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Abstract. A formulation of a field theory on the complex Minkowski space in
terms of complex differential geometry is proposed. It is also shown that our
model of field theory differs from the standard model on the real Minkowski
space only in the limit of high energy.

1. Introduction

The aim of this paper is the construction of field theory for the massive conformal
particle interacting with an external field. There are important reasons, having
their roots in conformal symplectic geometry to investigate such a theory on the
complex Minkowski space. We believe that the utilization of the complex
Minkowski space as a base for construction of the field theory is not only useful
technically (see e.g. [13]), but can be of great physical importance.

In the following, by a scalar massive conformal particle we will understand a
physical object localized in time and space with a given energy and momentum.
The conformal particle mass may change when the particle interacts with a field,
contrary to the relativistic particle mass. Due to this fact the phase space of a scalar
massive conformal particle is an eight - dimensional conformal Hamiltonian space
(see [7,10]). Considering also scalar conformal anti-particles, scalar conformal
tachyons and scalar massless conformal particles we find (see Sect. 2) that two
models of kinematics of conformal scalar particles exist. The phase space of the
first model (which will be called the nilpotent model) is the cotangent bundle T*M
of the conformal compactification M of Minkowski space. In the second model
(holomorphic one) the phase space is given as the complexification M of M. It
turns out that the conformally invariant symplectic form ωh on M depends on the
real parameter h and (M, ωh) corresponds to (T*M,ω0) when /z->0, where ω0

stands for a canonical symplectic form on T*M. In other words the nilpotent
model is the limiting case of the holomorphic one.

Taking into account the above facts we construct field theory on the complex
Minkowski space (the configuration space of holomorphic kinematics) which, at
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^-•0, corresponds to the standard field theory on the real Minkowski space (the
configuration space of the nilpotent kinematics); see Sect. 3. This formulation is
carried out in terms of complex differential geometry. Thus the conformal particle
states (the matter fields) can be described by holomorphic sections of a certain
Hermitian bundle Σ 0 ® E over a domain in M. Σ o stands for the bundle
describing spinor degrees of freedom and E denotes the charge bundle, i.e. the
bundle connected with interaction of the conformal particle. On the other hand the
gauge field is identified with the holomorphic structure of E. The action functional
for the fields is also defined and the field equations, using the variational principle,
are derived in Sect. 3.

Expanding the matter fields, the gauge fields and the field equations in h
parameter, one can find that in zero-order approximation they correspond to
analogous objects of standard field theory on real Minkowski space, see Sect. 4.
Thus, in the special case, the solutions of Eqs. (4.18) generate the solutions of the
Yang-Mills equations, at the limit h^O.

Many interesting problems connected with this approach are not yet solved.
For example: to find solutions of (4.18) which would correspond to non-abelian
solutions of the Yang-Mills equations and whether every solution of the Yang-
Mills equations is obtainable from the solution of (4.18).

2. Possible Models of Kinematics for Conformal Scalar Massive Particle

The possible scalar conformal kinematics and their physical interpretations are
carried out in this part of the paper. The arbitrary spin case is considered elsewhere
[7].

The classical conformal scalar massive particle is defined as a time-spatially
localized physical object with an energy and a momentum. Just as in relativistic
mechanics the conformal particles will be divided here into particles, anti-particles
and tachyons. But contrary to the relativistic mechanics the mass of the particle
may vary during its evolutions. Consequently the corresponding phase spaces will
be the conformally homogeneous Hamiltonian symplectic manifolds of eight
dimensions. The Kiryllov-Kostant-Souriau theorem says (see [1]) that each
G-homogeneous Hamiltonian symplectic manifold covers a certain Ad#(G)-orbit
in ©*. In such a way the analysis of the massive scalar conformal particle phase
space can be reduced to the analysis of 8-dimensional Ad#(SU(2,2))-orbits in
SU(2,2)*^SU(2,2).

The following considerations require some terms of the twistor theory (see [8,
11,12]). The conformal group St/(2,2) will be treated as the automorphism group
of the twistor space T (which is <C4 with the Hermitian form η of signature
+ H ). The conformal Lie algebra SU(2,2) will be realized as the set of
#*eEndTΓ, which satisfy SC+η+η2C=§ and T r ^ = 0 . The conformally compacti-
fied complex Minkowski space M is defined as the Grassmanian of two-
dimensional vector subspaces in T. Signature of the element z e M will be defined
as the signature of the hermitian form η\z. The fact that dim€z = 2 implies that the
signature of z is given by a pair kl where k, 1=0, + , —. Let M w be the set of
elements z e M with signature kl. The submanifolds Mw are the orbits of
conformal group, which acts canonically on M. In particular M 0 0 =: M is the
conformal compactification of the real Minkowski space. The real Minkowski
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space M^c^M is defined here as an afϊϊne space of elements zeM that are
transversal to a certain element ooeM which is called point in infinity. The
elements zeM for which dim c(znoo)^l, form the cone in infinity C^. Hence
M = Mo ouCo o. The cone Cz, with vertex zeM, is defined alike, that is z'eCz iff
dim c(z'nz)^l. The family of these cones defines the conformal structure on M.
The Poincare group extended by dilatations is defined as stabilizer 517(2,2)^ of
infinity. The intersection of stabilizers SU (2,2)onSC7(2,2)^, where point 0 e M^ is
the origin of the Lorentz coordinates system, is the Lorentz group extended by
dilatations. The Lorentz group Lo> ̂  and dilatations group Do> ̂  are defined as
commutator and centralizer of SC/(2,2)onSfl7(2,2)oo respectively. The group of
Minkowski space translations is defined as a set of exp^, where SC e SU(2,2) such
that I m ^ C oo C KerX9 while the elements exp^, where imX C 0 C Ker#", form the
group of four-accelerations.

Let us define the following three SU(29 2)-spaces: Lc^MxM, where (x, v)eΊL

u M + ~ u M ~ ~ . The conformal group action is defined respectively as follows:
(x,v)-+(gx,gv); (x,X)^>(gx,Ad(g)%) and z-*gz, where geSU(2,2). The vector
bundle Λκ: N->M, where Λκ is the projection onto the first component of the
product M x 51/(2,2), is of rank four and the cones CXCΛ^\x) ((x, X) e Cx iff
dimRIm£Γ=l) define a natural conformal structure on it. Let fϊ denote
N - U C,

xeM

Due to T = x ® v for (x, v) e 1L and T = z φ z 1 , where z 1 e M is subspace of T
orthogonal to z, one can define maps:

Jκ(x9 v): = κ(Πx -ΠΌ), 0 < yc € R , (2.1)

J0(x,%): = %, (2.2)

(2.3)

il^., !!„, ilz, and Πz± are projections of T on x, v, z, and z 1 respectively. As it is easy
to check Jκ, J o , and J h are conformally equivariant maps of 1L, N, and l&ί
respectively into SU(2,2).

Proposition 1. 4̂ZZ of the S-dimensional conformal Ad-orbits are given by «/K(lL),
J0(]R), andJh(ίλ), where κ>0 and hφθ, ί/iαί is:

a) IL is a conformally homogeneous space and Jκ is an isomorphism of ΊL on Ad
(Sl/(2,2))Όrbit which consists of those SCe SU(2,2) w/w'cft have K and -~κas their
eigenvalues.

b) fϊ is the union of three SU(2,2)-orbits: N + + the bundle of the upper halves of
the interiors of cones; N~ ~ the bundle of the bottom halves of the interiors of cones;
N~ + the bundle of the exteriors of cones. Jo is isomorphism of N + + , N~ ~, and
N + ~ on S-dimensional nilpotent Ad(SU(2,2))-orbits (there are only three such
orbits).

c) M + +, M~ ~, and M + " are isomorphically mapped by Jh on 8-dίmensional
Ad(SU(2,2))-orbits which consist of #"eSU(2,2) with eigenvalues ih and -ih.

For the proof of proposition see [7,10].
The Kiryllov construction (see [1, 5]) gives us the conformally invariant

symplectic structure on the orbits /K(1L), J0(Nkl) and JΛ(MW), where fe, I = +, —. It
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can be then transported onto ]L, ]R, and ]KΪ by the map Jκ, Jo, and Jh respectively.
The symplectic form obtained in this way is denoted by ωκi ω0, and ωh respectively.
Thus (1L, ωκ, Jκ), (]R, ω0, J o ) and (]Ri, ωh, Jh) are the conformal Hamiltonian spaces
for which Jκ, J o , and Jh are the momentum maps. For the definition of the
momentum map see [1, 5].

Proposition 2 (see [10]). N and T*M are ίsomorphic as vector bundles and conformal
Hamiltonian spaces and the restriction of the canonical symplectic form of T*M to
]R is ω 0 .

In the symplectic geometry there exists a procedure (see e.g. [3]) which for a
given phase space (<2,ω) allows as to define a configuration space K. This
procedure is based on the notion of polarization F c T€Q, i.e. ^dimβ-dimensional
locally integrable complex distribution, isotropic with respect to the symplectic
form ω. The configuration space is defined as the quotient K: = Q/FnFnTQ,
where F is complex conjugation of F. We have to assume that F satisfies
appropriate conditions (see [3]) which enable us to define a structure of a
differential manifold on K. In the case of G-phase space we demand that F be
invariant with respect to the G-action on Q. Using the algebraic methods one can
find that for (L, ωκ) and (ίϊ, ω0) the only conformally invariant polarizations are
those given by projectors Λ^: =prt: ]L->M and Λκ: =pr1: R-»M respectively.
For (]Rl, ωh) the only conformally invariant polarization is given by holomorphic
(anti-holomorphic) structure of M. Hence M is the configuration space for (1L, ωκ)
and (]R, ω0), and iKl is the configuration space for (]Rl5 ωh).

Since J o (^0 consists of nilpotent Ad(St/(2,2))-orbits we shall call the
conformal kinematics realized by (ffϊ, ω0, J o ) the conformal nilpotent kinematics.
The kinematics realized by ($ί,ωh,Jh) will be called conformal holomorphic
kinematics.

In order to make the physical interpretation of the above models of conformal
kinematics we shall express symplectic structures, conformal group actions and
momentum maps in canonical systems of coordinates. Therefore, let us take

( ) ( ) ( ) { β > }( ) ( ) ( ) { β > }
andθ= |^J:Ce(C2j.ThuszeM0Oiffz= j / y J:CeC2j, where ZeMat2x2(C)

and z e Mx iff Z + = Z . The above choice off/, oo, and 0 gives us the decomposition

SC/(2,2) = ̂ φ i ? 0 ; 0 0 φ ® 0 > o o e ^ o (2-4)

into a direct sum of subalgebras, where

^ = { ( o o ) : Γ = Γ + e M a t 2 x 2 ( C ) } '
^ 0 , 0 0 = _£+):TrL=0,L6Mat2x2(C)j,

E 0
0 -E

0
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denote Lie subalgebras of SU(2,2) generating translations Lorentz transforma-
tions, dilatations and four-accelerations respectively. In our calculations 2x2
matrix coordinates are preferred. The Minkowski coordinates are given, by
decompositions into Pauli matrices: Z=zμσμ = (xμ + iy")σμ, T=tμσμ, L=lOkσk

+ 2£kmJkmffn a n d C=cμσμ. These generate the basis of SU(2,2), consistent with
(2.4):

0 σ

O o

(2.5)

The basis of SU(2,2)* ̂ SU(2,2) dual to (2.5) with respect to the Cartan-Killing
form <#,#'> :=iTrarar'is

Expressing the momentum map J: β->St/(2,2) in terms of the dual basis,

J(q) = W\q) 2%, + p^)^μ* + a\q)sό* + d(^)^* (2.7)

one can find: 4-momentum pμ(q)9 angular momentum mμv(q), 4-acceleration av(q)
and dilatation d(q) for qeQ. Introducing the matrix coordinates P=pμσμ,

M = ^mOkσk— -mklsklnσn and A = avσv, we obtain

J(q) = (2.8)

One can also parametrize elements of Q (Q = 1L, ί ϊ, ]Rl) by matrix coordinates. The
simple considerations show that for the specified phase spaces we have:

1) the fibre element veΛ~ι(x), where xsM^ is of the form) () ^

I ( E + * F ) ί :ζe<C2l. Hence, the pairs of matrices (X, V)eH(2)xίf(2),

where H(2) denotes vector space 2x2 Hermitian matrices, define the system of

coordinates on Λ^X{M^).

s ' - sx I ' w h e r e (x's) e H{2) x H(2)*
l3) elements z e M ^ are parametrized by pairs of Hermitian conjugated

matrices (Z,Z+), Z e Mat2 x 2(^-) After some calculations we obtain

f 0 Γ 9=(x (2.10)

(2.11)
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Comparing (2.9), (2.10), and (2.11) with (2.8) we get P=-2κV, P = S and

P = hl———1 respectively. Hence, (X, P) e H{2) x H(2) may be used as

canonical coordinates common for the three cases.
Symplectic forms ωκ, ωθ9 and ωh expressed in X=xμσμ, P=pμσμ as one should

expect, have the canonical form

ω = Ύτ(dX A dP) = dxμ A dpμ. (2.12)

Expressing in {X,P) the Poincare group action and relativistic kinematical
quantities connected with it we find that they are the same for each of the
considered models of kinematics. The differences among the models appear if we
go out of the relativistic mechanics, i.e. if we also consider the four-accelerations
and dilatations.

d=%TrXP-κ, A=-XPX-2κX for 1L, (2.13)

d = fΓrXP, A=-XPX for R, (2.14)

d=\ΊτXP, A=-XPX-h2P~1 for iRt. (2.15)

ίE θ\
For the acceleration transformations I I e SI/(2,2), where C e H(2), we have

\C E)

respectively

'=(CX + E)P(XC+E)-2κC(XC + E), (2.16)

(2.17)

' (2.18)

From (2.13-18) we can see that the models ]L and iKΪ correspond to the nilpotent
model when JC-»O and h-^0 respectively. Thus nilpotent conformal kinematics is,
in some sense, the limit case of the two others. The differences among kinematics
are significant for big parameters K and Λ.

On the contrary to f ϊ = N + + u N + " u N " " and ]Kl=M+ + u M + ~ u M ~ ~
the phase space JL is conformally homogeneous. An element geffϊ(]Rϊ) with the
canonical coordinates (xμ,pv) belongs to N + + ( M + + ) if p°>0 and p 0 2 —p 2 >0,

such a way the conformal group orbitsM+ +, M~~, and M + ~ ( N + + , N ~ ~ , and
N + " ) form the phase spaces for conformal scalar massive particle, anti-particle
and conformal scalar tachyon. Concluding, we state that holomorphic conformal
kinematics can be used for the description of conformal massive particle (anti-
particle and tachyon) equally well as the nilpotent one.

Finally let us assume that h is the Planck constant (because of P = hY~1 h has

the dimension of the action). Thus we get yμ = , where—is the length of the
me me me

Compton wave and me=]/p02—p2 is the relativistic mass of particle. One can see
that the neighbourhood Ω of M in ]RΪ consists of massive I small — I conformal

V me)
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/ u>

particles moving with small velocity I small —
\ me

Fig.1

The analysis of transformation rules (2.16), (2.18) and expressions for dilatation
and 4-acceleration (2.13), (2.15) leads us to the conclusion that the difference
between the holomorphic and the nilpotent conformal kinematics becomes
significant only when we go beyond Ω, that is when particles of a small mass

big — } and large velocity ( — > 1) are taken into account. Thus the answer to
me) \mc )

the question whether the nilpotent or the holomorphic model is realisable in
nature has to be sought in high energy physics.

3. The Field Theory on M + + υ M " "

In this section we present a field theory for the massive conformal particle which
will be consistent with the conformal holomorphic kinematics. All the construc-
tions presented below will be made in terms of complex geometry of M + + u M " ~,
i.e. of the configuration space of massive conformal scalar particle and anti-
particle.

By definition the field describing the conformal massive particle is given as the
holomorphic section φ e i ί o ( M + + uM~~,(P(Σ)) of some Hermitian vector
bundle Σ->M+ + u M " ~, i.e. holomorphic bundle with Hermitian metric (see [4]).
Analogously to field theory on the real time-space we assume that Σ is the tensor
product Σ = Σ 0 ® E of Hermitian vector bundles Σ o and E which describe spinor
and charge degrees of freedom of the conformal massive particle.

In view of the twistor description of M there is a canonical construction of
spinor bundle Σ o (see [8]). To see this, let us consider holomorphic vector bundles
S->M, S ^ M , and % where Sz = z, §i = zL and f = M x l Restricting the
above bundles to M + + u M " we obtain the holomorphic vector bundles
isomorphism ΐ/S=S"S which is induced by the twistor form η. The twistor form
also define the Hermitian metric on S and S 1 . Hence, Σ o is the Hermitian vector
bundle as an algebraic combination of the Hermitian vector bundles S, §*,
f/S = S 1 and (S1)*. Note that by I £ ( 1 O ) £ S ® 1 / § and 7^'°>^S*<g)(l/S)* (see
[8]) any tensor bundle over M + + uM~~ is also canonically Hermitian.

The Laplace transform enables us to study the field ψ+'.=ψ\m++ and
Ψ-:=ψ\wι-- i n terms of the tempered distribution on the future and the past
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cones (see [6]). For this reason one can interprete ψ+ as matter field (positive
frequency) and φ_ as anti-matter field (negative frequency).

There is a natural anti-isomorphism # (the "charge conjugation") between
vector space of matter fields and vector space of anti-matter field. In order to define
it let us consider the following commutative diagrams

id

and I 1 1 (3.1)

where β and β1 are vector bundle anti-isomorphisms defined by hermitian metric
of the respective bundle and involution 1 : M-»M maps z e M o n its orthogonal
complement in the twistor space. One can see from the diagrams that
(Cψ+) (z): = βL\p+(z1) and (CL\p+)(z):=βψ+(z1) define anti-isomorphisms
C: H°(M+ + , &(§))->H0(M~ ~, Θ(Sλ*)) and C1: H°(M++,Θ(S1))
-+H°(M--,Θ(§*)) respectively. The anti-isomorphism <#:H°(M++,Θ(Έ0))
-•if °(M~ ~, #(Σ0)) is defined accordingly to spinor structure of Σ o as an algebraic
combination of C and C1. The Hermitian vector bundle 2 0 is obtained from Σ o by
the exchange of S and S 1 for (S1)* and S* respectively.

Finally, let us note that the above construction of Σ o admits a unitary
representation of the conformal group in H°(M+ + u M " ", 0(ΣO)) ( s e e P>]) For
the charge bundle E->M+ + u M " ~ , on the contrary to the case of the spinor
bundle, there is not canonically defined Hermitian vector bundle structure.
Therefore the basic idea of this section is to fix a Hermitian metric H on E and
interpret the possible holomorphic structure of E as the fields responsible for the
interaction of the conformal particles (anti-particles), i.e. as the gauge field. The
rank of E will depend on the type of interaction.

Let us now recall some facts concerning the notion of the holomorphic vector
bundle. One of the ways to give the holomorphic structure on the smooth vector
bundle is to introduce the Cauchy-Riemann operator D: C°°(Ω, E)
-+C™(QJE®T*i0>% Ω c M + + u M " , which by definition satisfies

a) D2 = 0, _
b) D(hψ) = dh®ψ + hDψ,

where /ιeC°°(Ω) and y?eC°°(Ω,E) (see [2]). The holomorphic sections
ψeH°(Ω, Θ(Έ)) are then defined by the condition

Dψ = 0. (3.2)

Let su...9sn9n = rkE, be a holomorphic frame, i.e. Dsi = 0. Because M + + u M " ~
is topologically trivial one can define s, globally, st e H°(M+ + u M " ~, 0(E)). Thus
ψ = ψisi is holomorphic iff t//e#(M+ + uM~~). In unitary frame
M 1 , . . . , M / I G C 0 0 ( M + + U M ~ ~ , E ) , H(ui9Uj) = δφ we have Dut = <ίι®uk9 where
c = [4]eC°°(M+ + u M - - , End(C*)®T* ( 0 ' ί )(M+ + uM--)). The condition
D2 = 0 implies

0 . (3.3)
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Acting with D on Si=ffuk, where /=[/ ;* ] |GC°°(M + + U M " " , GL(n,C)) is
transition function from unitary to holomorphic frame, we get c = — /""* Έf> which
is a solution of (3.3). Since, the Hermitian structure of E was fixed the transition
function / defines the holomorphic structure of it. Everywhere below, where it is
necessary, / or c is used for the description of the holomorphic structure of the
bundle.

In the following considerations the metric connection V is used. It is
unambiguously defined by the consistency conditions:

a) F<°'1> = β,
b) dH(ψ,φ) = H(Vψ,φ) + H(ψ9Vφ),

where φ, φ e C00 (M + + uM~ ~, E), with holomorphic and Hermitian structure of
E (see [4]).

Let θ and Θ=curvF mean the connection form and the curvature form of F,
respectively. Thus we have

H°=f+f, (3.4)

5 s = δ , (3.5)

θs=Hs~ιdHs, (3.6)

Θs = δθ* =: θs^dzμ A d?, (3.7)

where index s means that a indexed quantity is written in holomorphic frame {s, }.
In the case of unitary frame we have

tf"=id, (3.8)

Du=$+c, (3.9)

/ + - 1 , (3.10)

= -Θu. (3.11)

For the further considerations we shall also need

θu=c-c+=cvdzy-c^dzμ, (3.12)

+
 +C+ΛC= (^ + &• + [c,+,c,])dzΆdz*. (3.13)

With each type of frame, respective gauge transformations are linked. Namely,
let {s, } and {«$ be new holomorphic and unitary frames. Then s't=^sk and
uί=HJMt, where 0 = Γj£|eίP(M+ + u M - - , GL(n,C)) and M=[MaeC°°(M+ +

υ M " ~, U(ri)). The new transition map /'=[ft*], sί=fίkK is related to the former
one by

f'^θfu-1. (3.14)

The gauge transformations for the quantities given by (3.4-11) can be easily
calculated from (3.14), since they are expressed by the transition map /.

Now let us define the action functional S = S[\p, c] for the matter ψ and gauge c
fields. For the simplicity of calculations we shall restrict our considerations to
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scalar case, i.e. rkΣ 0 = l. Then, by definition,

c)ψψ Λ*(d-c+)ψu

(d + c)ψu-V(ψu+ψu)dz0Λ...Λdz3 (3.15)

will be the Lagrangian density expressed in the unitary frame.

* ω : = ω α i _ α Λ _ ^ * ( d z α i Λ ... Adz*k)A *(dzβί A ... Λ ^ 1 )

is dual ofω = ω β l . i i β k j j l i t i f t , dz*1 A ... Adz«kAdzβίA ... Λdz^6C 0 0 (M + + uM"",
E® τ*{k*l)), where * is the star operator given by the Minkowski metric on M ^
DM + + u M " ~. The term V(ψu+ψu), where Fis real valued function, describes self-
interaction potential of the matter field. The physical sense of the other terms in
(3.15) is determined by their form. It is easy to show that (3.15) is relativistic and
unitary gauge invariant.

Let us emphasize that in variational principle c, c+, ψu, ψu+ will appear as
independent quantities. Thus, we must include the terms related to constraints (3.2)
and (3.3) in the action functional. We have

Slc,c+,ψ«,ψ«\λ,Λ]= f <?(c,c\ψu,ψu+) + W + c)ψψ A*λ

where λ e C°°(E® Γ*(1 0)) and A e C°°(EndE® Γ*(0'2)) are the appropriate Lag-
rangian factors. Assuming the transformation rules λ' = u~ίλ and Λ' = u~1Λu for
the Lagrangian factors we guarantee unitary gauge in variance of (3.16).

The variational principle applied to (3.16) gives the following field equations

+ ψu[(d-c+)ψψ + ψuλ+ + *$*Λ

0 , (3.17)

(3.18)

and their hermitian conjugated counterparts. Because of its technical character the
calculation of (3.17) and (3.18) is omitted here. Let us note only that we assumed
that (5c, δc+, δψu, δψu+ =0 on δ(M+ + uM~~) and used Stokes theorem as it
always holds in such cases. The variation of (3.16) with respect of λ and A gives (3.2)
and (3.3) respectively.

At the end of this section let us rewrite (3.17), (3.18) and their Hermitian
conjugated counterparts in the holomorphic frame. Using (3.2), (3.3) and formulae
(3.4-11) we find

H^(^V^++Hv^σ"1λ)++H(*^/-1Λ/)fΓ-1=0 j

> {dH)H-ι + V'{ψs*Hψs) ψs+ \ (3.20)
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respectively. The field Eqs. (3.17) and (3.18) [(3.19) and (3.20)] are gauge
equivariant in the sense of gauge transformation (3.14). It is a consequence of the
gauge invariance of the action functional (3.16).

Let us also note that all quantities appearing in (3.16) are equivariant with
respect to biholomorphic transformations of M + + υ M " ". Therefore, the above
considerations can be repeated in the case of general complex manifolds.

4. Correspondence to Yang-Mills Theory

We shall study here the behaviour of the conformal holomorphic field theory in the
case when the parameter h is small (/ι»0). It was shown in Sect. 2, that the
holomorphic conformal kinematics corresponds to the nilpotent conformal
kinematics, i.e. standard one, which suggests the analogous correspondence on the
field theory level. In order to establish it we will express all interesting as quantities
and equations in canonical coordinates (xμ, pv) and next expand them in powers of
h. We will also prefer the holomorphic frame, which is more convenient for our
calculations.

Because of zμ = xμ + ίyμ = xμ + ίh-^ the condition h&0 implies y&O. Every-

where below we assume that E->M+ + uM~~ and thus frames Sj+=si|M-+ + ,

sf = Si\M- -, u+ = Ui\M + + and uf = ut\M - -, i = 1,..., n, extends in a smooth way to

Ma, a n ( i that

lim s f

+= lim sr = :sf, (4.1)
y-> + 0 l y-+-0 ι ι V y

lim uf = lim ιιΓ = :u?, (4.2)

s? = uf, (4.3)

where {s?}, {uf} are frames of the boundary vector bundle E-^M^. The conditions
(4.1) and (4.2) allow us to compare the boundary values
ψ+(x)= ( lim ψι

+(z)\sf(x) and φ_(x)=/^lim ψι_(z)\s?(x) of positive ψ+(z)

= ψί

+(z)sf(z) and negative y>__(z) = \pL(z)sf(z) frequency matter fields. The
condition (4.3) has technical character and does not restrict the generality of the
discussed problem. In general the field ψ(x) = ψ+(x) + ψ _ (x) is a hyperfunction on
M , (see [14]).

The gauge field in our model is expressed by transition map / : M + + u M
->GL(n,C). Because of Gauss decomposition f=RU, where R+=R and
U + = U " 1 , one can choose a unitary frame in such a way that f=R=exp A, where
A = A+. Thus, the gauge field is described by a map ^ : M + + uM~~->/ί(n),
which takes the values in the space of n x n Hermitian matrices. In order to find the
link to the Yang-Mills theory on the real Minkowski space, we assume that the
expansion

A(x, y) = A(x) + AJ&f+AJdff +...

j£ x) £ ^ h 2 +... (4.4)
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holds. From (4.3) we get A(x) = 0. So, an infinite sequence Λa(x), Aaβ(x),... of the
fields defined on M^ describes the holomorphic gauge field.

The connection form and the curvature form of the metric connection V
expressed in a holomorphic frame and canonical coordinates are given by

ζ (4.5)

= Φ\J dxμΛdxv + h2dUζ) Λd(tζ) + ih<%s

μv\

(4.6)

where Φ* v : = {{Θ%- Θ%μ) and 9Pμv: = \{Θ% + Θ%μ). In the unitary frame, because
of (3.11), we have Φu

μv = ±(Θu

μv- Θ%) and Λ£v = ±{Θu

μv + Θ%). From the (4.5), (4.6)
and from

θ°μ(x,p)= -iAμ(x)h°+ ( j L μ μζ
(4.7)

(4.8)

(4.9)

(4.10)

where DΛ: = -^-g — iAa(x), we have

]ϊmθs=-iAΛ(x)dx\ (4.11)

dx*

lim Θ^^lD^D^dxΆdx^ :%Faβ(x)dxΛΛdxβ. (4.12)

Therefore, according to (4.11), (4.12) and the expansion (4.4), the Yang-Mills field is
a first-order approximation (in parameter h) of holomorphic gauge field / = e x p A

As it follows from (4.6) lim 0 s does not depend on the Hermitian part ffl" of

curvature form Θ£v. Taking this into account, we replace in the Lagrangian (3.15)
the term TrΘ t tΛ *ΘU by TrΦMΛ *ΦM, where Φu = Φ%dzμ A dzv. The variational
principle applied to this new Lagrangian gives the field equations which are similar
to (3.19) and (3.20), the only difference being that 0 s is replaced by Φs. In the index
notation they have the form

s(vψrH+ψ%rιλ)+H+&f-1Λ-μ,n \ n )

+* + V'(ψs+ Hψ*)ψs+ + 3 v ( / " 1 ^ v ) + + C Γ 1 Λ v ) + 0 + v = O .
(4.14)
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Let us now discuss the field equations using the expansion (4.4) and

-ψ(x)h°+ -r-£ (x)-^hί + (4.15)

After substituting (4.4), (4.11), (4.12), and (4.15) into (4.13) and (4.14) and bringing
together the terms of the same order in h we find the infinite sequence of the

equations for the fields Aa9 Aaβ,... and the derivatives ψ{x)9 -r-^ (x), In such a
; ΌX

way we get that the equations

DvFvμ(x)=ψ(x) (Dμψ(xJ)+ - (DμΨ(x))ψ+(x)+φ(x) V(x) - λμ(x)ψ+(x)

+ ί-i(Λμv(x)-Λ^(x))- ^M%x) + Al+(x))

x)λ; (x) + λμ(x)ψ+(x) + —

(4.16)

β

Yi

, (4-17)

Hermitian conjugated equation

are zero-order approximations of (4.13) and (4.14). Putting λμ(x) = 0 and Am(x) = 0,
we find that (4.16) and (4.17) are equations on the Yang-Mills field AΛ(x) and on the
matter field ψ(x) which hold in standard field theory. If we put φ=0, λ = 0, and
A=0, Eqs. (4.13) could be written in the form

The perturbative method with respect to h gives the Yang-Mills equations
DμFμv(x) = 0 for Aa{x\ see Eq. (4.16), and the remaining fields AaΛί ...αΛ(x), where
« = 1,..., satisfy

)-H«1...απW+M1...αn(4^«W]=k...αnW'

where the currents j β a 2 m αn(x), kβaί t m an(x) are the algebraic combinations of Aa(x),
^ααiWj •••? Awn α -t(

χ) a n ^ their derivatives. E.g. for n= 1 we have jβ(x) = 0 and

Here arises a problem of consistency of this infinite sequence of the differential
equations and their compatibility with the Yang-Mills equations. Extending the
finite system of equations for the fields Aa(x\ ^4ααi(x),..., 4 ^ , ^ . ^ ) by
Eq. (4.19) we simultaneously introduce the additional field Aaaί ,Λn(xj. Therefore,
assuming that the system of differential equations for the fields of the order ^ n — 1
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is consistent, the operation of adding Eq. (4.19) does not destroy the consistency.
However, adding Eq. (4.20) to it leads to the following condition

W J S2.J*) = 0 (4.21)

on the fields AΛ(x), Ami(x)9 ...,4Ml...βn..1(x).

Proposition 3. Condition (4.21) is satisfied when the field Aa(x) satisfies the Yang-
Mills equations and the fields Aaaί(x),..., Aaaιan_ί(x) satisfy (4.19) and (4.20).

Proof Using (4.19) and (4.20) and the Yang-Mills equations we obtain

"Σ^V.«>*,^ ( 4 2 2 )

where Γ^...αk and Φ μ v β l . . . β k are coefficients appearing in the expansions

.«/]''2C
 hk> (4 2 3 )

p )
k = 0

and

pak

2\fc " (4.24)

respectively. Because equality Γ v μ =0 holds ϊoτθμ = H~ι dμlί, and because of (4.22)
the consistency condition, (4.21) is fulfilled. D

We do not know if condition (4.21) is sufficient for the existence of the solutions
of (4.19) and (4.20). If it turns out to be sufficient, then by solving the Yang-Mills
equations and the infinite sequence of Eqs. (4.19) and (4.20) we could construct the
solution of (4.18).

Conversely, let / be the solution of (4.18). Then, f'=gf, where g=f(zμ,zμ)~1

[in f(zμ,zμ) we have replaced zμ by zμ] is also solution of (4.18), which is a

consequence of gauge in variance of (4.18). Besides that we have l im/^id, i.e. the
y-»0

condition (4.3) is satisfied. Thus, considering the correspondence of (4.18) to
DμFμv(x) = 0 and (4.11) we find that

-iA'μ(x)= lim KΓ'djr-ΓιdμΓ\ (4.25)

is a solution of the Yang-Mills equations.
It is important to note, in context of considerations presented at the end of

Sect. 2 (where we put h=Planck constant), that the significant difference between
holomorphic and standard field theory appears in high energy limit.
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