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Abstract. We give an exposition of the details of the proof that all highest
weight representations of the Virasoro algebra for ¢ <1 which are not in the
discrete series are non-unitary.

The Virasoro algebra is the infinite dimensional Lie algebra with generators L,,
neZ, satisfying the commutation relations

[Lm’ Ln] = (m - n)Lm+n +1—12c(m3 - m)6m+n, 0- (1)

The number c is called the central charge. The Verma module V(c,h) is the
representation of the Virasoro algebra generated by a vector |h) satisfying

Lolh>=hihy, L,h)=0, n>0, @
and spanned by the linearly independent vectors |k) and
L_yL_y,..LyJhy, 1=k, Zk,<...Zk,. 3)

We assume that both ¢ and h are real. In this case, a hermitian inner product on
V(c, h) is defined by <h|h) =1, and L! =L _,. Define, for p and q positive integers,

((m+1)p—mq)*—1

cm)=1- 4m(m+1)

h,, (m)=

m(m+1)’ @

The non-unitary theorem [1] is

Theorem 1. For c <1 there are negative metric states in V(c, h) if (c,h) does not
belong to the discrete list

c=cim), m=23,4..., h=h,,(m), p+q=m. ®)
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The proof of Theorem 1 was given in [1]. The present paper is an exposition of
the details of that proof. We recommend the graphs in [1] as a visual aid.

There are analogous non-unitarity theorems for the N=1 supersymmetric
extensions of the Virasoro algebra [1, 2]. The details of the proofs of the N =1 non-
unitarity theorems are exactly parallel to the proof of the Virasoro theorem.
Goddard et al. [3] proved that all representations in the discrete series allowed by
the non-unitarity theorems for the Virasoro algebra and its N =1 extensions are in
fact unitary. Boucher et al. [4] have given the non-unitarity theorems for the
N =2 extensions. The N =2 proofs [5] are somewhat different from the N <2
proofs. Di Vecchia, Petersen, Yu, and Zheng have proved that the discrete series of
representations allowed by the N =2 non-unitarity theorems are in fact unitary
[61.

For N a nonnegative integer, define level N to be the eigenspace of the Verma
module on which L, has eigenvalue h+ N. Level 0 is spanned by |h), and level N,
N =1, is spanned by the vectors listed in (3) which satisfy " k;=N. Level N has
dimension P(N), the partition number of N. Clearly, the levels span V(c, k) and are
linearly independent. Since L}=L,, levels N and N’ are orthogonal if N+ N".
Define the null subspace on level N to be the subspace of vectors in level N which
are orthogonal to all of level N, and thus to all of V(c, h).

The inner products of the states on level N listed in (3) form a P(N) x P(N) real
symmetric matrix M y(c, h) whose entries are polynomials in ¢ and k. An explicit
formula for the determinant of this matrix was announced by Kac [7] and proved
by Feigin and Fuchs [8]. Up to multiplication by a positive number independent
of c and h,

detMy(c,B)= T (h—hy,((m))"™"", (©)
D 1

N

[~
(AT

s
pPq

where h, (m) is given by Eq. (4). In Eq. (6) it does not matter which branch is
chosen for m as a function of ¢. For ¢c<1 we choose by convention the branch
O<m<oo. There is a nontrivial null subspace on level N if and only if
detMy(c, h)=0.

Kac[9] showed that, for ¢ = 1, the metric on V(c, h) is nonnegative if and only if
h=0. Direct calculation gives the 1 x 1 matrix M, =2h, so h=0 is necessary if the
metricis to be nonnegative. It is straightforward to verify that, in the limit h— + oo,
M), goes to a diagonal matrix with positive entries. It is also straightforward to
check that det M y(c, h) # 0 for ¢ > 1, h>0. Therefore M y(c, h) is nondegenerate and
positive for ¢ > 1, h> 0, and is non-negative for c= 1, h=0. Since this is true for all
levels N, the result follows.

The proof of Theorem 1 is entirely elementary. The strategy is to consider the
matrices My, N=1,2, ..., one by one. For each N we find a subset Gy, of the half-
plane ¢<1 on which My(c, h) has a negative eigenvalue. We then say that the
subset G has been eliminated. Theorem 1 will follow from the fact that the discrete
set (5) is the complement of (J Gy in the half-plane c<1.

N

Henceforth we write h, ,(c) in place of h, ,(m), with the understanding that, for
c<1, we choose the branch of m with 0 <m < c0. Write C,, , for the vanishing curve
h=h, ,(c). Because det My(c, h) vanishes on the curve C, , for pg< N, we say that
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the vanishing curve C, , first appears on level pq, and that the vanishing curves on
level N are the C, ,, pg<N. The curve C, , intersects the line c=1 at h=h, (1)
=(p—q)?*/4. Orient each vanishing curve so that c=1 is the initial point, and
forward is the direction of decreasing c.

Proposition 1. When the curve C, , first appears on level N = p, it intersects no other
vanishing curves in the half-plane c<1. When C, ,, q>1, first appears on level
N=pq, its first intersection, moving forward from c=1, is with C,_, , at
m=p+q—1.
Proof. The proof is straightforward algebra. O

For g=1define C;, ; tobeall of C, ,in the half-plane c <1. For g > 1 define C,,
to be the part of C,, , for which m > p+q 1. That s, C,, , is the open subset of C, ,
between ¢ =1 and the first intersection of C,, , on level N = pq. The first step in the

proof of Theorem 1 is to eliminate all of the half-plane c <1 except the curves C,, ,.
For N=1 define

Sv= U {ehy:e<t, hy (@) <hsh, (0} U {(eh):e<t, h<h, (o)}

q

q4<p,p4=N
(7
Proposition 2. Igim Sy is the half-plane c<1.
=
Define a first intersection F on C;, 4 to be an intersection of C, , and C, ,,
P'q’ > pq, such that, on level N'=p’q’, (c, h) is the first intersection encountered on

C,, . starting from c=1.

Proposition 3. The first intersections on C, , are the intersections F, , , of C, ,and
Cp.o=Cyix—1,p+1o k2 1. Fp, 4 is the point h=h, ,(m), m=p+q+k—1. Each of
these first intersections is, at level p’q’, the intersection of exactly two vanishing
curves.

Proof. The proof is straightforward algebra. O
It immediately follows that

Proposition 4. The discrete list (5) consists exactly of the first intersections, on all
the vanishing curves C, ,

Define R, ; to be the open quadrant c<1, h<0. Define R, ; =R, ,, for p>1,
to be the open reglon bounded by C,, ,,C,_;,1,and C; ,. Forp,q>1,define R, ,

to be the open region bounded by C; C;,_l,q_l, and C_, ,

p,q°
Proposition 5. No vanishing curves on level N = pq intersect R, ,

Proof. A vanishing curve which did intersect R, , would have to intersect its
boundary. By Proposition 3, this does not happen. a

Proposition 6. Sy—Sy_,;= U RM U

pa=N

Proposition 7. Except possibly for the curves C,, ,, pq< N, all of Sy is eliminated on
levels <N.
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Proof. The proof is by induction in N. The proposition is clearly true for N=1,
because §; is the quadrant c<1, h<0, and C} , is the line h=0, c<1. Now
suppose the proposition is true for N —1. We show that it is also true for N. By
Proposition 6, we need to show that the R, ,, pg= N, are eliminated on level N.

We say that two connected regions of the (¢, h) plane are contiguous on level N if
they can be connected by a path which does not intersect any vanishing curves on
level N. If two regions are contiguous on level N, then the signature of M is the
same in both regions, because the signature can only change when a vanishing
curve is crossed. For each C,, , on level N, for pg < N, choose a neighborhood U of
Cp o, small enough so that the only other vanishing curves on level N which
intersect U also intersect C,, ,. U —C, , has two connected components. Define the
c>1 side of C, , to be the connected component on the right of C, ,, moving
forward, if p=> q, and on the left, moving forward, if p < g. The other component is
called the c¢>1 side of C, ,. The motivation for this terminology is that the c>1
side of C, ,, for ¢ near 1, is contiguous on level N = pq with the region ¢>1, h>0.
This is easily verified by expanding h, ,(c) around c=1.It follows that M y(c, h)is a
positive matrix on the ¢>1 side of C,, , for ¢ near 1. det My vanishes to first order
on C, .. Therefore det My(c, h) is negative on the c <1 side of C, ,, for ¢ near but
not at 1. The sign of detMy(c,h) can only change at a vanishing curve, so
detMy(c, h) is negative in the entire region of the c<1 half-plane which is
contiguous on level pg to the c<1 side of C,, for c near but not at 1. By
Proposition 5, this region is R, ,. So the region R, , is eliminated. The induction
step now follows from Proposition 6. [

Given Propositions 2 and 7, we are left with the task of eliminating the intervals
on the curves C,, , in between the points in the discrete list (5). Let I, , 4, k=2, be
the open interval on C,, ,between F,, , ;,_,and F, , ;. Let I, , ; be the open subset
of C, , beyond F, , ;. That is, I, , , is the open subset of C;, , with m<p+gq.
Clearly,

Proposition 8.
U I p.q,k U F (8)

k21

The goal is to eliminate the open intervals I, , ,, k=1. Recall that, when
Cp,: +=Cq+ k—1,p+k first appears on level N'=p’q’, there is a negative metric state
onits ¢ < 1side,near c=1. We will show that this negative metric state continues to
exist on the ¢ <1 side of C,. ,, moving away from c=1, and in particular exists on
C,., on the c<1 side of C, ... That part of C,, , is a subset of I, , ;, and, by the
definition of first intersections, there are no intersectionson I,, , , at level N”. It will
then follow that there is a negative metric state on all of I, , ;, and we will be done.
Proposition 9. On level N'=p’q’, the first k successive intersectionson C,, .., are with
Chik-jg+k-jp 1Sj=k. These are the first intersections Fpyp_j  4x—j; ON
Cpik—j,q+k-j OCCUrring at m=p+q+2k—j—1.

Proof. The proof is straightforward algebra. [
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Proposition 10. Suppose (¢’, i) is on some C,, ,, pg= N, but is not on an intersection
of vanishing curves at level N. Then the null space on level N is one dimensional at

(¢’ h).
Proof. det M y(c, h) vanishes to first order at C, , near (¢, h). O

Proposition 11. At F, , ,, the intersection of C, , and C, ,=C,_ 4 p+i> k21,
occurring at ¢c=c(m), h=h, ,(c), m=p+q+k—1,

detM . po(c, h+pq) £0. ()]

Proof. If this determinant were zero, then (c, h + pqg) would be on a vanishing curve
C, s on level rs=p’q’— pq. Direct calculation of p’q’— pq gives

rs=mm+1)—(m+1)p—mgq. (10)
The condition that (c, h+ pq) lie on C, ; is
m+1)p+mg=t((m+1)r—ms). 11)

It follows from Eqgs. (10, 11) that r =m or s=m+ 1. But this gives a contradiction if
we take Eq. (10) modm or modm+1, since 1Sp<mand 1£q<m+1. O

Proposition 12. For j=1,2, ...,k there exists an open neighborhood U, . ; of
Fpsi-ja+k-5i=Fa—jp+1-jjs
and a nowhere zero analytic function v{c, h), defined on U, . ; with values in level

N’=p'q’ of V(c, h), such that v(c, h) is in the null space of level N if and only if (c, h)
ison Cy .

Proof. Write p"=p+k—j, ¢"=q+k—j, N'=p"q"<N’. Let U=U, ., ; be a
neighborhood of F,.;_; ,+k-;; small enough that it intersects no vanishing
curves but C,. .- and C,, , onlevel N'. Choose coordinates (x, y) in U, analytic in
(c, h) and real for c, h real, such that Cy .. is given by x=0 and C,, ,. is given by
y=0. Thisis possible because the intersection is transversal. At level N”, x =01is the
only vanishing curve in U. The one dimensional null spaces of level N” form a line
bundle over the vanishing curve x =0 near y=0. Let v}(0, y) be a nowhere zero
analytic section of this line bundle, and let v(x, y) be an analytic function on U
with values in level N”, which extends this section. Define the subspace V”(x, y) of
level N’ to be the span of the vectors

L__ka_kz-..L_k"v;{(x,y), 1_S_k1§k2§ ces ékn, Zki=N/_N”'
12

The dimension of V”(x,y) is P(N'—N”). For y+0, the order of vanishing of
detMy(x, y) at x=0 is also P(N'—N"). Therefore, for y=+0, V”(0, y) is the null
subspace of level N”. Let V'(x,y) be a subspace of level N’ complementary to
V”(x,y), so level N” is V"@V’. The matrix of inner products M. can now be
written in block diagonal form:

xQ(x,y) xR(x, y)) 13)

My 9)= (xR(x, » S(x,y)
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where Q and S are symmetric matrices. Three blocks of M y.(x, y) are divisible by x,
as in Eq. (13), because V”(0, y) is in the null subspace of level N".

The key point now is that Q(0, 0) is non-degenerate. To see this, first note that,
for n>0, the vector L,v7(0,y)=0, since L,v7(0, y) is in the null subspace of level
N’—n, which is trivial. From this, and from the explicit basis (12) for V"(x, y), we
see that

Q(xy J’) = Mp’q’ -p"q"(ca h + p”q”) + O(X) > (14)

where (c, h) corresponds to (0, y) under the change of coordinates. Since (0, 0) is the
first intersection F,. . ; Proposition (11) gives detQ(0, 0)+0.

Since detQ(0,0)%0, Q(x,y) is non-degenerate on all of U, if necessary
replacing U by a smaller neighborhood of (0,0). Let W be the matrix

1 —Q 'R
(6 %™ s
and make the change of basis
. _(xQ(x,y) 0 )
MN,—->WMN,W—< 0 Tt y)) (16)

Let V"(x, y) be the new complement to V”(x,y), on which T(x, y) is the inner
product. The order of vanishing argument implies that det T(x, y) is nonzero for
y <0 and vanishes to first order at y=0. The one dimensional null space of T(x, 0)
is the null space of level N’ for x 0. At x =y =0, the one dimensional null space of
T(0, 0) spans, with V”(x, y), the P(N)— P(N”)+1 dimensional null subspace of
level N”. By the same argument which gave v}(x, ), we can choose a nowhere zero
analytic function v(x, y) on U, with values in V"(x, y), such that v{(x, 0) is in the
null space of T(x, 0) and therefore in the null space of level N”. Since T'(x, y) is non-
degenerate for y+0, v{(x, y) is not in the null space of level N”if y+0. [

Let J, . j» 1<j=k, be the open interval on C, , between

Fpik—jgri-s; 804 Fpip i1 gvi—j-1,j+1-

Let J, ., be the open interval on C,, , lying between c=1and F, ;1 g4x-1,1-
Let W, . ;» 1<j<k, be a neighborhood in the plane which intersects no vanishing
curves on level N’ except J For j>1, require

p',qJ
Jp’,q’,jcUp’,q’,j—luw/p’,q',ju Up',q’,j’ (17)
u/;r’,q’,jm Up',q’,j:‘:q)’ I/Vz”,q’,jh Up’,q’,j—l *®~
For j=1 require only
VVP’,q’, anp’,q’. 1 :HD . (18)

Proposition 13. For eachj, 1 <j <k, thereis anowhere zero analytic function wy(c, h)
on W, . ;withvaluesinlevel N’ such that w(c, h) is in the null space of level N”if and
only if (c,h) is on J . . ;. On the intersections of their neighborhoods of definition,
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»fvj =fjv;, where f; is a nonzero function, and w;=g;_,, where g; is a nonzero
unction.

Proof. Again, the null space oflevel N'is trivial on W, . ;exceptonJ,, .. ;, where it
is one dimensional. [J

Proposition 14. The level N’ metric is negative on the vectors v, .. c,h) and on the
vectors W, o i(c, h), on the c<1 side of C, ,.

Proof. The matrix My. is positive in W, , ; on the ¢>1 side of C, ., by the
contiguity argument, since there are no intersections on C,, - between W, . ; and
c=1. The inner product is thus positive on w,, ,. ; on the ¢>1 side of C,/ ,.. The
inner product vanishes to first order on w, , ; on C, .. Therefore the inner
product is negative on w, ., ; on the c<1 side of C, ,. The proposition now
follows by induction on the series w,, v, w,, v,, ..., since neighboring vectors in the
series differ by nonzero functions f; or g;, and since the w(c, h) and v(c, h) are in the
level N’ null space only for (c,h) on C,, ,. O

Proposition 15. I, , , is eliminated on level N'=(q+k—1)(p+k).

Proof. By the previous proposition, the metric is negative on v, , ,(c, h), on the
c<1side of C, .. But I, , , approaches arbitrarily close to C, .. on the c <1 side
within U, . ;. Therefore My(c, h) has a negative eigenvalue at one end of I, , ;.
But the signature of M y(c, h) cannot change along I, , ;, because there are no

intersections at level N" on I, , .. The proposition follows. []
Propositions 2, 7, 8, and 15 imply Theorem 1.
Acknowledgement. We thank Adrian Kent for a critical reading of the manuscript.

Note added in proof. A similar but not identical version of the details of the non-unitarity proof
has been given by Langlands [10].
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