N, where a;=a;; 20, 4,> 0 and
R3

V. satisfies (79). Our main existence result is the

N N
Theorem IV.2. Assume that for all 1 <i< N, Z> Z a;hjor Z= Z a;; A;, and
j=1 j=1

17 A
N
there exists k such that Z=Y, ay A and ay > 0. Assume also that the potentials
~

J
V; satisfy (79) for all 1 i< N. Then, there exists a sequence (¢}, ..., PX)iz1
of distinct solutions of (91) in H'(IR®) which satisfy | |@¥|>dx=21; for all
R3

1<i<N, kz1. In addition, the multiplier ¢ is nonnegative and if for some i
N

Z> ) a;h;, then e8>0 for all k2 1; in that case ¢f decays exponentially at
=1

infinity for all k=1. Finally, sﬁ‘—k»O, (pf-‘7>0 in LP(IR%) for 2<p< oo,

Vgt —0in L*(R®) for all 1 Si<N. [

And we conclude with an extended form of TFW type equations: by this
example, we wish to show how one can extend our results and methods for
problems in IR¥ with more general potentials V, or interactions different from

1

m. ... We consider the equation

— 49 +Vo+ (o>« W)+f(9)+ep=0 in R", 92)

with the constraint | |¢ |2 dx = A, where 1 > 0, N = 3 and V, W satisfy (for instance)
R3

N
V- elN?(RY)+ L?(RY)  for some 5 <p<®

_ +
Ve>0, <V+§|—|78> e L' (RY) + L¥=(IRY) for some O0<a<N, (93)
X
where Z > 0,
1 +
W=z0ae; Ve>0, (W—B_l—]—;) e L' (RM+ LVF(RY) for some o < B<N.

94)
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Finally, f'is an odd continuous C! function on IR such that f(0) =" (0)=0 and
I (@O]=0@*N) as t— o0, f'(1)"=0(t*N) as -0, 95)

f(l)tg}f(s)ds forall teR. (96)
0

We may then prove the

Theorem IV.3. Assume (93)—(96) and Z = J. if f = o. Then, there exists a sequence
(1) z 1 of distinct solutions of (92) in H' (R®) such that | |, |* dx = A, the Lagrange
R3

multiplier —z¢, is non-positive and negative if f> o or if p=o and Z > A. Finally,
&—0, ¢, —— 0 in LP(IR?) for 2<p £ o0, Ve——0in L*(R%. OJ

Remark. The assumptions (93)—(94) may be considerably relaxed or modified: we
chose this formulation to emphasize the role of the behaviours at infinity of V, W.
If (95) is natural enough in view of various standard arguments (see also Sect. 11.4),
we are convinced that (96) may be extended at least to cover the case when
f(Ht=z0on R....

Appendix: The Concentration-Compactness Method Revisited

Our goal here is to make a few remarks on the concentration-compactness method
[43, 44]. We begin with a few abstract comments and we thus follow the heuristic
setting given in [43]: we consider a functional minimization problem of the form

L=Inf{€wuecH, Jw=2}, Ai>0,

where H is some functional space, &, J are functionals with a few formal properties
described in [43]. If one can define functionals at infinity &®, J*, one introduces the
problem at infinity

I =Inf{€°(w)/ueH, J*(u)=A1}.

Then, the concentration-compactness principle states that a necessary and
sufficient condition for the compactness of all minimizing sequences is

L<I+I2, Voel0,l). (S.1)

And, if the problem is translation invariant and thus §= 6%, J=J*, =1, a
necessary and sufficient condition for the compactness of all minimizing sequences
is

L<IL+1L_, Noe(,A). (S.2)

In other words (at least for locally compact problems, see [43] for more details) the
only possible loss of compactness is when a minimizing sequence (1") breaks into
several parts u’, u}, ..., uy for some K= 1 (Kisin general finite but may be in some
problems infinite) which are essentially supported in sets whose distance goes to
infinity and uj, respectively @} =uj}(-+)}) for some |y} — © (j=2), is a

minimizing sequence of /, , respectively, 17, for some oy =0, ;>0 for j = 2 such
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that Z w=A0L=1I + Z ;. In addition, either 7} is ““‘compact™ or %} “vanishes”

(see g [43]) for all j= 2 and in many cases vanishing is easily excluded.
Of course, all this is a bit formal and needs to be justified on each problem.

We want to explain in this appendix why additional information on 1, ..., u%
are often available. In particular, we will show why (65) holds and precise results
will be given on two examples. Roughly speaking, we claim that in order to analyze
(S.1)—(S.2) and the behaviour of arbitrary minimizing sequences, we may only
consider minimizing sequences (") which are “‘almost minima” of 7, (this will be
analyzed in particular in terms of 27 order positivity conditions) and satisfy

&' —0,J' W)—0 in H* (A.1)

for some Lagrange multiplier §,. Furthermore, in many cases one can prove that u”
breaks (up to subsequences) in a finite number K of pieces which are all compact up
to different translations. Of course the case of compact minimizing sequences
corresponds to K=1 (one compact piece). Agam roughly speakmg, there

exist o, 20, a,,...,00>0 such that 1, + Z =1, o+ Z =2
i= j=2

(andthus[ X L= o Y =1 Zajforanysubsetjof{z,...,K}
jedJ JjedJ jed jed

with =)’ ocj> and there exist u; minimum of 7, (u; =0 if o; =0), #; minima of

je
1% for 2éj§K and sequences (y}')nelRN for 2 <7<k, such that Iy}'l—n—> 0,
Vi =yil— oo for2sjs K or2<j<k=Kand

K

=Y 4=y —u—0 in H. (A.2)
j=2

In addition, if 0, (or a subsequence) converges to 0, then u,, i; for 2 < j < K satisfy
&' (uy)=0J"(uy), (%) (W) =0(J*) @) for iz2. (A.3)

In other words, this means that in order to check (S.1) or (S.2) (at least in good cases
when vanishing is easily excluded) one has to show strict subadditivity conditions
for a finite decomposition for which minima exist and satisfy (A.3), i.e. the
associated Euler-Lagrange equations but with the same Lagrange multiplier.

We begin with a few simple abstract remarks on the sufficiency of minimizing
sequences satisfying (A.1). Indeed, by Ekeland’s result [22], we know that for every
minimizing sequence (#"),, there exists (#"), such that

JW)=hu"—ia" >0 in H, E®)+¢,|[v—u"|y= EW") VYveH, Jv)=A
(A.4)
for some ¢, >0, ¢, — 0. Obviously, it is enough to analyze the behaviour of (#"),,.
Now, if &,J are differentiable at «" this implies
16 @) = 0,0 ") [lye S &, (A.5)
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while if &, J are uniformly twice differentiable on bounded sets (or on minimizing
sequences) we also deduce for some y,>0, y, — 0,

E" ") (w,y) = 0,7 ") (. y) + 9, Iy 17 2 0 (A.6)

for all y € H such that {J’ (u"), w> =0 [in fact one needs considerably less regularity
on & and J in order to derive (A.6)...].

Next, in order to make rigorous the above considerations, we will consider two
examples. The first one is the one considered in Corollary I1.2 [see (65)]

Examplel. We choose J(u)= | |ul*dx, &)= [ |[Vul*+V|ul®+ F(u)dx
R3 R3

+3D(Jul?, |u|?), where F satisfies the conditions used in part ii) of Corollary I1.2.
Assuming Z = A, we show the above decomposition of a minimizing sequence, i.e.
we show (65), completing thus the proof of Corollary 11.2 [

Example2.  We choose J(w)= | |ul’dx, &)= | |l7u|2+§|u|2”dx
R3 R3
1 . .
+ -3 ff @) ul? () V(x—y)dxdy, where a>0, p>2, and V is a given

R3x R3

potential that we assume to be nonnegative, spherically symmetric, nonincreasing
with respect to |x| and VeL!(IR*) + L*(IR®) for some f< oo, V#0. In this
example, we assume that A > 0 is such that I, < 0. Of course, we choose the space
here to be H'(IR?) if p £3 and H' (IR¥) n L??(IR%) if p = 3.

Before stating the result we want to prove, let us briefly discuss the assumption
on /,. By a simple scaling argument one sees that /, < 0 always holds for all 1 > 0.
And we claim there exists 4, € [0, 00) such that [, <0 if 1 > 4, (4, only depends on
V): indeed there exist R < o0, ¢ € Z(IR?) such that

(o) el sfpo)

then we compute for ¢ >0,
(f(qo(i»ga [ 17oPdx+0* 2 [ g2 dx
g R3 PR3
—q° ,” |(P(x)|2|§0(}’)lzV(O'(X_J’))l(ayx~yagx)dx‘1y
R3x R3
=c [ [Vo|*dx+d° [ﬂ [ lo|??dx
R3 PR3
1
5 1 |§0(x)lzl<P()’)|203VR(a(x—y))dxdy],
R3x R3
where V'R (x)=V(x)1,, <z Remarking that

[ le@IP )0 VE(o(x—y)dxdy :;(! de)(f 1<p|4dx>,
R3x R3 By R3

we conclude that & <(p (—)) < 0 for o large enough, proving thus our claim.
4
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In the case of Example 2, we want to show how minimizing sequences satisfying
(A.1) can be decomposed asin (A.2), (A.3) with the conditions on u, , #; given before
(A.2), (A.3). Notice of course that in the Example 2 we have &= &>, J=J*.
Finally, let us mention that we are only interested in the compactness up to
translations of minimizing sequences since the problem is translation invariant (i.e.
either K=1, or K=2 and u, =0). The implications of such decompositions in
Example 2 will be discussed elsewhere.

On these two examples we consider minimizing sequences " which satisfy (A.1)
[or (A.5) and (A.6)]. Of course, #" is bounded in H and in the two examples the
Lagrange multiplier 6, = {(&” (u"), u") remains bounded. Therefore we may assume
without loss of generality that 6"7 0.

Step 1. We show that 6, remains negative and bounded away from 0, i.e.
Jv>0, 0,<-v<O0. (A7)

In the case of Example 1, this is proved in Sect. I1.4 using (A.6). In the case of
Example 2, we argue as follows. Introducing as in [43, 44] the concentration
function of |u"|?, i.e.

0,()=Sup | |u"|*dx, for 120,

3
yeR y+ B,

we see that up to subsequences, and we will in fact neglect all the extractions of
subsequences in the arguments below, either Q,,(¢) — 0 forall t < oo or there exists

o> 0 such that Q,(¢,)=a>0 for n=1 and for some #,>0. In the first case
(vanishing with the terminology of [43, 44]) then we know by [43] that #" converges
strongly to 0 in L¢(IR?) for 2 < ¢ < max (6,2p). This implies easily

Ji ) [P o)V (x—y) dxdy— 0,
R3x R3
hence 7, = 0. We reach a contradiction since we assumed [, < 0. Therefore, there

exist o >0, y, € R® such that

| JuPdxza>0.
o+ B,

We then consider the sequence #" = u" (- + y,) which is still a minimizing sequence

satisfying (A.1) with the same Lagrange multiplier ,. Using for instance the

concentration-compactness arguments, we see that #" converges weakly in H to

some 4 which is a minimum of 7, where &= | |ii|* dx €(0, 4] (using some specific
R3

properties of & here we may also observe that

E(@") — (E(@" — i)+ £@) — 0,
[l —alPdx— A—d, lim&@—-a)z1,_,,
R3 " "

and since I, < I+ I, _; we obtain the above claim easily). It is also a standard
exercise to pass to the limit in (A.1), and we obtain

—Aii+aldl?* 2d—(V* |i|)i—0i=0 in IR3. (A.8)
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Furthermore, since # is a minimum of I, using a standard symmetrization
argument one deduces that + @ (say @) is radial, nonnegative and nonincreasing. We
want to prove that 6 <0, and we argue by contradiction. Assume that 6 = 0. We
claim that there exists y > 0 such that for large | x|

Valil> zylal*.
Indeed since V=0 and V is radial, we can find 6 >0, R < oo such that
[ V(@dzzy>0.

@ 261zISR)
R? ~12 ~1202) ith =
Then, for |x| gig, we observe that V' * |d|* (x) =V = |4]*(X) with X = |x]|e,,

Vs lﬁl2§< ) V(f—y)dy> | (%))?

Iy1=1x|

= ( [ 7@ dz) [i(x)|?
(

I2I2 22, 1))
z( | V(Z)d2> la(x) 12z y la(x)]?.
(z:126,)2|<R)
Therefore, for | x| large we find
—AudzyiP + |0 —aw*?"* =20, #=0 on R3,

since p > 2 and # — 0 as |x| — co. This yields

a(x)z |_/;T for |x| large and for some u>0,
contradicting the fact that @ € L* (IR®). Hence, 6 < 0 and (A.7) is proved for n large
(that we take below equal to 1). [

Step 2. Wenow want to prove two related properties. The first one is the following:
let ue H satisfy | [Vu|*>dx < C, for some fixed constant C, and
R3

—Au—0u—0u+Bw=0 in R (A.9)
x|

— (Ju|? * V)u in Example 2. Then, there exists ¢, > 0 depending only on |0|, C,
such that

where 0 <0, B(u)=(|u|2*—1—>u+f(u) in Examplel, B(u)=al|u|’** *u

[lulPdx<ey=u=0. (A.10)
R3

To prove this claim we may argue by contradiction considering a sequence (u,,),
satisfying the above conditions and such that | Iunlzdx—n—» 0, u,=0. We first
R3

observe that u, also converges to 0 in L*(IR%): one just has to use standard
regularity theory for second-order elliptic equations and the various assumptions
we made on the nonlinear terms. Next, because of (A.9) we find

Ml 2y = CAOD NS ™ () Nl 2 sy in Example 1,

Nt ll 2y < CUAOD N (11 1> V) 10,1123, in Example 2.
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In both examples, the upper bound may be majorized by e, %, .+, Where
¢,—— 0, and we reach the desired contradiction.

The second property enables us to exclude some vanishing phenomena: let v, be
a bounded sequence in H satisfying (A.1), where 0, satisfies (A.7). Then, if |v,|?
vanishes, i.e.

Sup | |vn|2dx—n—>0 forall R< oo,

yeR? . g,
then v, converges strongly in H to 0.
Indeed, we know by [43] that v, converges strongly in L?(IR*) to 0 for
2 < g <max (6,2p). Then multiplying (A.1) by v,, we deduce
v, ”%{‘(1}13) = Cg, ”vn”H‘(]R3) +Clf (Un)”H“‘(lR3) in Example 1,
ltv, ”1%11(1113)‘1' ||Un||f5’(m3) = Cg, [||Un||H1(1R3)+ ||Un]|L2P(m3)]

+ C (v, 1? * V) v, -1 me) in Example 2,
where ¢, >0, &,— 0. Next, we observe

(WA (Un)“H"‘(]R3) SClf () llv,,)ée ||Ll(m3)
+ Cllf™ (v,) llmgm 'IL°/5(R3) + C v, |? “LZ(IRS)
<60 Ul + 10, 12sms] + Collv, 12 me)

in Example 1 with J(¢) — 0 as ¢ — 0, while in Example 2 we have
11w, 12 V) 0, g+ ey < Cllw, I+ Cliv, 15

for some p, g satisfying 2 <p<g<6.
We may now deduce from all these ad hoc bounds the convergence of v, to 0 in
H. In fact, we only used the existence of some > 0 such that Q,(z) - 0. J

Step 3. Extraction of the local part in Example 1. In the remaining steps we will

prove the decompositions we announced by an argument which will use the fact in

particular that the functional | |Vu|*dx is quadratic: this will allow us to use only
R3

weak limits, while for more general problems one has to use more systematically the

concentration functions as in [43] to perform the various dichotomies. In the case of

Example 1, we consider the weak limit «; of u" (or a subsequence) in H*(IR?%): if

u; =0 there is nothing to do. If u; #£0, i.e. oy = | |u,|*dxe(0,4], we consider
R3

i"=u"—u,. Obviously, [ |#"|*dx— 1 — o, while
R "

EW) = Euy + 1" = Euy) + E (@) + &, + | Va2 dx
R3
+ 2D (Juy 1*, uy @) + D (Juy 2, |a@"?) + 2D (|2, uy i)

+ [ Fuy +1,) — F(u,) — F(@") dx,
R3
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where &y 0. Next, we observe that
BL Vlﬁ"lzdx—"—» 0, u, ﬁ"T» 0 in LI(R?® for 1<¢<3,
D(|uy |2, |i#"|*)— 0,
hence we deduce

EW") = E(uy) — 6 (@) — | Fluy + ") — F(uy) — F@@")dx — 0.

We claim that this last integral goes to 0 as n goes to co. Indeed, by the assumptions
made on F we have

[ 1F Gy + ) — Fu) | dx—0, | |F(@)] dx— 0
By By

for all R < oo, while we have obviously | [F(u,)|dx -0 as R — oo and
By

VIF(uy+ ") = F@) |dx < C | {lug |+ 1" + [y |* + 2"} |uy | dx;

B, B

therefore [ |F(u, +@") — F(#")| dx — 0 as R — oo, uniformly in » and our claim is
By
proved. In conclusion, we have shown that

EW") —{&uy) + &7 (@)} — 0, (A.11)
and since é’(u")—n—> L, €u)z1,, imé&°@") =12, and [, <1 L2, we
deduce that u; is a minimum of /, and #" is a minimizing sequence of I, .

In addition, by an easy passage to the limit, we see that u, satisfies

1
—Au, +Vu, + (Iu1 |2 % m) up+f(u)—0u; =0 in R3  (A.12)
Our last claim for this step is that #" satisfies

—Aﬁ"+(lﬁ”|2*%)ﬁ”-Ff(ﬁ")—@ﬁ"TO in HOU(RY)  (A13)

(ie. (€°) @") — 0(J°°)’(zZ")—”—> 0in H™Y).
Indeed, subtracting (A.12) from (A.1) we get
1
—Aﬁ"+<|[¢"|2 ¢ m) @+ f(@" — 0a" + T,—0 in H™'(IRY),

where :
T, = Vit 4 () — (f (uy) + £ @) + (nu" 2 —) w

x|

2 1 ~n *1_ ~n
+—<<|u1| *1—xT>u1+<]u |2 |x|>u>.
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And we prove exacily as before that 7,— 0in # ! (IR): for instance we will treat

only one term in 7, namely the difference
S@) =1 () +f @]
From the assumptions made on f, one deduces easily that for all R < oo,
1, (f W) = f () =0, 1, f@)—0 in H'(R),
while
1p f(u)—>0 in H'(R% as R- o,
and
|1 {f ) = f @)} | S Clg (U fug |* + 2% fuy |
We may now conclude, since
g |uy| >0 in L*(IR’) as R— oo,
T (uy I° + |ug [ 1#[*) >0 in L°°(IR*) as R - oo, uniformly in 7.
Step 4. Conclusion. We now argue on the sequence #" in Example1 and " in
Example 2. For these sequences we consider the concentration functions @, (¢) of

respectively |@"|?, |u"|*. In view of Step 2, |#"|?, |u"|? cannot vanish (or if this
happens in Example1, this implies ﬁ"—n—>0 in L?*(IR® and we stop the

decomposition) i.e. there exist 7, >0, y > 0 such that
Qn(to) ; b > O .
This means there exists (y,), in IR® such that

[ le"?dxzy>0,

Yat By
where ¢" =" in Example 1, =" in Example 2.
And we may consider y"=¢"(y,+-) which will converge weakly (up to
subsequences) in H to some u,. Obviously,
0< [ |uy|?dx=0,<A—0; in Example!, <4 in Example 2.
R3

Furthermore, one has obviously in Example 1, {y,| — 0. By the same argument
as in Step 3, we deduce in both examples

£ ") — [67 () + 6 (y" — uy)] — 0,
u, is a minimum of 17, & (y" —u,) — I,

f lll/”_u2|2dx—n"ﬁza
R3
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where f, =4 —oa; —a, in Example 1, =4 — o, in Example 2. In addition,
(%) (uy) — u, =0 in IR3,
(EF) (W —uy) = 0(y"—u) =0 in H,

where £“ = & in Example 2.

The only new arguments concern the following facts:
[ 1122 = |22 = " — |7 [ dx— 0
R3

2p
[ PP 2y =y PP 2y — " =y PP (W~ u)— 0 in LT,

the first convergence is a consequence of Brézis and Lieb’s lemma [17] while the
second one is closely related. Indeed one just needs to observe that for each ¢ > 0,
there exists C, < oo such that for all x,yeIR,

Hx+y1227 2 (x+p) =[x 2x— |y 2y | Sely|?P 4+ C,|x|?P 71,

and that the second quantity above converges a.e. to 0.

At this stage, we consider (y" — u,), and we reiterate the above arguments. This
iterative decomposition stops after a finite number of times, since by Step 2 we
know that «,, a3, a, ... remain bounded from below by a fixed positive constant.

Hence, we obtain some integer L and positive constants a,, ..., o, such that there
exist u,, ..., u, minima of 7;°,..., I, satistying in addition,
() (u)—0u;=0 in R> | |uPdx=q,
R3

and I,=1, + ZI;O, A= Zoc in Example1, while [, = ZI;", A= Z ®; in

i=

Example 2. Furthermore there exist sequences (), in IR? for 2 <j=L satrsfyrng
|y;—yj,]—n——>oo for 2<i<j=<L
L
and v"=u"—u; — ) u;(- —yj)—> 0in H! (IR?), [7il— oo in Example 1, while
j=2

= — Z u;(+ = yi)— 0 in H in Example 2.

ji=2

Remark. We point out that the above arguments are somewhat related to those
used in Brézis and Coron [16], Struwe [56]....

In an attempt to explain a bit the above arguments, we want to conclude this
appendix by a general decomposition lemma, in the spirit of the first concentration-
compactness lemma in [43, 44].

Lemma 1. Let k =1 and let (P,), be a sequence of probability measures in R*. Then
there exists a subsequence of P, that we still denote by P, (to simplify) which satisfies
the following properties: one can find M inIN\ ) { + oo} and sequences (y,), in R,
positive numbers o; for 1 £i< M such that

Uy S0y .. Zoc <1, (A.14)
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= yil—> 0 for i%], (A.15)

Pn<B(yinRer)\ U B()/'{,,R,D) _n_) O(ia

1<j<i-1

for some sequences R! — o, Vi, (A.16)

Viz1, Ve>0, 3IR< o, P,,(B(yﬁ,,R)\ U B()z{;,R,J,'));oci—s Vnz1,
12j50-1
(A17)

1, P, vanishes, i.e. sup P,(B(y,R) ﬂA,,)—n—> 0, VR<owo, (A.18)

yeR*

where A, = ﬂ (RM\B(yi, RL)).

Remarks. 1) The case M =0 corresponds to the case when P, itself vanishes. The
case M =1, o, = 1 corresponds to the case when P, is tight up to the translation y}.
Finally, the remaining case in [41, 42] namely dichotomy, corresponds to M = 2.
Then, we split P, in two parts,

~ R ~
where R <R! and -5 —0, Rj— o

1 __
Py =150 1P Rl -
n

n»

[observe that (A.16) and (A.18) still hold with R} replaced by R!] and

Pl =101, riy Pa-

i) The above proof may now be interpreted in the light of this simple general
lemma (in fact, this lemma may be used to present another proof slightly more
technical but also more general as we explain below). First of all, we may apply the
above lemma with P, = |u"|? or P,= |u"|>+ [Vu"|* (or even P, = |u"|* + |Vu"|?
+ |u"|?? in Example 2) —we neglect the fact that P, is not a probability measure, just
replace P, by P,/P,(IR®). Then, roughly speaking, each piece u; of the above
decomposition is the weak limit in H of u" ()’ + +). And the fact that M is finite or
that the decomposition yields a strong convergence in H to 0 are consequences of
(A.14) and (A.18) combined with the crucial argument given in Step 2 [and Step 2
is the only place where we used the information (A.7)]. Indeed if M = + oo, then
o — 0 because of (A.14), and u; satisfies the Euler-Lagrange equation together

with (for instance) [ |u;|*dx =a;, and we reach a contradiction with Step 2. All
R3

possibilities of vanishing (P, vanishes or 1, P, vanishes) are also excluded because
of Step 2. And we obtain P, (4,) — 0, which implies the strong convergence in H.

As we said before, this lemma may be used to construct differently ; (adding
some information to the mere information of weak limits which is too weak for
general problems with less “quadratic” structure: recall that in an Hilbert space,
if x, — x, then |x, — x|*+ |x|?> — |x,|* — 0): indeed, it is possible to consider
directly "

2O+ ) RY Uy +).
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where y is some cut-off function, Ri < R}, I?,",T» 00, 17': — 0. Another way
to “cut” is also given in [45]. "
Let us also finally mention that in many problems the information necessary to

prove Step 2 [(A.7) here] is automatic.

Proof of Lemma 1. We are going to use systematically the concentration function
0, of P, ie.
0,(t)=SupP,(B(y,t)) forall ¢>0.
yelRF

We will not bother to extract subsequences, leaving to the reader the standard

diagonal extractions. Now, with these notations and conventions we recall from
[43] that either P, vanishes and we conclude M =0, or Q, (¢) — o), Vi>0,

where Q is nondecreasingand Q 0. Let o, = lim Q(¢) > 0. Obviously, «; <1 and
tT 40

we deduce from Lemma 2 below that there exists y} € R* such that (A.16) and

(A.17) hold for i=1. We then consider P; =1y, pP,, and we introduce the

concentration function Q2 of P?. Again, with our conventions, we may assume that
either P vanishes and the lemma is proved with M =1, or that Q7 (1) — Q% (1),

V> 0 for some nondecreasing function Q2 and Q% #0. Let o, = lim Q*(¢) > 0.
1T oo

We claim that o, < a,. Let us argue by contradiction: if «, > o, there exists
z,€IR¥, R< oo such that

P?(B(z,,R))= o, +v, forsome v>0.

Therefore, P, (B(z,, R)) = o, + v, and passing to the limit we obtain Q(R) =Z oy + v,

contradicting the definition of ;. Hence, «, < o,. Next, we can find using again

Lemma 2 a sequence y2 € IR* such that (A.16) and (A.17) hold for i =2. We next

claim that |y} — y2| —— o0. Indeed, observe that (A.17) for i =2 implies obviously
R! .

that y2 ¢ B <y,f, 7") for n large, hence [y? — y!| —— oo. Finally, we show that

o, + o, < 1. This follows easily from (A.16)-(A.17) for i=1,2. Indeed, for all
& > 0 there exists R, < oo such that

P,(B(ya, R\B(y,, R)) Z 0, — e,
hence
Pn(B(ythR2)UB(yr1anl))ga2 _8+Pn(B(yrllaer))5

ie. 1=z a, —e+a,, and we conclude.
Next, assume that we have built PZ,..., PL, ay,..., 0, yi, ...,y satisfying
(A.14)—(A.17) for 1 =i < 1. We then consider

+1 __ 4
Py = Lpg iy P

and its concentration function Q. *'. Again, either P.** vanishes and the lemma is
proved or Q3! (1) — Q"' (1), V>0 for some nondecreasing function Q'**

and Q'*! 0. We denote by o, , = liTm 0'*1 () > 0. Exactly as before we see that
tT oo
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1+1

there exists y," !, R.*! such that (A.16)-(A.17) hold for i</+1, and ) o, <1,
. X i=1

oy Sog, [P =) — oo for i < /. By induction, we see that the only remaining

case to be investigated is the case when the above construction yields sequences
(PY)y, (o), OL)i> (R,), such that (A.14)—(A.17) hold and

oy = lim im Q,"*(¢), ;"' (1) =Sup P, "' (B(», 1))
tT 400 n yeR!
By =10, my Py
for all /= 1 (with P! = P,). Because of (A.14) we see that o, —— 0. Now in order to

prove (A.18) we argue by contradiction: assume (A.18) does not hold then (with our
conventions) there exists o > 0 such that

P,(BG,.R)NA)Z0, Vnzl

for some y, e IR¥, R < 00. Next, choose / large enough so that o; < a. Obviously,
0,(R)Z P,(B(y,, R)) 2 P,(B(y,, R) " A4,) 20> 0,

and we reach a contradiction with the definition of o, by taking the limit in ».

Lemma 2. Let u, be a bounded sequence of bounded nonnegative measures on IR,
Assume that lim Q,(t,) > 0 for some t, >0, where Q,(t)= sup u,(B(y,t)). Then
n yeR¥

there exists a subsequence that we still denote by u,, for which the following holds: for
all t>0, Q,() — Q (1) for some nondecreasing function Q and denoting by

o=1im Q(?), there exists y, € R* such that
tT
Ve>0, IR<oo, Vnz21, u(BO,, R)Zu—:. (A.19)

Remark. Itis easy to build R, — co such that 0, (R,) — «, in which case (A.19)
implies !
Hn (B (yna Rn)) T) &. (A‘20)

Proof of Lemma 2. Again, everything we say is correct modulo the extraction
of enough subsequences. Let o, €(0,a), there exist R; and y!eIR* such
that u,(B(y),R,))=«,. With our conventions, we may assume that
,u,,(B(y,%,t))Tgl(t) for all +>0, where Q' is nondecreasing, and let

1=1iTm Q' (¢). Clearly, B, €lo;,a], and if B, =a, we conclude. If f, <o, we
choose R! such that

R;T 00, ﬂn(BO):’E:))TBI

1
n

Then, let R} < R}, R — oo, 71— 0; we still have
n

tn By R)— By .

And we set u, = u,, 4y =1p, gixit,- We may assume that the concentration
function Q72 of u2 converges for all >0 to some nondecreasing function Q2. We
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claim that lim Q% (¢) = «. Indeed, for all ¢ < o — f3;, there exist R’ < o0, z, € R* such
that the
/un(B(Zn’R/)) 206—8>ﬁ1

Hence, B(z,,R’) is not contained in B(y!, R!), and thus for n large enough
B(z,,R)NB(y!, R})=0. Therefore

ti (B(z,s R") = 1y (B(z,, R)) Z 0t — &,

and our claim is proved.
Then, we choose y; € R¥, R, as we choose R, and y, , and we may assume that
ta (B(yz, 1)) — Q7 (¢) for all 1> 0, where 0 is nondecreasing, and we denote

by B, = hm Q% (t). Again, B, e[a,,a]. If B, = a, we conclude easily, while if 8, < a

we choose R2 and R? as above..
Repeating this argument and observing that as long as 8, <, we find

:uil(B(.y{l!Rj))éalﬂ for 1 é]él’

hence
1 1
(U 202 8))= U, w804 R 2 15,
Jj= j=

and we reach a contradiction for / large, proving the lemma.
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