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Abstract. The continuum limit of a cubic lattice of classical spins processing in
the magnetic field created by their closest neighbours is considered. Results
concerning existence, uniqueness and (for initially small spin deviation) long
time behaviour, are presented.

1. Introduction

A classical model for an isotropic ferromagnet is provided by a collection of three-
dimensional spin vectors with unit length and arbitrary directions, located at the
nodes of a d-dimensional cubic lattice. We denote by St or S(xι) the (classical) spin
located at the point xi = niihί + ... + nidhd, where the rc^'s are integers, and hj the
mesh vector in thej-direction. We assume that all the mesh vectors have the same
length h.

Concerning the dynamics, a simple hypothesis consists in assuming that each
d

spin S(Xi) processes in the local magnetic field Σ S(xt + hj) + S(Xi — hj) created by

the closest neighbours. The equations of motion are written [1, 3, 10, 11]

dS d
( ^ \ r V"1 CY-y Λ A /CY-v _L U Λ _1_ C/Ύ Γ, ΛΛ (A \ \

ar" j=ι J J

where Λ denotes vectorial product and J the (positive) nearest neighbour
exchange coupling constant. Equation (1.1) can be rewritten:

dt j=\ ι h2

with

ί = Λ2ί*/J.

When interested in phenomena at scales large compared to the lattice mesh size
and with time scale O(l//ι2), we are led to consider the limit h->0 in Eq. (1.2).
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Taking formally the limit, we obtain the partial differential equation

f = S Λ Λ S , (1.3)

where S = S(x, t) is now a three-dimensional continuous vector field. The purpose
of this paper is to justify this asymptotic procedure and to investigate the regularity
properties of the limit solution. We also consider the special case where the initial
conditions correspond to spins which are almost parallel. In that case, we show
that the solution is smooth in the large and that for ί-> + oo, the dynamics is
asymptotically linear in a stereographic representation.

2. Existence in the Large of Weak Solutions

We construct a solution of

(2.1)
.S(x,0) = So(x)

as the limit, when h tends to zero of sequences SΛ(xf) solutions of Eq. (1.2). We
define right and left approximations of the derivatives in the form

(2.2a)

(2.2b)

V±=(D±\...,D^) is the right/left approximate gradient.
The Laplacian is approximated by

ASh(x,) = Σ D7(DΐSh)(x;) = Σ D+(D7Sh)(xt). (2.2c)

It is easily checked that for two scalar sequences {uh{x$} and {%(*;)}> w e n a v e

f (Xi
= uh(Xi + hj) Dt vh(Xi) + D/ uh(Xi) v

,.) (vh(Xi + h}) + vh(Xι)), (2.3)

and similar relations for DJ{uhυ^{x^.
Furthermore

A(uhvh) = uhAvh + V+υh • V+vh + V~uh • V-vh + Δuhvh, (2.4)

and

ί D/ uh(xt - hj) = Dj uh(Xi)

{Druh(xi + hj) = Dΐuh(xιy
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For the sequences {wΛ(xf)} and {fh(xf)}, decaying fast enough when I x ^ + oo, the
discrete formula of integration by parts reads

We define the scalar product

(wfr vh)h = h Σ uh(xi) ' vh(xi) •> (2-7)

together with the norms

\uh\k = (uh,uh)h, (2.8 a)
d

and

( " " n \ (2.8c)

which is the dual norm of | |#i with respect to the ϊ\ scalar product ( , )h. For
given h>0, let {Sh(xh t)} be the unique sequence which satisfies for all time the
discrete equation (1.2) that we rewrite in the form:

dSh _ ~ +

(2.9)

with |S£(xf)l = 1. Multiplying Eq. (2.9) by Sh, we get:

^\Sh(xht)\2 = 0, (2.10)

which ensures that Sh(xh t) remains of unit length.
Taking the scalar product in ί\ with ASh, we obtain

— Σ \D^Sh\iι = 0, (2.11)

and thus

ΣP;sfclέji= Σ^stlh (2.13)

with S^(Xi) = Sh(Xi,0). Moreover, for any sequence {vh(Xi)} in H^ we have

and consequently

- ~ <\D^S°h\n. (2.15)
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In order to pass to the limit h->0 in Eq. (2.9), we introduce the interpolation -
operators qh,p^ and rim) [7]:

For any point x which belongs to the cell Ct = {xi9 xt + h^ x ... x {xi9 xt -f hd} of
the lattice, we define the piecewise continuous function

qM*) = S(xd. (2.16)

We also define phSh as a piecewise linear function with respect to each variable. In
the cell Ch

PhSh(x) = Sh(xi)+ Σ

Σι

Ki)τ

(2.17)

Finally,

+ + + + hι

We have the relation [7]

γ~ Ph$h = r^Φm sh) (2.19)
oxm

Let the initial data S0(x) for Eq. (2.1) satisfy |S0(x)| = l and ~ e L2(Rd). We

construct a sequence S% such that phS%-+S0 in H1

1

oc(]Rd). From estimates (2.10),
(2.13), and (2.15), we deduce that [9]:

d
-j-phSh remains in a bounded set of 1^(0, T,H (R )),
at

PhStoihSh^Sh remain in a bounded set of L°°(0, T, HlJJR!1)).

As a consequence, there exists a subsequence Sft such that phSh converges strongly
in Zfoc to S and thus almost everywhere; qhSh converges almost everywhere to the

same limit. ~τ-phSh converges to — in L°°(0, T^H'1) weak *.
όt ot

Now, for any v e L°°(0, T, H 1 ) and any sequence vh such that phυh converges to v
inL°°(0, T,H% we have
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When ft->0, the left-hand side of Eq. (2.20) tends tolυ, — ) .

To show that phD+(ShΛDrSh) converges to — ί S Λ — J in L°°(0, T,H{~J)

weak *, we first notice that since ShΛD^Sh is in a bounded set of L°°(0, T,!2,),
qh(ShΛD^Sh), ph(ShΛD^Sh), and r{™XShΛDfSh) converge to the same limit in
L°°(0,T?L

2)[7].

and

qhSh^>S almost everywhere,

qhDrSh-*^- in L»(0,T,L2) weak* [7] .

Thus

ph(Sh A D?Sh)-+S A ^ in L»(0, T, L2) weak *;

Now, from (2.19)

4W(Sh A DrSh) = ^- ph(Sh A DrSh),
OXi

r\ ί r\ C \

and the right-hand side of Eq. (2.20) tends to £ — I S A — I in L°°(0, T, H^J)
weak *. f dXi \ ό X i '

This leads to

Theorem 2.1. For any So such that \S0(x)\ = 1 almost everywhere and -— in L2(Rd),

there exists for all time a weak solution of Eq. (2.1) with \S(x, t)\ = ί almost

everywhere and-—GL°°(lR+,L2(]Rd)). The solution is obtained as the (weak) limit

when /ι->0 of sequences {SΛ(xf)} satisfying the difference equation (2.9).

Remark. We do not know if the weak solution obtained in Theorem 2.1 is unique.

3. Local Existence of Smooth Solutions

Notations. Wm>p(M.d) and #m(]Rd) denote the Sobolev space of (vectorial) functions
equipped with the usual norms

\u\Wrn,P=(<Σ<JDku\pYlP, (3.1a)

\u\Hnt=( Σ |2Λ|2Y/2 (3 lb)
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For the sequences {Sh(x{)}, we define the H^-norm by

\Sh\n^( Σ \DkSh\k)ίί2. (3.2)

In Eq. (3.2)
Dk= Σ D\

|α|=/c

where α is the multi index (αj*",αj~, •• 5α/,αj"). We use the notation

|α |= Σ ( α f + + α Γ )

and

Dd=ψΐγt (Dr)αΓ ...(/>;)«* (AΓΓ~ (3.3)

Theorem 3.1. For initial condition S0(x) such that \S0(x)\ = 1 and DS0 in Hm+ \Kd)
(m>d/2), there exists a constant C such that on the time interval [0, Tt[ with
Tγ = C/|2)S0|#m+1, Eq. (2.1) has a unique solution of unit length S(x, t) with spatial
derivatives DSeL^φ, T 1 ,H m + 1(R d)). The solution satisfies

\DS(t)\2

Hrn+, S \DS0\
2

Hrn+ ί exp } |DS(τ)|^1)OO dx. (3.4)
o

Proof of Theorem 3.1. As in Sect. 2, we construct the solution of (2.1) as limits,
when h tends to zero of sequence {Sh(xt)} satisfying

(3.5)

We choose S£(x;) such that

PA°-So (3.6)

and

phD
kS%-+DkS0 in L2 for any fc = l , . . . ,m + l .

To obtain a priori estimates on Sh and its "spatial derivatives," we first
differentiate Eq. (3.5) with respect to t:

y^ ΔSh). (3.7)

Using identity (2.4) and the fact that

\Sh(xt, t)\ = \SZ(xd\ = l, (3.8)
Eq. (3.7) is rewritten

^ + A2Sh = [ - (ΔSh)
2 + (Sh • A2SJ] Sh + (Sh • ASh)ASh

+ (Sh • DΐΔSh)DΐSh + (Sh • DrASh)DrSh

-(Sh • D;ASh)D?ASh~(Sh • DrSh)DrdSh. (3.9)
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One then deduces from (3.8) that

Sh-2Sh= -\ Σ ((D?Sh)
2 + (DΓSh)

2), (3.10)
i = l

Sh • A2Sh = -iA{(D+Sh)
2 + (DrSh)

2}-(ASh)
2-DΐSh • D+ASh-DrSh • DrASh,

(3.11)

and (see Appendix A.a for details)

y . (3.12)

One also has (see Appendix A.b and A.c)

- ( A S h ) 2 + (Sh Λ 2 S h ) = - t Σ

(3.13)

and

{D?D+(DrSh • DjSh)} SA(xt) = D ;

+D/((DΓSA DrSh)Sh)

+ {2λ+ D f Sh(xk) - D f Sh(xk + h^ + 2λ+ Sh(xh) Δ Sh(xk + Λ,)} D,+ S,(xk) ,(3.14)

together with similar expressions for DfDj{D?Sy DfSh).
Substituting in Eq. (3.9), and noticing that

(ASh(xk + hj) DfS(xJ) + (Sh(xk) Df ΔSh(xk)) = D + (Sh 21SJ

with

i (Sh - ASh) ASh 4-1D j11 (SΛ J^^) Df Sj = I D j1: ((SΛ 2ίSΛ) D/ S^), (3.16)

Eq. (3.9) is rewritten:

+ Λ2Sh=Σ-
dt

I"f/J oA

ysh) (xk + ht)D+Sh + (D?Sh • DfSh) (xk-hί)DtShD;

+Φ S)

(3.17)



438 P. L. Sulem, C. Sulem, and C. Bardos

To obtain a priori estimates on the "spatial derivatives" of Sh9 one applies to both
sides of Eq. (3.17) the operator Da(\<x\ = m) and take the ϊ\ scalar product with

f)*_A τ h e left-hand side of the resulting equation reads:
at

1 d

2dt dt
__ +\D*ΔSh\U). (3.18)

In the right-hand side we write

D«D + {(DrShDrSh)(*

^\D«D+{(DrShD7Sh)(x} dt
(3.19)

We then use Corollary (l.a) of Appendix B to obtain that the right-hand side of
(3.19) is bounded from above by

C{\DSt

 | 2

h\l~ •Dj Sh)(xk + hi)
dt

with

\Dm+\Dr Sh • DjSh) (xk + h^u ^ C\DSh\L~ \Dm+2Sh\u.

It follows that the left-hand side of Eq. (3.19) is bounded from above by

n

(3.20)

(3.21)

(3.22)

Analogous results are obtained for similar terms appearing in (3.17). Let's now
turn to the terms of the form

• DjSh)Sh}• DjSh)Sh), D α ^ ^ =

~ dSλ
ϋt Jh

(3.23)

Using Corollary (l.b) of Appendix B, the first term of the right-hand side of
Eq. (3.23) is bounded by

CQDS
h\Lf

\Dm+2Sh\n.

(3.24)
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For the second term of right-hand side of Eq. (3.23), we write, using integration
by parts:

= -hdΣDaD+(D7Sh DjSh)D7 [sh D ^

(3.25)

The first term is similar to those already considered and is thus bounded from
above by

C\DSh\i~ \Dm+2Sh\u D"
δt n

(3.26)

For the second term of (3.25) we use the fact that Sh--~ =0 by writing

h Di Sh DidJ-DiD p dT
Using Eqs. (B.I7) and (B.I8) of Appendix B, its ί|-norm is bounded by

c(\DSh\u *
dSh

dt
\Dm+1Sh (3.28)

where

dt

For the three last terms of Eq. (3.17), we use two factors h to decrease the
number of derivatives and thus obtain terms similar to those already bounded. For
example,

. (3.29)

Putting together all the estimates, we finally obtain

dt

δS,

δt
^C(\DS\l~ + \D2S\l~)x

δs,
dt

(3.30)

By using an extension to sequences of Sobolev-type inequalities (see
Appendix B, Proposition 2), it follows that, for m > d/2,

dt{
δsh

δt dt
(3.31)
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Thus PhD
k j± and ph&

+1Sh(OSk^m) remain in a bounded set of L°°(0, Th9 L
2)

with 7i = (C1/|DSj|Jm+i). For h<ί9 this time can be bounded from below by
C/|Z>S0|flm+i. We then pass to the limit in Eq. (2.1).

To prove (3.3), we differentiate Eq. (2.1) with respect to t, and get (d—d/dx^)

^ iS. (3.32)
υt

Using that S is of unit length, we have

S Ά2S-(AS)2 = -A((VS)2)-2(diS - dtAS)-2(AS)2

= -2{dfj(dίS djS)}S. (3.33)

Thus, Eq. (3.32) reads

_ 4 +A2S= -2dij(diS'djS)S-(VS)

= - 2dij{{diS

= -idylls - djS)S]+2dji(dts djS)dis-]-2dj((vs)2djs).

On this equation, one establishes estimates (3.3) using the same method we
used for the sequences. Uniqueness readily results from regularity.

4. The Special Case of Initially Quasiparallel Spins

a) The Equations of Motion in the Stereographic Representation. As long as it
exists, the solution S(x, i) remains on the sphere S2 of radius 1. Therefore, we shall
rewrite the equation of motion using the stereographic representation of the unit
sphere S2 on the plane x3 = 1. Each point S = (SU S2, S3) of the unit sphere [except
the south pole P = (0,0,-1)] has an image <2(α, /?, 1) obtained as the intersection
of the straight line PS with the plane x 3 = l. Defining

S± =Sx±iS2 (4.1)

and

z = <χ + iβ, (4.2)

we have the relations

4z

4TM2

4-H 2

"4 + lzΓ

^ — λ , ι _ ι2 ' ( '̂̂ )
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Equation (2.1) is first rewritten

dS+

dt
= i(S3AS+-S+ΔS3),

(4.4)

Substituting (4.3) in Eqs. (4.4), we have

ds+

= 4

dt

• — 2
zzt + zzt

!z|2 + 4~*( |z | 2 + 4)2

ZZt + ZΣt

(4.5)

By elimination and substitution, we get

\z\2 -Δz

+ 8FZ-P7
-2z2Vz-V (4.6)

Computing F ( R 1 Γ ? ) and ^ ( ^ i

z, the equation

.dz

I, we finally get for the representative point

(4.7)

with

2z(Γz)2

b) Existence of Global Solutions. Equation (4.7) is a nonlinear Schrόdinger
equation which for small z is essentially cubic. It however does not directly enter in
the framework considered by Klainerman and Ponce [6] and Shatah [14] because
F'Zχ is not real. We shall consider initial conditions such that z is "small." In the
primitive variables, this means that initially the components S?(χ) and S§(x) are
"small" and S%(x) is "close" to 1. In other words, the spins are initially almost
parallel.

Proposition 4.1. (See for example [6]J The solution of the linear Schrδdinger
equation

(4.8)
z(x, 0) = zo(x)
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satisfies

\z(t)\L9£C(ί+t)~*+ϊ\z0\w»p., (4.9)

1 1 On
for- + -=ί9 q>2, and Np>d-^-.

P q P P

Proof. We recall elements of the proof for the sake of completeness. The solution
of (4.8) satisfies.

|z(ί)lLoo^Cr" 2 |z 0 |Li, (4.10)

and

\z(t)y = \zo\L>. (4.11)

By interpolation between L2 and L00, we have

^ + «\z0\LP for - + - = l , g £ 2 . (4.12)
p qp

To avoid divergence at t — 0, we write, using Sobolev embedding theorems

Hήl^CM^w^^C^ol^^C^Zo]^,,, (4.13)

with

l l m , 1 1 Np-m Λ7 2 - p
~ > ^ — r a n d ^ > —Ί— or ND>d .

q 2 d 2 p d P

Estimate (4.9) follows from (4.12) and (4.13).

Lemma 4.1. For z e Wk'p(ΊR.d) and \z\Loo < 1, then

for j = l or 2\DkSi\LPSQDkz\LP (fc^O) (4.14)

|D f eS3 |L^C|Z) f cz|L P (fc^l). (4.15)

Proof. This is a particular case of a result of Moser [12], (see also [4]).Lemma4.2. For zeHm+N5'6 + 2(R^nWm+1>6(Rd) (m^N5/6) the functional F
defined in (4.7) satisfies:

- + » J / 6 + . . 5 / 6 ^ C | z | ^ . + i . « | F z | H B , + K s / i + , . (4.16)

Proof. 2

F(z,Γz) = 2, , / ' . , (4.17)

( 4 1 8 )

Let us consider the first term of the right-hand side of (4.18) and write

( 7V7.?)X77\ m + N5/6 ( 7J77

~ f ) = Σo cL+κ,^[^y+">»->Wz. (4.19)
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Using Holder inequalities, we have, for O^j^m,
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Dj./ zVz

W+4
<C

Wm,6
* + N 5/6

(by Lemma 4.1)

(4.20a)

and for j between m +1 and m + N5/6:

Dj,( zVz
<C Dj,( zVz

with

(4.20b)

(4.21)

The (m +1) first terms in the summation (4.21) are bounded from above in L3/2 by

C (4.22)

The (j — m) last terms in the summation (4.21) are bounded from above in L3 / 2 by

z•Λτn+1

Putting together inequalities (4.19)-(4.23), one gets,

(Vz)2

n+l+N5/6

(4.23)

(4.24)

provided m ^

Estimates for the other terms appearing in F or VF are similar.

Proposition 4.2. For initial data So = (S°l9 S°2, S§) such that \S0(x)\ = 1, |iS?|ffw+2

1̂ 2\H™ + 2<δ with IS3 — 1 |Hm+2<^, where m>d/2 and δ sufficiently small, there exists
a finite interval [0, Γx] such that

|S0c, 01 = 1, VS e L°°(0, 7i, Hm

and

L c o

During this time interval, S satisfies estimate (3.3).
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Proposition 4.3. In dimension d ^ 2 , and under the hypothesis

(\zo\wm+i>6<δ (m>d/2)

l |FS 0 |H W l<(5 m^m + Nsιe + 1

the quantity

M{T,)= o sup^ (1 + ί ) d / 3 k(ί)lιτm+i.6 (4.25)

remains bounded by a constant Mo independent of Tί.

Proof. From the above propositions, we deduce that the solution of (4.7) satisfies,
for ίe[0, ΓJ

W)\Wrn+U6SC(\+tydβ\ZQ\Wrni,5,6+\{\+t-τ)-dβ

(4.26)
with v '

\Vz(τ)\Hmι ^ C|ΓS(τ)|έmi ̂  C|PS0 |Hm ι expf IDSiτ^^ dτ'. (4.27)
o

But

™+i,6 f o r m + l > -
6

l(τ,+ ίy2d/39 (428)

and thus

τ A
exp J |DS(τ/)|27i,oo(iτ/^exp(CM(T1)

2) I J ( τ ' + l )
o Vo

if d ^ 2 . (4.29)

Substituting in (4.26), we obtain

(1 + t^ τ^f (^+ τ ) 2 ι ) /3} (4.30)

For d^2 this integral is uniformly bounded in ί, and M(TX) satisfies the estimate:

)^(5(1 +M(T 1 ) 2 exp(XM(T 1 ) 2 )) (4.31)

Proceeding like in [6], one shows that MiT^) is uniformly bounded by a constant
M o provided δ is sufficiently small.

Theorem 4.1. In dimension d ^ 2 , /or z'mft'α/ data So, such that \S0(x)\ = 1, \S^\wm + ι,6

and \S2\w^ + ^,e><δ (m>d/2) and \VS0\Hrm + i<δ Im1'^m+ — +l 1, ί/iβre exists a

unique solution S of Eq. (2.1) of unit length, with St and S2 in L°°(R+, Wm+ u 6 (R d ))
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Moreover,

Proof. During the time [0,7^] where Theorem 3.1 holds, we have been using the
above propositions:

|FS(ί)|H".1^C|FS°|Hmiexp|cί|FS(τ)|^1,«ίiτi

^ C\ VS%mι exp {CM2

0} ^ Cδ exp {CM2

0}, (4.32)

and

Now, choose <5 sufficiently small, such that 7 ° •, d / 3 < 1. We then reapply

the local existence theorem to obtain the existence of a smooth solution satisfying
(3.3) and |z|Loo<l for time ίe[T 1 ? T 2 ] . During this period of time, we have

^M0 with the same Mo and

We reapply the local existence theorem to obtain the global solution.

c) Long-Ήme Behaviour of the Solutions

Theorem 4.2. Under the hypothesis of Theorem 4.1, the solution of (4.7) exists for

— o o < t < + oo. Moreover, there exist two solutions z± of the linear Schrδdίnger

equation such that

\z — z ± | i f m i - ^ 0 , where ί - > ± o o .

Proof. The existence of solutions — oo < t < + oo follows from changing tto—t

and applying Theorem 4.1. Proceeding as in [14], we define z+ and z~ by

±00

z±(t) = z(t)+ i U0(t-τ)F(z,Vz)(τ)dτ, (4.33)
ί

where [/0 denotes the Green function of the linear Schrόdinger equation,

+ 00 +00

j \U0(t-τ)F(z,Vz)\Hmi(τ)dτS ί \F(z, Vz)Hmι{τ)dτ,
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w h e r e

^ | z | ^ , β | F z | H m i - I for m>d/6

l , - , ( from 4.32)

( 4 3 4 )

M ) 2 " ' 3 '
where C denotes various constant. Therefore

(3.35)

Finally, it is easily checked that z± satisfy the linear Schrόdinger equation.

5. The One-Dimensional Problem

The one-dimensional problem is specific in the sense that it is completely
integrable. Lakshmanan et al. [8] interpreted the vector S as a unit vector tangent

5JS 1 _ (dS d2S\ _,
and torsion τ= —*S — A -r—~ . Theyto a curve having curvature κ =

showed that the function

ψ(x, i) = κ(x, t) expi J τ(x, ί) rfx (5.1)

satisfies the cubic Schrόdinger equation which can be solved by inverse scattering
(Zakharov and Shabat [16]). A different approach was used by Takhajan [15] who
introduced the matrix

(5.2)

and put Eq. (2.1) in the form of the Lax representation

dL

— =i[L9M] (5.3)

with

L=S— and M = 2S—-^Λ . (5.4)

From the general local existence theorem proved in Sect. 3, we know that for
initial data S0(x) such that |S0(x)| = 1 and |FS0 | e Hm+ 1(R) (m> £), there exists a
unique solution S of (1.3) with unit length and VSeLao(£O9T1

:]9H
m+1)9 where

Ti ^ C/\ VSQIJJTΠ+1. Our aim in this section is to show that in one dimension the local
solution S can be continued for all time and that it is the limit as h->0 of the
solution Sh of (1.2) with initial conditions S® such that
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a n d

phD
kS^-^DkS0 i n L 2 for Jfc = l , . . . , m .

Proposition 5.1. In one dimension, the solution of (2.3) satisfies for all time

dS_2 d^S2 _ 3 3 S 4

δί L2 dx 2

 L2 4 dx L4 2 '

£ 9 is a constant.

Proof. We take the L2 scalar product of Eq. (3.32) with St and observe that

β 3 S \ fdS dS\ J 3 d , fdS

dx3j\dx dt) 4dt*\dx

Theorem 5.1. For iniίiα/ dαία S0(x) wiίΛ |S0(x)| = l and
ίίΛ

(5.6)

exzsίs

^ r i

/or a// ίime T a unique solution of (2.3) with unit length such that — e 1^(0, T, Hm).
ox

Proof. It follows immediately from (5.5) that

and thus

Differentiating m times Eq. (2.3), we can see easily that all the derivatives of S are
bounded independently of Tx. This enables us to apply repeatedly the local
existence theorem and prove global existence. Uniqueness of solutions results from
regularity properties.

Theorem 5,2. In dimension d = 1, for any T > 0 , the solution Sh of the approximate
equation (1.2) converges in L°{0, T.H1) to the solution S of Eq. (1.3), with initial
conditions satisfying

dS

dt T 1

dS

dt

2

and

d2S

dx2

d2s
dx2

2

I2 ~

dS0

dx

3

V-

d2s
dx2

bounded uniformly in
I 2

Proof. The difference tιΛ(xf) = S(x£) — Sh(Xi) defined at the points of the lattice
satisfies:

- uh(Xi) = u^Xi) Λ AS(Xi) + Sh(Xi) Λ Auh(Xi) + Sh(Xi) A{Δ-Δ) S(Xi). (5.7)

Taking the ϊ\ scalar product with uh, one obtains

\ It '""'^= ( s"Λ 2tih'Uh)h Λ {Δ ~ 2) s'Uh)h'
( 5 8 )
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where

>hΛΔuh9uh)h=[D b>hΛD uh,

^ | Z > ^ - ^ 1 ^ Iw^lz,^ 1 ^ > ^ ^ ^ g ^ | Z ) ^ ^ l £ - | w f t l ^ , ( 5 . 9 a )

and

^ (Sh A (A- A)S, uh\ ^ \uh\~Ll \(Δ - Δ)S\ti. (5.9b)

Taking the ί\ scalar of Eq. (5.7) with Δuh, one obtains

\ j t Iΰ + « Λ I^ = («* A AS, Δuh\ + (Sh A (A-A)S, Auh)h, (5.10a)

(uh A AS, Δuh\= - \(ψ+(uh A D-uh) + D-(uh A D+uh)), AS)h

= \(μhAD-uh,D-ΔS)h + {(uh,D
+uh,D

 + ΔS)h (5.10b)

(uh AD~uh, D~ΔS)aK\h \D~AS\m.

From Proposition 5.1, we have for all Γ

sup \D-AS\K£K(T).

Putting together Eq. (5.8), Eq. (5.10), we have for any ί e [O, Γ],

Thus

When /z->0, I ^

Appendix A

In this appendix, we give some details on the obtention of Eqs. (3.12)—(3.14).
(a) We first show that

E = (Sk • D;Sh)DlASh + (Sh • DJSh)DjΔSh= - y Df {(D?Sh)
2D+ΔSh}.

(A.1)

In the following, we shall drop the indices h for simplicity. From \S(xt)\ = 1, we
deduce

S D ; S = - J ( D / S ) 2 , (A.2)
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and

(S DΪS)DtAS= - ^(D/S)2DfAS

S)2 (Xi) AS(xt + ft,)] - DJ (£)/ S)2(Xi) AS(xt)},

This leads to (A.1).
(b) To prove Eq. (3.13), one first writes:

)} . (A3)

-(AS)2 + Sh • Δ2Sh = \ Δ((D?S)2

-2(ΔS)2 -ψΐS • DtΔS)- (DrS • D[ΔS), (A.4)

with

I Δ((DΓ S)2 + (D[ S)2) = in; S • Dt ΔS) + (£>f S • Dr ΔS)

and checks that

ΐDϊφrS - DrS) = (AS)2 + Σ (D+S D+AS) + Σ (D+D+S)2,
i i,j

DJiDΐS • D/S) = (AS)2 + Σ (DrS • DfAS) + Σ ΦϊDjS)2, (A.6)
i ij

1,3

Combining (A.4)-(A.6) one obtains Eq. (3.13).
(c) To prove Eq. (3.14) one computes D^D^KDrS-D[S)S~\ and obtains

= DΐDϊψrS • D7S)S + Dΐ(DΐS(xk) • DjS{xk + h^D+S

+ D? (D[ S(xk + hj) D/ S(xk)) D+S+(D? S(xk + hj) • Df (xk + hj) Z>,+0/ S

+ {AS(xk + hj) • DfS(xk) + D?S(xk + hj) • DtDlS(xk)} D+S. (A.7)
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In the last expression

D+ (^ψ^ + j(D?D?S)2 . (A.8)

Similarly,

ΣDjDj[(DjS • D^S)S] = DΓ{D]-(DtS-D;S)S + (D!S(xk-hj) • DjS(xk))DjS}

= DjDjψ+S • D?S)S + Dr(DrS(xk) • DϊS(xk - h^DrS

{DΓ S(xk) Dj S(xk - hi))Dj S}

+ {AS(xk-hj) DjS(xk) + DjS(xk-hj) DΓ D^ S(xJ} Dj S, (A.9)

with

DΓS(xfc-/2;) DΓ^ΓS(xfc) = iDr(DΓS) 2 -^( ί )Γl )7S) 2 , (A.10)

and

S- D+S)S1 = Dt{Dj(DjS • D;S)S + (DjS(xk-hJ) • DjS(xk))DjS}

= DjDj(DjS • DfS)S + Dj

+ Dΐ(DjS(xk-hj) • DjSi

+ {AS{xk~h^DjS{xk)+DtSixk-h^DtDjS{xk)}DjS (A.11)

with

D;+ S(xk - /*,) Df

+ D r S(xk) = Dj ^ { ' - - (Df Dj S)2. (A. 12)

Also

D+DjKDjS Df)S'] = Dj Df[(Dj S £>/)£]

= D/ {Df

+ (D r SDjS)S + (Df

+ S(xfe) D/ S(xk + /ij) Df

+ S}

= Dj Df

+ (D Γ SDfS)S + Dt (Dj S(xk - Λ̂ ) Dj S(xk)) Dj S

+ D r (D^ S(xfc) D/ S(xk + ft,.)) Df

+ S + (D + S(xk - hj) D r S(xk 4- hj) Dj D + S

= D r Df

+ (DΓ SDfS)S + Dt {{Dj S(xk - hj) - Dj (xk)) Dj S}

+ {(Df

+ S(xfc) JS(xk + ht)) + (D r Dt S(xk) D r S(xk + ht))} D? S (A. 13)

with
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Putting together (A.7)-(A.14), we obtain:

451

• D7S) + \DΓDjψΐ

+ (ΔS(xk + hj) • D+ hj) • DJ S{xk))DjS

ΐS)2 + (DrS)2)D-S

+ {DtDfS)DlS-

~{DϊDjS)2DJS.

In the last expression,

(D;

+ DJ- S)2 0 / S - ( j - S)2 Dy- S

and

Appendix B

Discrete versions of Sobolev type inequalities were established by Ladysenskaya
[7] using interpolation procedures. She proved in particular

\One also has

The idea of the proof is to show the "equivalence" of the norms

and \D? /Llr,

(B.i)

(B.2)

and apply the Sobolev Gagliardo-Nirenberg inequalities to the function phfh.
As a consequence, we have (by induction)

^ for m>d/2.

Another embedding property we need we is

(B.3)
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p m r mj q

The proof of (B.4) is similar to that given by Nirenberg [13] (see also Friedman
[2]) in the case of the functions. We shall thus only reformulate a lemma which
requires some adjustments.

Lemma. Any one-dimensional sequence f={fi}\Z-™ satisfies

K + N

Σ
i = K

P /K + N /f+i-2/rK/i-i
£Cp(Nh) Ί Σ

Σ \fi\

h2

K+N \P/Q

7

p/r

where C is a numerical constant independent of N.

Proof. We write (l<k)

(and similar equality when / > k).

With the notations defined in Sect. 2, Eq. (B.7) reads:

(B.6)

(B.7)

(B.8)

A/
Writing Eq. (B.8) for any / between lx + 1 and l2 with X < /t < K + — and K +

<12<N and summing the resulting equations, one obtains:

K + N f — f

(h-h)(D+f)k = (l2-h)hΣ J \
i=κ

Since \l2 — lι\>N/2, we have

K + N

l(β+/)^/t Σ ^
ί=κ nJM

N 3N
Summing for all lγ with K ̂  lx S K + — and all /2 with K+—-^12^

one gets

I I I f h

(B.9)

(B IO)

and thus

ίNh\2p

(f) κ

ίNh\2 K+N ~ /ι x + Λ r

\(D+f)k\s ^ ft Σ P A I + ? Σ l/il,

lp

(B.11)



Continuum Limit 453

By H o l d e r inequal i ty

K + N L/

m 1/ilΊ , (B.13)
i = K \i = K J

p(ί-L) p/r

Subst i tut ing in (B.I2) a n d assuming o n fc, (K^k^N + K), we have ( - = - + -

K + N { ( K + N \p/r

h Σ \(P+nAp£CpUNh)1+p-plr(h Σ lOΪΛΓ,
l-K { \ l-K

( K + N

+ Wn) \n 2. U, / c ( B 1 6 )

This lemma is used to prove (B.4) in the case d = 1, j = 1, and m = 2. Extension to
dimension d > 1 is done by applying the previous result to each D^f treating all the
indices ίή=k as parameters. We then sum all these inequalities and use Holder
inequalities. Extension to other values of j and m satisfying (B.5) is done by
induction.

As consequences of (B.4) we have the following inequalities used in Sect. 3:

and

h h h h h

where α = (α1? ...,αd) is the multi-index with |α| = m.
The proof of (B.I 7) and (B.I 8) is analogous to that given in the case of functions

by Moser [12] and Klainerman and Majda [5],

Acknowledgements. We thank P. Constantine, S. Kamin, S. Klainerman, M. Livcic, and A.
Pouquet for useful discussions.
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