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Abstract. A formulation of a field theory on the complex Minkowski space in
terms of complex differential geometry is proposed. It is also shown that our
model of field theory differs from the standard model on the real Minkowski
space only in the limit of high energy.

1. Introduction

The aim of this paper is the construction of field theory for the massive conformal
particle interacting with an external field. There are important reasons, having
their roots in conformal symplectic geometry to investigate such a theory on the
complex Minkowski space. We believe that the utilization of the complex
Minkowski space as a base for construction of the field theory is not only useful
technically (see e.g. [13]), but can be of great physical importance.

In the following, by a scalar massive conformal particle we will understand a
physical object localized in time and space with a given energy and momentum.
The conformal particle mass may change when the particle interacts with a field,
contrary to the relativistic particle mass. Due to this fact the phase space of a scalar
massive conformal particle is an eight — dimensional conformal Hamiltonian space
(see [7, 10]). Considering also scalar conformal anti-particles, scalar conformal
tachyons and scalar massless conformal particles we find (see Sect.2) that two
models of kinematics of conformal scalar particles exist. The phase space of the
first model (which will be called the nilpotent model) is the cotangent bundle T*M
of the conformal compactification M of Minkowski space. In the second model
(holomorphic one) the phase space is given as the complexification IM of M. It
turns out that the conformally invariant symplectic form w, on M depends on the
real parameter h and (M, w,) corresponds to (T*M, w,) when h—0, where w,
stands for a canonical symplectic form on T*M. In other words the nilpotent
model is the limiting case of the holomorphic one.

Taking into account the above facts we construct field theory on the complex
Minkowski space (the configuration space of holomorphic kinematics) which, at
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h—0, corresponds to the standard field theory on the real Minkowski space (the
configuration space of the nilpotent kinematics); see Sect. 3. This formulation is
carried out in terms of complex differential geometry. Thus the conformal particle
states (the matter fields) can be described by holomorphic sections of a certain
Hermitian bundle %Z,®IE over a domain in M. X%, stands for the bundle
describing spinor degrees of freedom and E denotes the charge bundle, i.e. the
bundle connected with interaction of the conformal particle. On the other hand the
gauge field is identified with the holomorphic structure of IE. The action functional
for the fields is also defined and the field equations, using the variational principle,
are derived in Sect. 3.

Expanding the matter fields, the gauge fields and the field equations in h
parameter, one can find that in zero-order approximation they correspond to
analogous objects of standard field theory on real Minkowski space, see Sect. 4.
Thus, in the special case, the solutions of Egs. (4.18) generate the solutions of the
Yang-Mills equations, at the limit h—0.

Many interesting problems connected with this approach are not yet solved.
For example: to find solutions of (4.18) which would correspond to non-abelian
solutions of the Yang-Mills equations and whether every solution of the Yang-
Mills equations is obtainable from the solution of (4.18).

2. Possible Models of Kinematics for Conformal Scalar Massive Particle

The possible scalar conformal kinematics and their physical interpretations are
carried out in this part of the paper. The arbitrary spin case is considered elsewhere
[71. ,

The classical conformal scalar massive particle is defined as a time-spatially
localized physical object with an energy and a momentum. Just as in relativistic
mechanics the conformal particles will be divided here into particles, anti-particles
and tachyons. But contrary to the relativistic mechanics the mass of the particle
may vary during its evolutions. Consequently the corresponding phase spaces will
be the conformally homogeneous Hamiltonian symplectic manifolds of eight
dimensions. The Kiryllov-Kostant-Souriau theorem says (see [1]) that each
G-homogeneous Hamiltonian symplectic manifold covers a certain Ad*(G)-orbit
in G*. In such a way the analysis of the massive scalar conformal particle phase
space can be reduced to the analysis of 8-dimensional Ad*(SU(2, 2))-orbits in
SU(Q2,2)*=~SU(2,2).

The following considerations require some terms of the twistor theory (see [8,
11, 127). The conformal group SU (2, 2) will be treated as the automorphism group
of the twistor space T (which is €* with the Hermitian form # of signature
+ + — —). The conformal Lie algebra SU (2,2) will be realized as the set of
Z € EndT, which satisfy £ *n+1%Z =0 and TrZ =0. The conformally compacti-
fied complex Minkowski space IM is defined as the Grassmanian of two-
dimensional vector subspaces in T. Signature of the element z € M will be defined
as the signature of the hermitian form #|,. The fact that dimgz =2 implies that the
signature of z is given by a pair kl where k,1=0, 4+, —. Let M be the set of
elements zeM with signature kl. The submanifolds M* are the orbits of
conformal group, which acts canonically on M. In particular M°°=: M is the
conformal compactification of the real Minkowski space. The real Minkowski
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space Mo M is defined here as an affine space of elements ze M that are
transversal to a certain element co € M which is called point in infinity. The
elements ze M for which dimg(zno0)=1, form the cone in infinity C_. Hence
M=M_uC,. The cone C,, with vertex ze M, is defined alike, that is z’€ C, iff
dimg(z’nz)21. The family of these cones defines the conformal structure on IM.
The Poincaré group extended by dilatations is defined as stabilizer SU(2, 2),, of
infinity. The intersection of stabilizers SU(2, 2),nSU(2, 2) ., where point 0 € M is
the origin of the Lorentz coordinates system, is the Lorentz group extended by
dilatations. The Lorentz group L, , and dilatations group D, ,, are defined as
commutator and centralizer of SU(2,2),nSU(2,2),, respectively. The group of
Minkowski space translations is defined as a set of exp %', where & e SU(2, 2) such
that Im% C oo CKer %, while the elements exp %', where Im2 C0CKer %, form the
group of four-accelerations.

Let us define the following three SU(2, 2)-spaces: ILc, M x M, where (x,v) €L
iff xnv={0}; No M x SU(2, 2), where (x, Z) e Niff InZ CxCKerZ; M:=M™**
uM™*“UM™". The conformal group action is defined respectively as follows:
(x,v)—~(gx, gv); (x, X)—(g9x,Ad(9)¥) and z—gz, where ge SU(2,2). The vector
bundle Ay :N—M, where Ay is the projection onto the first component of the
product M x SU(2,2), is of rank four and the cones C,CAx'(x) ((x, %) € C, iff
dimy ImZ =1) define a natural conformal structure on it. Let N denote
N- UM C..

XE.

Due to T=x®v for (x,v) €L and T=z®z"*, where z* e M is subspace of T
orthogonal to z, one can define maps:

J(x,v):=x(I,—1I,), O0<kxelR, 2.1)
Jo(x, %):=%, 22)
Jyz:=ih(II,—1I,.), O=*heR. 2.3

I, 1,11, and IT,. are projections of T on x, v, z, and z* respectively. As it is easy
to check J,, Jo, and J, are conformally equivariant maps of I, N, and M
respectively into SU(2, 2).

Proposition 1. All of the 8-dimensional conformal Ad-orbits are given by J (IL),
JoM), and J, (M), where x>0 and h=+0, that is:

a) IL is a conformally homogeneous space and J, is an isomorphism of IL on Ad
(SU(2, 2))-orbit which consists of those & € SU(2,2) which have k and —x as their
eigenvalues.

b) Nisthe union of three SU(2,2)-orbits:IN* * the bundle of the upper halves of
the interiors of cones; IN™ ~ the bundle of the bottom halves of the interiors of cones;
N~ * the bundle of the exteriors of cones. J, is isomorphism of N** N~ ", and
N™*~ on 8-dimensional nilpotent Ad(SU(2, 2))-orbits (there are only three such
orbits).

c) M**, M~ ", and M* ™ are isomorphically mapped by J, on 8-dimensional
Ad(SU (2, 2))-orbits which consist of & € SU(2,2) with eigenvalues ih and —ih.

For the proof of proposition see [7, 10].
The Kiryllov construction (see [1,5]) gives us the conformally invariant
symplectic structure on the orbits J,(IL), Jo(N¥) and J,(M*), where k, = +, —. It
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can be then transported onto IL, N, and IM by the map J,, J,,, and J, respectively.
The symplectic form obtained in this way is denoted by w,, w,, and w, respectively.
Thus (IL, w,, J,), (N, g, ;) and (M, ,, J,) are the conformal Hamiltonian spaces
for which J,, J,, and J, are the momentum maps. For the definition of the
momentum map see [1, 5].

Proposition 2 (see [10]). N and T*M are isomorphic as vector bundles and conformal
Hamiltonian spaces and the restriction of the canonical symplectic form of T*M to
is .

In the symplectic geometry there exists a procedure (see e.g. [3]) which for a
given phase space (Q,w) allows as to define a configuration space K. This
procedure is based on the notion of polarization F C T€Q, i.e. 4 dim Q-dimensional
locally integrable complex distribution, isotropic with respect to the symplectic
form w. The configuration space is defined as the quotient K:=Q/FNFNTQ,
where F is complex conjugation of F. We have to assume that F satisfies
appropriate conditions (see [3]) which enable us to define a structure of a
differential manifold on K. In the case of G-phase space we demand that F be
invariant with respect to the G-action on Q. Using the algebraic methods one can
find that for (IL, »,) and (N, w,) the only conformally invariant polarizations are
those given by projectors Ay : =pr, :L—>M and Ay: =pr, :IN—M respectively.
For (M, w,) the only conformally invariant polarization is given by holomorphic
(anti-holomorphic) structure of IM. Hence M is the configuration space for (IL, @)
and (N, w,), and M is the configuration space for (IM, w,).

Since J,(N) consists of nilpotent Ad(SU(2,2))-orbits we shall call the
conformal kinematics realized by (N, w,, J,) the conformal nilpotent kinematics.
The kinematics realized by (M, w,,J,) will be called conformal holomorphic
kinematics.

In order to make the physical interpretation of the above models of conformal
kinematics we shall express symplectic structures, conformal group actions and
momentum maps in canonical systems of coordinates. Therefore, let us take

(0 =0 (0 0 __10 _C_
n-—z(ao 0>,wher60—<0 0>andao-—E—<0 1),00—{<0>.C€CZ}

and 0= {(g) 4 eCZ}. Thusze M, iffz= {(if) ¢ e(Ez}, where Z € Mat, , ,(C)
andze M iff Z* = Z. The above choice of 7, o0, and 0 gives us the decomposition
SUR2,2)=T . ®%s,.D %D, DH o (2.4)

into a direct sum of subalgebras, where

T = {(8 '(I)1>:T= T+EMat2x2(a:)}a

{l
f
l

0 _2+> :TrL=0, Le Mat, XZ(C)},

E 0
(F O)aerl.
0

c g):CJ’:CeMatzxz((E)},

go,oo
@0,00
Ao
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denote Lie subalgebras of SU(2, 2) generating translations Lorentz transforma-
tions, dilatations and four-accelerations respectively. In our calculations 2 x 2
matrix coordinates are preferred. The Minkowski coordinates are given, by
decompositions into Pauli matrices: Z=z"s,=(x"+iy*)o,, T=t"¢,, L=1%0,
+ % &m0, and C=c"c,,. These generate the basis of SU(2,2), consistent with

(2.4): o 0

. g, O
301;:‘371:03:(0 _o_k)a glm=—gml:=wlmn<0 O_)a

(0 g, . (0 0 . (E O
2=y 7). =0 0) 2=(¢ %)

The basis of SU(2,2)*=SU(2, 2) dual to (2.5) with respect to the Cartan-Killing
form (¥, X"y : =3Tr XX’ is

@2.5)

glz:%gkbgOkz%gok’g’:zdwdtz'@w@*z%g- (2.6)
Expressing the momentum map J : Q—SU(2,2) in terms of the dual basis,
J(@)=3m"(Q) L+ P ()P +a"(q) /¥ +d(q) D* 2.7

one can find: 4-momentum p*(q), angular momentum m*"*(q), 4-acceleration a*(g)
and dilatation d(q) for qe Q. Introducing the matrix coordinates P=p“s,,

M=1im%q, — i m*e,,,0, and A=a’s,, we obtain
d
1 1 M@, 4@
@)= @8)

P, - 22w+

One can also parametrize elements of Q (Q = I, N, M) by matrix coordinates. The
simple considerations show that for the specified phase spaces we have:

1) the fibre element veA~!(x), where xeM, is of the form

E+XV){ 2 . .
v= {[ Ve ]:C eC } Hence, the pairs of matrices (X, V)e H(2) x H(2),
where H(2) denotes vector space 2 x 2 Hermitian matrices, define the system of
coordinates on A7 (M)
XS, —-XSX

2) e Ag'(x) iﬁ”%=|: S _sx ], where (X,8)e H(2) x H(2).

3) elements zeM,, are parametrized by pairs of Hermitian conjugated
matrices (Z,Z"), Z e Mat,, ,(C). After some calculations we obtain

—E-2XV, 2X X _
so=| EY BELO] tor g=neazion, @9
XS, —XS -
Jo(q)=|:S —S)?(] for g=(x,%)eAx'(M,), (2.10)
VA Z+ 7t -1 -2 __FZH\— 17+
J,,(q)=ih[( il el i ] for zeM,,.

2.11)
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Comparing (2.9), (2.10), and (2.11) with (2.8) we get P=—2«V, P=S and
Z_z+ -1
pon(%

respectively. Hence, (X, P)e H(2) x H(2) may be used as

canonical coordinates common for the three cases.
Symplectic forms w,, »,, and w, expressed in X = x"g,, P =p"0, as one should
expect, have the canonical form

0=Tr(dX AdP)=dx" Adp,. (2.12)

Expressing in (X, P) the Poincaré group action and relativistic kinematical
quantities connected with it we find that they are the same for each of the
considered models of kinematics. The differences among the models appear if we
go out of the relativistic mechanics, i.e. if we also consider the four-accelerations
and dilatations.

d=4TrXP—-x, A=—-XPX-2xX for L, (2.13)
d=4iTrXP, A=-XPX for N, (2.14)
d=4TrXP, A=-XPX—h*P™' for M. (2.15)

For the acceleration transformations (f: g) €SU(2,2), where C € H(2), we have

respectively
X'=X(CX+E)™', P=(CX+E)P(XC+E)-2xkC(XC+E), (2.16)
X'=X(CX+E)"', P=(CX+E)P(XC+E), 2.17)
X’'=[XP+ihE—in(XC—ihP~*C+E)] " (CXP+ihC+P)~ !,
P'=(CX+E)P(XC+E)+h*CP"!C.

From (2.13-18) we can see that the models IL and M correspond to the nilpotent
model when x—0 and h—0 respectively. Thus nilpotent conformal kinematics is,
in some sense, the limit case of the two others. The differences among kinematics
are significant for big parameters x and h.

On the contrary to N=N**UN*"UN~~ and M=M**UM* UM~
the phase space IL is conformally homogeneous. An element g € N(IM) with the
canonical coordinates (x*, p*) belongs to N**(M™ *) if p°>0 and p°%2—p?>0,
geN"~(M™")if p°<0and p°%—p? >0, while ge N* ~(M* ") if p°2—p?<0.In
such a way the conformal group orbits M**, M~ ",and M*~ (N**, N~ ", and
IN* ) form the phase spaces for conformal scalar massive particle, anti-particle
and conformal scalar tachyon. Concluding, we state that holomorphic conformal
kinematics can be used for the description of conformal massive particle (anti-
particle and tachyon) equally well as the nilpotent one.

Finally let us assume that A is the Planck constant (because of P=hY ~! h has
14

the dimension of the action). Thus we get y* = L B—, where L is the length of the
mc mc mc

(2.18)

Compton wave and mc =]/p°? —p? is the relativistic mass of particle. One can see

that the neighbourhood Q of M in IM consists of massive <sma11 ;1}10_) conformal
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The analysis of transformation rules (2.16), (2.18) and expressions for dilatation
and 4-acceleration (2.13), (2.15) leads us to the conclusion that the difference
between the holomorphic and the nilpotent conformal kinematics becomes
significant only when we go beyond €, that is when particles of a small mass

"
(big —n’;_c> and large velocity <% > 1> are taken into account. Thus the answer to

the question whether the nilpotent or the holomorphic model is realisable in
nature has to be sought in high energy physics.

3. The Field Theory on M**UM™~

In this section we present a field theory for the massive conformal particle which
will be consistent with the conformal holomorphic kinematics. All the construc-
tions presented below will be made in terms of complex geometry of M* *UM ™,
i.e. of the configuration space of massive conformal scalar particle and anti-
particle.

By definition the field describing the conformal massive particle is given as the
holomorphic section pe HOM**UM™",0(Z)) of some Hermitian vector
bundle Z->M™**UM™ 7, i.e. holomorphic bundle with Hermitian metric (see [4]).
Analogously to field theory on the real time-space we assume that X is the tensor
product X =2,®IE of Hermitian vector bundles X, and [E which describe spinor
and charge degrees of freedom of the conformal massive particle.

In view of the twistor description of M there is a canonical construction of
spinor bundle X, (see [8]). To see this, let us consider holomorphic vector bundles
S—>M, $*>M, and T, where S,=z, St=z* and T=M x T. Restricting the
above bundles to M**UM™~ we obtain the holomorphic vector bundles
isomorphism T/S =S, which is induced by the twistor form #. The twistor form
also define the Hermitian metric on S and S*. Hence, X, is the Hermitian vector
bundle as an algebraic combination of the Hermitian vector bundles S, S$*,
T/S=S" and (S*)*. Note that by TP =S®T/S and T} O =2S*@(T/S)* (see
[8]) any tensor bundle over M* * UM ™~ is also canonically Hermitian.

The Laplace transform enables us to study the field y, :=vy|y++ and
W_:=1y|p-- in terms of the tempered distribution on the future and the past
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cones (see [6]). For this reason one can interprete v, as matter field (positive
frequency) and y_ as anti-matter field (negative frequency).

There is a natural anti-isomorphism % (the “charge conjugation”) between
vector space of matter fields and vector space of anti-matter field. In order to define
it let us consider the following commutative diagrams

id p+ id B

S S » (S4)* S ., 8 > S*
| l | and | | l (3.1)
M — M " —— M - Mt M — M,

where f and B* are vector bundle anti-isomorphisms defined by hermitian metric
of the respective bundle and involution 1 : M—IM maps ze M on its orthogonal
complement in the twistor space. One can see from the diagrams that
(Cy)@):=Bv.(zY) and (C'y,)(z):=Pyw.(z}) define anti-isomorphisms
C:H’M™**,0(S))»H’(M™~,0(8**) and CH:H'M**,0(8Y)
—H°(M™~,0(S*)) respectively. The anti-isomorphism %:H°M™*, 0(Z,))
—-H°(M™ ~, 0(Z,))is defined accordingly to spinor structure of X, as an algebraic
combination of C and C*. The Hermitian vector bundle £, is obtained from %, by
the exchange of S and S* for (§')* and S* respectively.

Finally, let us note that the above construction of X, admits a unitary
representation of the conformal group in H(M* *UM™ ", 0(Z,)) (see [6]). For
the charge bundle E-IM**UM™ ", on the contrary to the case of the spinor
bundle, there is not canonically defined Hermitian vector bundle structure.
Therefore the basic idea of this section is to fix a Hermitian metric H on IE and
interpret the possible holomorphic structure of IE as the fields responsible for the
interaction of the conformal particles (anti-particles), i.e. as the gauge field. The
rank of IE will depend on the type of interaction.

Let us now recall some facts concerning the notion of the holomorphic vector
bundle. One of the ways to give the holomorphic structure on the smooth vector
bundle is to introduce the Cauchy-Riemann operator D:C>(Q,IE)
->C*(Q,E®T*®Y), Qc M**UM™ ~, which by definition satisfies

a) D*>=0,

b) D(hy)=0h®@vy +hDy,
where he C*(Q) and peC®(Q,E) (see [2]). The holomorphic sections
y e H°(Q, O(IE)) are then defined by the condition

Dy=0. (3.2)

Let sy, ..., s,, n=1KIE, be a holomorphic frame, i.e. Ds;=0. Because M* * UM~ ~

is topologically trivial one can define s; globally, s;e HHM* * UM~ ~, O(EE)). Thus

w=vy's; is holomorphic iff yp'eOM** UM "). In umtary frame

Uy, ..., u, € C°M**UM™ ", ), H(u;,u)=9;; i We have Du;=c*®u,, where

c [c"] eC*(M**uM™~, End(CH® T*O )(]M+ UM ). The condition
=0 implies

dc—cnac=0. (3.3)
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Acting with D on s;=f*u,, where f=[f]eC*M**UM™~, GL(1n,C)) is
transition function from unitary to holomorphic frame, we get c= — f ~10f, which
is a solution of (3.3). Since, the Hermitian structure of IE was fixed the transition
function f defines the holomorphic structure of it. Everywhere below, where it is
necessary, f or ¢ is used for the description of the holomorphic structure of the
bundle.

In the following considerations the metric connection V is used. It is
unambiguously defined by the consistency conditions:

a) POH =7,

b) dH(yp,9)=H(Vy,0)+H(y,V¢),
where p, p € C*(M* * UM ™ 7, IE), with holomorphic and Hermitian structure of
E (see [4]).

Let § and @ =curvV mean the connection form and the curvature form of 7,
respectively. Thus we have

H=f*f, (3.4
D=3, (3.5
6°=H*"'0H*, (3.6)
=30°=: ©5dz" ndT, (3.7

where index s means that a indexed quantity is written in holomorphic frame {s;}.
In the case of unitary frame we have

H*=id, (3.8)
=0+c, 3.9)
O'=—frof +@Of ) f 71, (3.10)
e'=f"tef, O* =-0". (3.11)
For the further considerations we shall also need
0*=c—c" =cydz" —c; dz*, (3.12)

60“

=0c—0c* +cnct +ct Ac= <6c

a "

With each type of frame, respective gauge transformations are linked. Namely,

let {s;} and {u;} be new holomorphic and unitary frames. Then s;=g%s, and

u;=ufu,, where g=[gfleOM**UM™ ", GL(n,C)) and u=[uf]eC*M**

UM ™7, U(n)). The new transition map f’=[f;*], s!= f*u; is related to the former
one by

+[c,, c;]) dz* ndz”. (3.13)

fr=gfut. (3.14)

The gauge transformations for the quantities given by (3.4-11) can be easily
calculated from (3.14), since they are expressed by the transition map f.

Now let us define the action functional S =S [, c] for the matter y and gauge ¢
fields. For the simplicity of calculations we shall restrict our considerations to
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scalar case, i.e. rkZ,=1. Then, by definition,
Lle,ct, v, p)=Tr@ Ax0"+[(0+c)yp*]* A *(3—c+)w"
+[@=cHP T A*(@+)p* =V (" p*)dz° A... AdZ® (3.15)
will be the Lagrangian density expressed in the unitary frame.
*OI=Wy, gy j AN L AZ)A *(dZP A ... AdZPY)

is dual of W=y, ug,.. go A2 A ... ANdZ*AdZP A ... AdZFreCP(MPTUM™ T,
E® T*®Y), where * is the star operator given by the Minkowski metric on M,
DM**UM™ . The term V (y" " y*), where V is real valued function, describes self-
interaction potential of the matter field. The physical sense of the other terms in
(3.15) is determined by their form. It is easy to show that (3.15) is relativistic and
unitary gauge invariant.

Let us emphasize that in variational principle ¢, ¢*, ¥, v*" will appear as
independent quantities. Thus, we must include the terms related to constraints (3.2)
and (3.3) in the action functional. We have

Sle,e*, w9, 4, 4]1= | Ll v, v ) +[([@+)p Tt A

oM (3.16)
+AT A @+ +Tr[(Fc—cAc) A * A+ Tr[AY A x(0c™ —cT AcT)],

where 1€ C*(E® T**:?) and 4 € C*(End E® T*?) are the appropriate Lag-
rangian factors. Assuming the transformation rules ’=u"*4 and A'=u"'Au for
the Lagrangian factors we guarantee unitary gauge invariance of (3.16).
The variational principle applied to (3.16) gives the following field equations
k0% @+ x(x@" AcT)—*(ct A *x O] -[[@+)p*]p*
FY L@—c )] +p"AT + %% 4

+x(cA*A)—*(*AAc)=0, (3.17)
#(0—c)*(@—c)P ++ @+ * (T+)p" + V" )y + *(0—c*)* 1=0
(3.18)

and their hermitian conjugated counterparts. Because of its technical character the
calculation of (3.17) and (3.18) is omitted here. Let us note only that we assumed
that éc, dc*, dy*, dy* =0 on O(M*TUM™ ") and used Stokes theorem as it
always holds in such cases. The variation of (3.16) with respect of 2 and A gives (3.2)
and (3.3) respectively.

At the end of this section let us rewrite (3.17), (3.18) and their Hermitian
conjugated counterparts in the holomorphic frame. Using (3.2), (3.3) and formulae
(3.4-11) we find

«dx(HOH™ )+ Hy'(Vy*)* + Hy'(f "1 A)* + H(+T* f LAf)H =0

- N “1g. gt - - } (3.19)
—*0*x O+ (V) H+ [~ A H+H (x 0% (f ' Af))H=0,

VPV + V(' HyS)p'+ «Vx f11=0,
0% (V)T —+ (V)Y AGH)H ' + V' (v Hy")yp*" (3.20)
+* (DT —x(x(fTI DT A(GH)H =0,
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respectively. The field Egs. (3.17) and (3.18) [(3.19) and (3.20)] are gauge
equivariant in the sense of gauge transformation (3.14). It is a consequence of the
gauge invariance of the action functional (3.16).

Let us also note that all quantities appearing in (3.16) are equivariant with
respect to biholomorphic transformations of M* * UM ™ ~. Therefore, the above
considerations can be repeated in the case of general complex manifolds.

4. Correspondence to Yang-Mills Theory

We shall study here the behaviour of the conformal holomorphic field theory in the
case when the parameter h is small (h~0). It was shown in Sect. 2, that the
holomorphic conformal kinematics corresponds to the nilpotent conformal
kinematics, i.e. standard one, which suggests the analogous correspondence on the
field theory level. In order to establish it we will express all interesting as quantities
and equations in canonical coordinates (x*, p*) and next expand them in powers of
h. We will also prefer the holomorphic frame, which is more convenient for our
calculations,

I
Because of z*=x*+iy"=x"+ih I% the condition A~0 implies y~0. Every-

where below we assume that E-M**UM ™~ and thus frames s;" =s;[pq+ +,
S =Silm--»> Ui =tlpg++ and u; =uylp,- -, i=1, ..., n, extends in a smooth way to
M, and that

yl-i»IPo st = yl_i}pO si=:57, 4.1)
lim u = lim u =: u, 4.2)
y—= y—= -

sY=u, “4.3)

where {5}, {u?} are frames of the boundary vector bundle E— M . The conditions
41) and (42) allow wus to compare the boundary values

p(x)= (yqulo wi+(2)> sP(x) and p_(x)= (y!il}}o wi-(Z)> s7(x) of positive v.(2)

=y, (2)s;(z) and negative y_(z)=vy' (2)s; (z) frequency matter fields. The
condition (4.3) has technical character and does not restrict the generality of the
discussed problem. In general the field p(x) =y, (x) +y_(x) is a hyperfunction on
M, (see [14]).

The gauge field in our model is expressed by transition map f:M**UM™~
—GL(n,C). Because of Gauss decomposition f=RU, where R*=R and
U*=U"1, one can choose a unitary frame in such a way that f = R=exp 4, where
A=A"*. Thus, the gauge field is described by a map A:M**UM™~—H(n),
which takes the values in the space of n x n Hermitian matrices. In order to find the
link to the Yang-Mills theory on the real Minkowski space, we assume that the
expansion

A(x, y)=A(X) + A () Y+ Ag() YV + ...

", .,
= A(X)+ A,(x) = h! 4 A,(x) o7 h+... 4.4
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holds. From (4.3) we get A(x)=0. So, an infinite sequence A,(x), Agp(x), ... of the
fields defined on M, describes the holomorphic gauge field.

The connection form and the curvature form of the metric connection V
expressed in a holomorphic frame and canonical coordinates are given by

6 =6° [dx“ +ihd (%Z)] : 4.5)

0= l:dx"/\dx +h2d ( )/\d( v>]+ihge; [dx"/xd( v>+dwd<”">]
P p* p?

4.6)

where &5, =4(05, @’vﬂ) and .@ =405, + 63,). In the umtary frame, because
of (3.11), we have &%, =3(0%,— v) and #;,=%(0%,+ @" »). From the (4.5), (4.6)
and from

¢(x, p)=—iAd, (x)h° + ( aa 7 Aa() = 2i4,,(x) +i[4,(x), A (x)]) = h1+....

@.7)
%X, P)=3[D,, D,1h°+ (iD A, ,(x) —iD,A,(x) + $[A(x),[D,, D] h* +
4.8)
£ 1A%, P) = () hO + Ag() i’? AT 4.9)
£ A%, p) f = Agg(X) O + Agsy() ;’—2 Bt (4.10)
where D '——Q——'A( ), we have
wi = g —iA), W
lim 6= —i4,(x)dx", @.11)
1@) 0°=31[D,, Dgldx* AdxP = :3F 4(x)dx* A dx* . (4.12)

Therefore, according to (4.11),(4.12) and the expansion (4.4), the Yang-Mills field is
a first-order approximation (in parameter %) of holomorphic gauge field f =exp A.

As it follows from (4.6) hm ©° does not depend on the Hermitian part £}, of

curvature form @%,. Takmg th1s into account, we replace in the Lagrangian (3.15)

the term Tr@" A * @ by Trd" A * ", where &"=®},dz* Adz’. The variational

principle applied to this new Lagrangian gives the field equations which are similar

to (3.19) and (3.20), the only difference being that @* is replaced by @°. In the index
notation they have the form

0"®a, + 6%, 93, 1=3[w' (VW) H+ 9 (f ' A) " H+3'f ' Ap f]

085, =3[(Vy) v H+f A9 H+H ' 0(f ' A5 f)* H]

V.V + V(" Hy)p'+V,f~1A*=0
FWW)* (V) 0T +V (w Hy)p® +3(f T A +(f71A,)T 07 =0.
4.14)

} (4.13)
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Let us now discuss the field equations using the expansion (4.4) and

W@ =y* (x“+ih ;’—2) —p()R° + g;” (x) ;’—2 Bt (4.15)

After substituting (4.4), (4.11), (4.12), and (4.15) into (4.13) and (4.14) and bringing
together the terms of the same order in h we find the infinite sequence of the

equations for the fields A4,, A, ... and the derivatives y(x), g% (x),....Insucha

way we get that the equations

D'F,,(x)=v(x) D p(x)" =D pN v (%) +w(x) A7 ()~ 4,x)p " (x)

1
+ 3 ()= A500) — 3, (4309 + A5 ()
D ”A:(X) -D nAua(x) = %[‘P(x) (D uw(x)) * + (D ,AP(X))‘P +(X)] [ (4‘16)

PR () ALV D+ o H (400 + A43(5)

ARV

; .
DY)+ V(0 CPEDPR = A+ - F R+ DM+ 3B |

Hermitian conjugated equation

are zero-order approximations of (4.13) and (4.14). Putting 1,(x) =0and A;(x) =0,
we find that (4.16) and (4.17) are equations on the Yang-Mills field 4,(x) and on the
matter field yp(x) which hold in standard field theory. If we put =0, 1=0, and
A=0, Egs. (4.13) could be written in the form

@5, =0, o(HPLH 1)=0. (4.18)

The perturbative method with respect to h gives the Yang-Mills equations
D"F,,(x)=0 for 4,(x), see Eq. (4.16), and the remaining fields 4,,, ... a,(x), where
n=1, ..., satisfy

DﬁA;az eee a..(x) - DaABaaz .. .a,.(x) =jpaz ... an(x) (419)
Da(DﬂAaal . .u,.(x) _DaAﬂal .. .a,,(x) + [A':l .. .an(x)’ Fﬂa(x)] = kﬂal . .a,.(x) ’ (4'20)

where the currents jg,, . ,.(X), kg,, .. ., (X) are the algebraic combinations of 4,(x),
Aga (%), ..., Agay ..o, () and their derivatives. E.g. for n=1 we have jy(x) =0 and
k4o, (x)=0.

! 'Here arises a problem of consistency of this infinite sequence of the differential
equations and their compatibility with the Yang-Mills equations. Extending the
finite system of equations for the fields A,(x), A, (%), ..., 4g,...q,_,(X) bY
Eq. (4.19) we simultaneously introduce the additional field 4,,, .., (x). Therefore,
assuming that the system of differential equations for the fields of the order <n—1
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is consistent, the operation of adding Eq. (4.19) does not destroy the consistency.

However, adding Eq. (4.20) to it leads to the following condition
Dﬁjﬁaz...an(x)+k§az...an(x)=0 (421)

on the fields A,(x), Ay, (%), -.s Agay .. ., (X)-

Proposition 3. Condition (4.21) is satisfied when the field A(x) satisfies the Yang-
Mills equations and the fields A, (X), ..., Aus, .. a,_,(X) satisfy (4.19) and (4.20).
Proof. Using (4.19) and (4.20) and the Yang-Mills equations we obtain

n—1

150 [rv“al...ap ¢uvaz+ 1eeelpn— 1] =Dﬂjﬁa1...an_ 1 +kﬂﬂa1 cedln—-12 (4‘22)

where I;%  , and @,,, ., are coefficients appearing in the expansions

=0 — o —[0% 0= 3 T2 P 23
k=0 ®°)
and
® p*...p™
(puv = kgo d5uvau -7 Tz)_k_—' hk (424)

respectively. Because equality I"* =0 holds for 6, = H™'d,H, and because of (4.22)
the consistency condition, (4.21) is fulfilled. O

We do not know if condition (4.21) is sufficient for the existence of the solutions
of (4.19) and (4.20). If it turns out to be sufficient, then by solving the Yang-Mills
equations and the infinite sequence of Eqgs. (4.19) and (4.20) we could construct the
solution of (4.18).

Conversely, let f be the solution of (4.18). Then, f’=gf, where g= f(z*,z*) !
[in f(z*, 2*) we have replaced Z* by z*] is also solution of (4.18), which is a

consequence of gauge invariance of (4.18). Besides that we have )1’1_1'13 f’=id,i.e. the

condition (4.3) is satisfied. Thus, considering the correspondence of (4.18) to
D*F,,(x)=0 and (4.11) we find that

—i4,()=lim [(f 713, /)* —f710,/] (4.25)

is a solution of the Yang-Mills equations.

It is important to note, in context of considerations presented at the end of
Sect. 2 (where we put h=Planck constant), that the significant difference between
holomorphic and standard field theory appears in high energy limit.
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