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Abstract. In this paper, we study a fourth order semilinear parabolic equation on
the infinite real line. We show that in a certain parameter range, this equation has
propagating front solutions (solutions tending to 0 at + oo and advancing to the
right with a speed c) which leave behind them a periodic pattern in the laboratory
frame. This is thus an example of spontaneous pattern formation.
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1. Introduction

In this paper, we discuss the existence problem for a certain type of parabolic
equation motivated by the physical problem of dendrite formation. It has been
pointed out (for several years, by now) that some of the parabolic (integro-)
differential equations which are considered in connection with solidification and
dendrite formation show, at least in numerical, and also in some physical
experiments a very intriguing behaviour. One observes, in general, a one-parameter
family of propagating fronts, and it seems that "most" initial data converge to a
particular front, thereby leading to a selection of the propagation speed. It is
furthermore conjectured that this selected speed coincides with that speed for which
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the travelling front happens to be marginally stable under linear perturbations. This
subject, and the corresponding conjecture, have been studied by many authors. In
particular, J. Langer has given a careful analysis of the situation. See [2] for a review
and Langer and Mϋller-Krumbhaar [4] for a detailed analysis of a more realistic
equation.

The conjectures mentioned above have been corroborated in a beautiful, and
totally independent analysis of a related problem by Aronson and Weinberger [1].
See also the work by Bramson [7]. They consider equations of the form

dtU(x, t) = dlU(x, t) +f(U(x, t))9 (1.1)

where

/(0) = 0,/(l) = 0,/'(0) > 0,/(l7) > Ofor E/e(0,1).

(The standard example of such a function is f(U) = U — U3.) For these equations,
Aronson and Weinberger prove the existence of fronts and locate the marginal
speed. They further show the strong result that all positive initial conditions U0(x)
with compact support (which do not die out as time advances) will eventually form a
front which moves with the marginal speed. Their techniques of proof rely on a
clever use of the maximum principle for the positive solutions of (1.1).

In dendrite formation, one observes a formation of sidebranches, i.e., of
"modulations" of the shape of the tip of the dendrite as one moves back from the tip.
In this paper, we begin the study of a simple equation for which the formation of
fronts with modulated bulk behind the front has been conjectured. Thus these fronts
advance at some constant speed, and leave in the laboratory frame a pattern which,
as we shall see, resembles a sinusoidal function. In marked contrast, Eqs. (1.1) cannot
lead to such fronts, since they only form fronts which are constant in the bulk. It
should also be clear that the maximum principle cannot be applied because the
solution will turn out not to be positive in the bulk, and because the equation is
fourth order.

The simplest equation with a modulated front seems to be the complex amplitude
equation

dtU = d2

xU + U - U\U\\ (1.2)

which can be shown to form "spirals." However, it seems that initial conditions with
compact support will all tend to the fixed phase solution, which is not modulated. It
seems to us that the Eq. (1.2) presents a somewhat less interesting problem than the
equation to be discussed below.

The equation we study here is

δtU(x, ί) = (ε - (1 + dl)2)U(x, t) - U(x91)\ (1.3)

with UeU. This equation has been analyzed by Dee and Langer [3]. In the present
paper, we prove that for sufficiently small but positive ε Eq. (1.3) has a two-parameter
family of fronts, parametrized by the speed c ( > 4) of the front and the periodicity ω
(or the amplitude) of the pattern which is formed in the bulk. For convenience, we
restrict attention to the case c - 4 = O(ε1/2) and 1 - ω = O(e). The estimates for the
general case would not be very different, and in fact somewhat easier, since the
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parameter range we consider includes the marginally stable case, whereas in the
other cases there seems to be no marginality present. In this paper, we prove the
existence of fronts for Eq. (13). Work on the linear stability analysis of these fronts is
in progress.

2. The Equation for the Front. Statement of the Main Theorem

Dee and Langer [3] consider the equation

dtU(x, 0 = (β ~ (1 + dl)2)U(x91) - U(x91)\ (2.1)

with UeU. We prefer to perform a trivial scaling and to consider the equation in the
form

dtU{x, ί) = (ε - (1 + dl)2)U(x91) - εU(x9t)\ (2.2)

The stationary solutions to Eq. (2.2) are those which do not depend on the time t. We
shall call them S(x), and in fact, they will depend, in addition to ε on a second
parameter, ω, which will be the wavelength of their period. We shall not write this ε
and ω dependence explicitly. A front is a solution U of Eq. (2.2) which satisfies the
following special conditions: Define

U(x,t)=W(x,ηx-cη% (2.3)

where ε = η2, and assume U(x,t) solves Eq. (2.2). Decompose W(x1,x2) as

(2.4)
nel

and decompose similarly the stationary solution

S(xί)=ΣeinωxιSn. (2.5)
neZ

We say that W is a front asymptotic to S and moving with speed ηc if

lim WH(x2) = 09 (2.6)

and

lim Wn{x2) = Sm (2.7)
X2~> — 00

for all neZ. This means that in a frame moving with speed ηc, one sees at + oo the
zero solution of Eq. (2.2), while at — oo (i.e. in the variable x1!) one sees one of the
stationary solutions. Note that this also means that in the laboratory frame, the
front advances with speed ηc, leaving behind a pattern which does not move.

How do these fronts look? For small ε, and in the case ω = 1, the fronts have
essentially the form

W(xux2) = Λ^(l(χ2)e^ + I(x2)e-^), (2.8)
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where / is the real solution of the amplitude equation

41" + c/' + / - / 3 = 0, (2.9)

with the conditions /(— oo) = 1, /(+ oo) = 0, l(x) > 0 for all x.
Our main result is the

Main Theorem. For every K > 0, for c> 4 sufficiently close to 4, and for ε > 0
sufficiently small, there exist for every ω satisfying

a front asymptotic to a stationary solution with wavelength ω and moving with speed
ε1/2c. This solution is locally unique (modulo translations and a choice of phase).

For convenience, we shall assume c < 41/10, cf. Eq. (5.18).

3. The Existence of Stationary Solutions

Before we can attack the front problem, we need to control the stationary solutions.
In this section, we prove the existence of stationary solutions, and we bound them
appropriately. Setting the time derivative equal to zero, we see from (2.2) that the
stationary wave equation takes the form

εS - (1 + dl)2S - εS3 = 0. (3.1)

We look for real solutions of the form

S(x) = Σ Sne
inωx, with S_n = SneC, (3.2)

and Sn = 0 for even n. We may, and shall, impose in addition S1 =S_1elR, thus
breaking the translation invariance of Eq. (3.1). This will also imply 5_n = SneU. A
very good approximation to S(x) is given by

§(x) = Γcos(ωx), (3.3)

where JΓ is the positive root of

( l _ ω

2 ) 2 = ε(l-3Γ 2 /4). (3.4)

This choice of Γ solves the projection of Eq. (3.1) onto cos cox, (see below). We fix a
K > 0, and we shall study the existence problem for stationary solutions and for
fronts only for ω's satisfying

0 ^ ( l - ω 2 ) 2 ^ K ε 2 . (3.5)

We expect the marginally stable fronts to lie in this parameter range. The restriction
of (3.5) to a small parameter range makes some of the estimates simpler, but seems
not essential. We now write S(x) = $(*) + s(x), and we view 5 as the unknown for
which we solve the existence problem. The equation for s is

εΓ3

εs - (1 + dlfs - 3ε£2s - 3ε&s2 - εs3 7-cos 3ωx = 0,
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since

43

/ 3PΓ \ sΓ

- ε§ 3 - (1 - ω 2) 2£ = Γ ε (1 - ω 2 ) 2 cos ωx - ——cos 3ωx. (3.6)

V 4 4
We decompose s as

(3.7)
nel

Obviously, sn = Sn for nφ±l, and sί = S1 — Γ/2. We obtain the following
equations, for neZ,

( β _ (i _ n2ω2)2)sM

3εΓ 2

2s,, + sn + 2) - ε#,,(s, Γ) = 0, (3.8)

with

X Ve Σ
^ \p+q=n~1 p+q=n+1

Σ
W e rewri te this sys tem in t h e following form. F o r n = 1, us ing s1=S-1 a n d E q . (3.4),

we h a v e

Si = - (3.10)

The cases n φ ± 1 lead to equations of the form

Choose now any /? > 0 and define

MI = Σ
- oo

(3.12)

We denote by Bp the space of sequences {sn, nel], equipped with the above norm,
and we want to view Eqs. (3.10), (3.11) as fixed point problem in this space. The terms
occurring in Rn can then be bounded as follows: As an example,

Σ
p,qel

(3.13)

Also, we have the inequalities

neZ - neZ

and

(3.15)
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Combining these estimates, we get

i _i_ F

2P Ίpp

IG^Igilssl + ̂ ^ l l s p + ̂ pjIlsll3, (3.16)

and hence,

ε-'IG^I^IMI+^^Usp + ̂ I N 3 . (3.17)

Since G1 is multilinear, it is easy to calculate and estimate the tangent map, DGX, and
one gets

+ 2^\\s\\ + 3\\s\\\\\w\\. (3.18)

For the cases n φ + 1, we have similar equations

(3.19)

and

X ε-^|DGn(5)w|^O(ε)(β-^ + ε^ | | 5 | | + ||5 | |
2)||w||. (3.20)

nΦ ± 1

We now restrict p to the interval 0 < p < 1/4, and we choose τ satisfying 1 — 3p
> τ > p. It is easy to check from (3.17) and (3.19) that for sufficiently small ε one has

ε\ (3.21)

where G = {Gn}neI. Similarly, one finds from (3.18) and (3.20)
i

), if | |s | |<ε τ, (3.22)

with μ = min(τ — p,2p). We apply the contraction mapping principle to the
equation G(s) = s, and the above estimates imply the

Proposition 3.1. Let 1 — 3 p > τ > p > 0 . For sufficiently small ε there is, for every ω
satisfying Eq. (3.5), a solution to Eq. (3.1). It is of the form

S(x) = Γ cos ωx + s(x), (3.23)

with s(x) = Yjsne
ιnωx, {sn}neIeBp, and \\s\\ <ε\ Such solutions are unique.

n

Remark. One has the bounds which are better than those of the proposition:

\sl b s - 1 I ̂  ε

Proof Use the identities (3.9), (3.10), and τ > p.

4. The Equation for the Front as a Fixed Point Problem

We begin with a formulation of the front problem. We want to view the front as the
perturbation of a periodically modulated amplitude equation. This is done in the
present section. We formulate the problem as a system of differential equations in
these perturbations. In later sections, we shall give the definitions of adequate
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function spaces in which these equations will be seen to have solutions. The existence
of these solutions will follow from an application of the contraction mapping
principle.

We now consider functions W of the form

W(x,ηx-cη2t) (4.1)

solving the equation

dtW= - (1 + dl)2W+ εW- ε\V\ (4.2)

where ε = η2. We decompose W as

W(xux2)=ΣeίnωxlWn(x2l (4-3)
neZ

and we look for a solution satisfying

flrn(+oo) = 0, WJt-oD) = SH9 (4.4)

where Sn is the component of the stationary solution, with the corresponding ω,
discussed in Sect. 3. We shall also require W_n = Wn, i.e., we look for real functions
W. Since Sn = 0 for even n, we require also Wn = 0 for even n.

Since we have xί=x and x2 — ηx — cη2t, we see that W solves

- η2cδ2W=η2W- (1 + d\ + 2ηδ1d2 + η2dl)2W-η2W\ (4.5)

where δf = d/dXi, for ί = 1,2. The equation for Wn is then

η2Wn-(l-n2ω2 + 2iηnωd2 + η2d2)2Wn + η2cd2Wn= ^ WpWqWr. (4.6)
p+q+r=n

We shall use, throughout, the notation

μ = ωn. (4.7)

It is now natural to consider the one parameter family of linear operators Aμ defined
by

AμW{x) = η2W(x) - ((1 - μ2) + 2iημδx + η2d2

x)
2W{x) + η2cdxW(x). (4.8)

Upon expansion, we find

Aμ=-ε2δ$-4iε3l2μδ3

x -ε(2(l - μ 2 ) - 4 μ 2 ) d 2

x

+ (εc - 4iεll2μ(l - μ2))dx + (e - (1 - μ2)2)id. (4.9)

We want to view the system of Eqs. (4.6) as a fixed point problem. We can
rewrite (4.6) as

AωnWn = η2 Σ WpWqWr. (4.10)
p+q+r=n

We guess an approximate solution and transform the problem somewhat. We shall
call main sector the sector n = ± 1. Note that the equation for n = 1 is the complex
conjugate of the one for n = — 1. In the main sector, we make an ansatz of the form

W^x) - S1 W l(x), W l(x) - l(x) + a(x) + ib{x\ (4.11)
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where a and b are real functions. The function / solves the amplitude equation

4/"(x) + cΐ{x) + l(x) - I3(x) = 0, (4.12)

with the conditions l(x) ̂  0, /(— oo) = 1, /(oo) = 0. We also break translation
invariance by requiring 1(0) = 1/2. With this choice of /, it will be seen that a and b are
small, in an appropriate function space.

In the sectors n φ ± 1, we set

Wn(x) = Wn(x) + wJtx), for n φ ± 1, (4.13)

with

^ ( x ) = Sn/(x). (4.14)

Here, the choice of the function / as an amplitude is somewhat arbitrary. In fact, any
"nice" function with value 1 at — oo and value 0 at + oo would do. But we stress
again that in the main sector, the choice of / is crucial for what follows.

We denote w = {wπ}ne2. In the sectors n Φ ± 1, the equation takes the form

Kn^n = n2 Σ WpWqWr - SnAωnl(x) = :/in(w). (4.15)
p+q+r—n

The interesting sector is the main sector where all terms will be seen to be at least of
order η2. We first define ]Γ* as the sum over the set of p,q,r for which

We note for later use that this implies, because /?, q, r are odd, that

|p | + lίl + M ^ 5 . (4.16)

Now we write the equation in the main sector as

S1Λωw1-3Slη2w1\wί\
2 = η2^WpWqWr (4.17)

We next define

Bω = η~2Aω. (4.18)

Note that Aω is of order ω — 1. Because ω — 1 = O(η2\ seemingly singular terms in
Bω will stay bounded as η -• 0. We will prove this fact in detail later. Our final form
for the equation in the main sector is now

K -w1\w11
2(1 - 3Sj) I = :h1(yv). (4.19)

This equation will be analyzed in Sect. 9. Our strategy will be to study in detail the
operator B1 and to view Bx — Bω as a perturbation. This perturbation will be small
for small η since we are assuming 1 — ω = O(η2).

Note that by the definitions in Sect. 3, 3S\ is close to 1. Furthermore, since Sn is
small for n Φ ± 1 the cubic term in hί is also small. In Sect. 9, we shall essentially
invert the operator

L:w-+ Bxw — w|w|2,
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and write (4.19) as

w1=L~1Λ1(w). (4.20)

In fact, we shall first perform a translation in function space, by / as in (4.11), and then
invert the operator acting on the translated variable. Thus, Eq. (4.19) leads to a fixed
point equation with a small right-hand side. We also invert the Aωn (in Sect. 7) and
write (4.15) as

w« = 4 : W (4.21)

Although the sum defining hn is not restricted, there is a factor η2 which renders the
right-hand side of (4.21) small. Thus it should be intuitively clear that the existence
problem for the propagating wave has been reduced to a fixed point problem with
small right-hand side, so that the contraction mapping principle can be applied.

5. Properties of the Amplitude Equation

In the following discussion, we fix c>4, and we consider the equation

4/" + c/' + /(l-/ 2) = 0. (5.1)

We are only interested in solutions / which satisfy

0 ^ ί ( x ) g l , (5.2)

Z(-oo)=l, J(+oo) = 0, (5.3)

and to break translation invariance, we shall require

1(0) = I (5.4)

This problem has been extensively discussed in Aronson and Weinberger [1], and
we rely on some of their results. However, we shall need some additional estimates
which we derive shortly. It is known that the solutions to (5.1)—(5.4) satisfy

/'(*)< 0, for all xe U. (5.5)

We want to discuss in detail the decay of the solution near + oo and its approach to 1
near — oo. To do this, we need first an a priori bound on the derivative of /. The
minimum of ΐ (i.e. the maximum of | ΐ\) is attained when I" = 0. Hence we have, for all
xeU,

ΐ(x) ^ - - sup z(l - z2) ^ - A, (5.6)
Cze[0,ί]

where A = 2/(33/2c). We also need an upper bound on ΐ (i.e. a lower bound on |/'|).
Since - 1 ̂  /3 - / ̂  0 and /' < 0, we have

- 1 ̂  - / + /3 - d ^ 0 + cA = 2/33/2,

and hence 4/" = — / + I3 — cΐ implies

\l"\ύi (5.7)
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It follows that for every x,heU, one has

\l'(x + h)-l'(x)\£h/4. (5.8)

Therefore, there is a function σ^x.h) satisfying \σί(x,h)\ ^ c/4, such that

4Γ(χ + h) = - cl\x + h)- l(x + Λ)(l - l(x + hf)

= - cΐ{x) + hσ±(x9 h) - l(x) + I3(x) - *]" dsl'(s)(l - 3/(s)2)
JC

= - d'(x) - l(x) + /3(x) + fcσ2(x, Λ).

Here, |σ2(x,/i)| ^ c/4 + 2Af^ c/2. Integrating again, with respect to /z, we get

4l'(χ + fc) = 4/'(x) + h(P(x) - l(x) - cl'{x)) + /ι2σ3(x, Λ), (5.9)

with a bound |σ3(x,/ι)| ^ c/4.
We now fix an xeU and we denote p = l(x\ and σ = p — p3. Note that σ is

positive. We assume now that

(έ 0 (5 10)

(Since σ < 1 and c > 1 the second term of the min is the smaller.) We shall show that
(5.10) leads to a contradiction. In fact, combining (5.10) with the definition of σ, we
get

so that for h0 — σ/c we find

l(x)3 - l(x) - cl'(x) - h0σ3(x, -h0)^-1. (5.1

Combining (5.9), (5.10) and (5.11), we see that

a contradiction. Hence we have shown the

Lemma 5.1. There is a positive function F(p, c\ such that

-Λ=- 2/(33/2c) ^ l'(x) ̂  - F(l(x), c). (5.12)

One has

F(p,c) =
2c 16c

We next give an upper bound on / at + 0 0 . From (5.1) and (5.4), we have, for

4/"(x) + c/'(x) + |/(x) = /(x)(/(x)2 - i) ̂  0. (5.13)
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We now consider the roots

s -c±(c2- nyi2

S*= 8

of the polynominal 4z2 + cz + 3/4. By the maximum principle (see Aronson and
Weinberger [1]), the inequality (5.13) implies that I is bounded above by a solution v
of the equation 4v" + cv' + 3ι;/4 = 0. Clearly

v(x) = oc + eδ+x + ot_eδ-\ (5.14)

with

α + + α _ = / ( 0 ) = l / 2 ,

Therefore, α ± = ±(Γ(0)-δq :/2)/(5+-δ_). By (5.6), we see that there is a
constant Cί such that uniformly in c ^ 4, we have |α ± | g CΊ/2. Since 0 > δ+ > δ-,
we find

l{x)^C1e
δ+x

9 a s x ^ + oo. (5.15)

We next improve this a priori estimate. Equation (5.1) and inequality (5.15) imply

4Γ(x) + cl'(x) + l(x) = I3(x) S Cle3δ+X. (5.16)

For c = 4 we have <5 + = — 1/4, so that for c sufficiently close to 4 we find
13(5+1 > 5/8. We consider now the equation

4Wf + cW + w = C\e-5xls. (5.17)

Since e~5x/8 ^ e3δ+x for x Ξ> 0, the solution of Eq. (5.17) will be an upper bound on /
(for x ^ 0), provided w(0) = Z(0), w'(0) = Γ(0). We define y + and y_ as the roots of the
polynomial 4z2 + cz + 1, i.e.,

Then we get the solution, valid for 4 < c < 41/10,

w(x) = C2(c)ey+X + C3(cy-X + C4(φ-5x/8, (5.19)

with

C4(c) = C?/(41/16-5c/8),

C2(c) + C3(c) = /(0)-C4(c),

Clearly, one can find solutions to (5.20). Note, however, that they diverge as c -* 4.
For x ^ 0, (c — 4)1/2x < 1, it will still be possible to bound the quantity

v*x)^-, (5.20)
1 X
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which in turn leads to a bound for /. Observe first that

y+ + l/2^O((c-4) 1 / 2 ) , (5.21)

as long as c is bounded (which we assume). We can now write, omitting the in-
dependence of the Cj9

C2e
y+X + C3e

y~x = ( C 2 + C3)ey+X + C3e
y+X( e{y~ 'y+)x - 1 \ (5.22)

By using Taylor's formula to second order, and denoting δ = (c — 4)1/2, we see that
this leads to a bound

w(x)
ex/2

\ δ

This implies the required bound and hence the

Lemma 5.2. For 0 <£ (c - 4)1/2x < 1, the solution l(x) of Eqs. (5.1)-(5.4) satisfies

(5.23)

) ^ O ( l ) . (5.24)

We next give a lower bound on l(x) for x ^ 0.

Lemma 5.3. With the definition (5.18) ofy + , we have the bound

l(x)^±eΎ+x. (5.25)

Proof. By Lemma 5.1, we have

i ^ > 0 . (5.26)

By the maximum principle, it is again clear that / is bounded below by the solution v
of the equation

4i/'(x) + cυ\x) + v(x) = 0, (5.27)

with the initial conditions ι?(0) = /(0),v'(0) = Γ(0). We find υ(x) = oc + e
γ+χ + oc_ey~x,

where

(5.28)

This implies α + - α_ = (/;(0) + cί(0)/8)/4, where 4 = (c2 - 16)1/2/8. By (5.26), we find
α+ > α _ . We rewrite

υ(x) = w(x)ey+x

9 w(x) = a+ +a_e~2Δx. (5.29)

Note that w(0) = 1/2. Now if α_ ^ 0, then w(x) ^ α+ > 1/4, since α + + α_ = 1/2 and
α+ > α _ . If α_ < 0, then w'(x) = - 2 z l α _ ^ " 2 ^ >0, so that w(x) > w(0) = 1/2. The
assertion follows from /(x) ^ υ(x) = ey+xw(x).

We next deduce an upper bound on \ΐ(x)\ for x ^ 0.

Lemma 5.4. For every c>4, there is a constant C5(c), such that

\l'{x)\SC5(c)ey+x, forallx^O. (5.30)
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Proof. By definition, / satisfies the equation

4/7" + d' 2 + » '( l-/ 2 ) = 0. (5.31)

We set v = I'2, so that

2vf + cv + ll'(l-l2) = Q. (5.32)

Setting next v(x) = y(x)e~cx/2, we get

2/(x) + ecx/4l(x)ecxl*lf(x)(l - I2{x)) = 0. (5.33)

Therefore

2/(x) - y1/2{x)ecx/*l(x)(l - /2(x)) = 0, (5.34)

and hence

ll£L = ecx/4l(x){l - I2(x)) £ ecx/*l{x) ^ C(c)e(y+ + c / 4 )*, (5.35)
y

by (5.19). This implies

4 / ' 2 ( x ) - 4 / ' 2 ( 0 ) g ^ , (e(Δ+c/8)x- 1), (5.36)

Zl + c/8

where 4 = (c2 — 16)1/2/8. Substituting the definition of y, we see that

C(Γ\(P(Δ~C/8)X — p~cχl*\

^const. e

{A~cl*)x = const. e r + x . (5.37)

We have used the inequality A - c/8 > - c/4. The assertion is proved.
The preceding argument can also be used to provide a lower bound on \ΐ\.

Starting with Eq. (5.35), we get from l(x) ̂  1/2 the inequality

2 ^ (5.38)
y ' (x)

Upon integrating as before, we get from (5.25),

4y1/2{x) - 4y1/2{0) ^ ]dt-^e{c/4+^]t. (5.39)
o

Using again the definition of y, one easily reaches the following conclusion.

Lemma 5.5. The function | ΐ \ is bounded below. There is a constant C6(c) > 0 such that
for every x ^ 0, one has

\l'(x)\^C6(c)e?+\ (5.40)

We also need a bound on Γ/l which is uniform in c. For this, we consider y = Γ/L
Since / = Γ/l — (Γ//)2, we see that y satisfies the equation

4 / + (4y2 + cy + 1 - I2) = 4 / + P(y, x) = 0. (5.41)
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The roots of P( ,x) are at

r+(x) =
- c ± ( c 2 - 1 6 ( l - / ( x ) 2 ) ) 1 / 2

Assume there is an x 0 for which y(x0) < r_(x 0). Then Eq. (5.41) implies

and thus y(x) < r_(x 0) for all x ^ x 0 , since r_ is increasing. This implies

y(x) < - P(y(xo\ xo)/4 < 0 for all x ^ x0,

and hence y(x) diverges linearly to — oo as x -> oo. For every c> 4, this contradicts

the inequalities (5.25) and (5.30). Hence, we have, for all x ^ 0,

+ (c2- 16) 1 / 2
/'(x)

/(x)
(5.42)

We can use the above argument to produce an upper bound on ΐ/l. We observe

that (5.41) implies that if y{x0) > r+(x0) for some x 0 ^ 0, then y(x 0 ) < 0. Therefore,

we must have, for all x ^ 0,

Hence, we find, for x ^ 0,

^minί
1(0)

,M0)| . (5.43)

We next bound I near — oo. These bounds are more straightforward than those

near +00 because 1 is an unstable solution of Eq. (5.1).

Lemma 5.6. For all c near 4, the function l(x) satisfies near -co a bound of the form

1 - C8e
βx < l(x) < 1, (5.44)

where

- c + (c 2 + 32) 1 / 2

β =

Proof We set u(x) = 1 — /(x), and then we see that u satisfies

(5.45)

The linear equation

4v" + cv' - 2v = 0 (5.46)

has only one solution which decays at — 00, namely

υ(x) = const. eβx. (5.47)

Therefore, u'/u-^β as x-> — 00, provided u is bounded. In fact, u(x) is the unstable
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manifold of the flow defined by the equations

W = 5, (5.48)

The unstable direction at (0,0) is βu = s, and hence by the existence of an unstable
manifold, there is a u0 such that 0 < u0 < 1/2, and

Is(u) -βu\^ u3 / 2, for 0 ^ u ̂  u0. (5.49)

One can find (by choosing possibly a smaller positive u0) an x0 such that u(x0) = u0.
Then Eq. (5.49) implies upon integration, for x ^ x0,

/2χ-χo) ^ φ ) ^ Uoe(β-»ll2)(χ-χo\ (550)

By choosing again u0 smaller if necessary, we may achieve

Hβ-u^mβ. (5.51)

Substituting in Eq. (5.49), we get, for x g x0,

\s{u)/u -β\^ uy
2eβ{χ-χ«)β. (5.52)

This inequality leads, after integration, to

I log u(x) - β{x - x0) - Iogu0\ ^ wέ/2-,

so that for x^x o >

uoe-3uol2^eβiχ-χo) ^ u(x) ̂  uQe3u°l2/βe{χ-χ°\ (5.53)

Thus we have shown the required bounds for x^x0.
We now extend this bound to all negative x. Since 1(0) = 1/2 = w(0j, and u\x) > 0,

we see that for xe[x o ,0] one has

u(x0) ^ u{x) ̂  u(0).

Thus for all c near 4, there are constants C 7 > 0 and C 8 < oo such that

CΊe
βx S u(x) ̂  C8e

βx. (5.54)

The lemma is proved.

Our next bonds are on ΐ near — oo. In this case, we differentiate Eq. (5.1), and we
set u(x) — l'(x). Then the equation for u is

Au" + cvί + u{\ ~ 3l2) = 0. (5.55)

For x near — oo, the solution is governed by the equation 4κ" + cu' — 2u = 0, which
has constant coefficients and which we have already discussed above. The variation
of the coefficients, due to / decays faster than eβx near — oo, and hence we find by
methods totally analogous to the ones used above the

Lemma 5.7. For all c near 4, the function l'(x) satisfies near -co a bound of the form

0 < C9e
βx < - l'(x) < C10e

βx, (5.56)
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where β was defined in Eq. (5.45).

Remark. The methods used above show that all higher derivatives of I at + oo or — oo
decay at the same rate as I and ΐ, (respectively as 1 — I and ϊ near — oo).

6. The Space Hα x

We define a weight function m which will serve for our norms:

where α < β and β was defined in Eq. (5.45).

Definitions. We denote HΛX the space of functions defined by

Hα,χ = { / | / : ( — o o , X ] - > C , / G ^ ° ( ( — o o , X ] ) , sup \f(x)\m(x)< oo}, (6.2)

and we write || | |H for the corresponding norm.

Lemma 6.1. For q»\ and x^X one has the bounds

m(x) ] dye-qix~y)/m(y)SO(q~1) (6.3)
- 00

and

m(x)$dyeq{χ-y)/m(y) ^ O(q~ *). (6.4)

Proof The proof is straightforward. We distinguish the cases x ^ 0 and x ^ 0 and
the integrals (6.3) and (6.4). We first note the obvious bounds

. . . . f const. eay iϊy ^ 0
l/m(y) < < o . (6.5)

[const. (1 + y)e y/2 lϊy ^ 0

Noting that α = O(l) and q » 1, we get the asserted bounds by straightforward
integration.

The following inequalities will be used in Sect. 9. Define

X

g(x) = e~x J dsf(s)e\
— oo

Lemma 6.2. // ll/llH α X is finite, then

\\g\\HaX^O(l)\\f\\Haχ. (6.6)

Proof Note that \f(s)\ ^ \\f\\HaχO(l)(l + s)e~s/2 for 5 ̂  0. Similarly, if 5 ̂  0, then/
decays like e~~φl. Therefore, if x ^ 0, we find

f dse^'g
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On the other hand, if x ̂  0, then we have

Lemma 6.3. If X >0 and q»ί, then one has for all x < X,

!ή$-e-«*-*>ίl. (6.7)
m(X)

Proof The proof is obvious from the definition of m.

7. The Spectrum of the Linear Problem

We give here bounds on the spectrum of Λωn when ω is near 1 and n Φ ± 1. Then we
deal with the case n = 1. The characteristic polynomial of Aωn is

Pμ(q) = η2-(l~(μ + ηq)2)2 + iη2cq, (7.1)

when μ = ωn. Note also that we have the natural correspondence q = — ίdx. We are
interested in the roots of Pμ, which we shall call qnj,j= 1,...,4. To simplify the
notation, we shall assume throughout μ > 0, the case of μ < 0 being equivalent.

Lemma 7.1. For sufficiently small η > 0 and for μ> 1.5, the roots qnj of Pμ satisfy

\qnJ\ = O(μ/η). (7.2)

For ημ 5Ξ η113, one has

\lmqnJ\^O((μ/η)112), (7.3)

and

\P'Mn,j}\=O(η3l2μ1/2). (7.4)

For η112 <ημ< η~112, one has

i ; ' , ,7,)

and

j V / 2 ) (7.6)

Finally, if ημ ^η~1/3, then

l/mc^O^V3'4), (7.7)

and

\P'Mn,j)\ = O(η(ημ)31*) ̂  O(η3'2μ112). (7.8)

Proof. We proceed by asymptotic analysis. Consider first the case ημ <η113. (The
exponent 1/3 is somewhat arbitrarily chosen. In fact, any number < 1/2 would do for
our purpose.) We set

p = μ + ηq (7.9)
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and study the polynomial

Ro(P) = η2~(l- P2)2 + icηp ~ icnμ. (7.10)

It is now useful to change variables by setting p = σ + η/z, where σe{ + 1 , — 1}. We
shall pursue the case σ = 1, the other one being analogous. Then we get the equation

- z4 + (2z + η)2 + ίcz4^—^ - icz3 = 0. (7.11)
η

Under the condition ημ < η1/3, the solutions of this equation are approximated by
those of the equation

icz\μ - l)/η + 4z2 = 0. (7.12)

Substituting back, we find that for small η one has p « + l±2(ίcη(μ — 1))1/2, i.e.

^ = ^ Y / 2 . (7.13)
• , ±

This implies (7.3) and (7.2) for the values of ημ considered thus far. We now note that
R'0(p) = 4p{l — p2) + ίcη, from which (7.4) follows.

Next, we analyze the case ημ>η~ίl3. Then it is adequate to change first variables
as in (7.9), and to set then p = 1/z. The equation is now

η2z4 - (z2 - I)2 + icηz3 - icημz* = 0. (7.14)

Its solution is approximated by the solution of

z4icημ=l. (7.15)

Thus, we get

«.J*-» + i ^ ' \ (7.16)

with a choice of four phases for the fourth root. Since ημ»l, and
\Pnj\ = O((ημ)lί% we see that

\P'MnJ\ = η\RΌ(PnJ\ = O(^V / 4 ) . (7.17)

The inequalities (7.2) and (7.7) follow.
Finally, consider ηιj2> <ημ< η~ιj2>. With the change of variable (7.9), we are led

to the approximate equation

(p2-l)2 + icημ = 0, (7.18)

whose solutions are

P= ±(l±(icημ)1/2)1/2. (7.19)

^ . (7.20)
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The bound on Im qnJ follows. We also have

M j j (7.21)

by (7.18) and the explicit form of JR'O. The required bounds follow now from obvious
minorizations of the square root in (7.20) (and of its imaginary part). The lemma is
proved.

Corollary 7.2. For sufficiently small η>0 and for μ > 1.5, one has the bounds

(O(η) iiημ^η113

\lm(qnj)P'Mn,j)\ ^ < O(ημ3^) iϊη1/3 <ημ< η'ί/3.

L 3 4 η-113 l * 'Lθ((ημ)3'4)

The following identities will be useful later.

Lemma 7.3. For 0 ̂  k ̂  2 one has

4 ak

f q"'J = 0, (7.23)
j=irμ(qnJ)

4 1 1
V = — — . (7.24)

Proof. We use contour integration. In the first case, we have

4 ak • 1 dzzk

y q^J =

 L r a z z

 =Q

MP'MnJ 2πiw

J.ΓPμ(z) '
as is easily seen by letting r tend to oo. In the second case, we have, for sufficiently
large r,

4 1 1 , dz 1
V - = _L_ f ίί + .

The assertion follows as before.
We now begin our study, for the case n φ ± 1, of the operator A'* on the space

H a X . Here, we fix, once and for all, a (large) positive constant X, which will be chosen
adequately in later stages of the proof. The constant α is choosen larger than β, where
β is the rate of decay of /' near — oo. Consider again the characteristic polynomial Pμ

defined in (7.1). We number the roots of Pμ in such a way that Im qnJ > 0 for; = 1,2,
Im qnJ < 0 for j = 3,4. For each μ, and X as above, we define an inverse A ~1 as
follows.

x eiqnj(χ-y) x piqn,j(χ-y)

(V/)w= Σ ί dy-prτrrf{y)- Σ J ^ - F Λ - r / ω (7.25)
7=1,2-00 PμWnJ j=3Ax P μ\Ά«,j)

The norm on Hα>Jf was defined by

II/IIH»= S U P I / M N 4 (7.26)
xe(-oo,X]



58 P. Collet and J.-P. Eckmann

where

Bounding A ~1 amounts thus to controlling expressions of the form

m{x) ί k
or

F(a )

We pursue the first case only. We are led to bound an integral of the form

m(x) J dy\eiqn'jix~y)/m(y)\,
— oo

which by Lemma 6.2 is bounded by O( | Im qnj\~*). Thus the norm of A ~n

x is bounded
by the inverse of |Im (qnj)P'μ(qnj)\ which, by Corollary 7.2, is bounded below by O(^).
Thus we see that

llV/k^Ofo-WH^. (7-27)
Note that somewhat better bounds are possible by using the explicit form of
Corollary 7.2.

We shall need the following better bound which holds when / is differentiable.

Lemma 7.4. /// is once continuously differentiable then one has

Proof We rewrite (7.25) as follows

JC pi jQnj(χ~y) x p\ pknj(χ-y)

(Λ^f)(x)= Σ ί dy J /(y)- Σ Idy '. p . Jiy\ (7-28)

and then integrate by parts. We obtain

x eQn,j(y)

= - Σ ί dy f'(y)
j= l ,2-oo -iqn,jPβ(<ln,j)

pj

Σ idy-. pΊa J\y)
;=3,4.x -ιqnjPμ{qnj)

f(Ύ f ( Y \ p , j

+ f 1^1 y l±±^ (7.29)
M -iqn,jPμ(<lnJ 'MA -iQnjPμfanj)

The boundary terms at x can be bounded using (7.24) (for q = 0) and contribute
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O(1)| |/ | | H The norm of the boundary terms at X is bounded by

V
| Im | ( χ_ χ

( '

Using Lemma 6.3, and Lemma 7.1, this leads to a bound

O ( ί Γ 1 / 2 ) | | / | | H α j Γ (7.31)

Combining these bounds with a bound on the integrals in (7.29) which is the same as
the one leading from (7.25) to (7.27), we get

+||/ΊiH β j r). (7.32)
H β j r )

We next discuss the roots of the polynomial Pω (defined in (7.1)) for the case n =
± 1. Two of the roots may be confluent in this case. We write

ω=\-pη2, c = 4 + ητ. (7.33)

Setting q = i/2 + y, we get the equation

Ay2 + η(-i/2 + τ/2 - Aip + O(y)) + η2(O(y) + O(l)) = 0. (7.34)

This implies that there are two roots, possibly equal, satisfying \y\ ̂  O(η1/2\ so that
the first two roots of Pω are

^ 2), for; = 1,2. (7.35)

To locate the two other roots, we set ηq + ω = —ω — y. The equation for y is then

η2 - (1 - (ω + y)2)2 - licηω - icηy = 0. (7.36)

The small roots of this equation are approximated by those of

- 4y2 - icηy - licη = 0, (7.37)

since ω — 1 = O(^2). Thus we find

ί J- ± ί — J +O(1), for; = 3,4... (7.38)

The following result will be useful in Sect. 13.

Lemma 7.5. For 0 ^ / c ^ 3 , and feHatX, the function c%A~γf exists and has the
representation

.7=1,2 - o o "μWnj)

x J<in,j(x-y)

- Σ ί̂ i?,,/-^—T-/W. (7.39)
J 3 4 Γ{q)

Proof. Consider the definition (7.25) of A ~x. The assertion follows now readily by
differentiating this expression and observing that the boundary terms at x drop
because of Lemma 7.3.
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We next study the operator Aωn acting on quadruples of derivatives. Assume
f(x) = ei9X. Then

where the characteristic polynomial of the differential operator Aωn is given, as in
(7.1), by

PJΆ) = rj2-(l~ (ωn -f ηq)2)2 + iη2cq. (7.40)

Denote qnJ j = 1,...,4, the roots of Pωn. To each function / e C 3 , we associate the
quadruple:

If we write < | for row vectors and | > for column vectors, we see that the
eigenvectors eiQn-JX of Aωn are mapped to \Uqnj9qϊj,qϊj}. The projection Pψ onto
the eigenvector

\enj> = \lqnj>qlj,<llj> (7.41)

is given by

Pψ = Kj><P{

n

J!o,P{J\ P{

n%P{J!3\, (7.42)

where

3 P (a)
n,mί

With these definitions, it is easy to check that

P?eΛtk = δJtkenj9 for all , k = 1,..., 4. (7.44)

We now formulate bounds on the Pψtm.

Lemma 7.6. For n Φ 1, m = 0,..., 3, and j = 1,..., 4, one has

\P{»m\SO(l)n5/2-mη-1/2+m. (7.45)

Proof. First we note that by (7.43), and (7.2) one has

P<Ji)=-V*Yl(<i-<lnj), (7.46)

and hence

\3-m

sup \qn,k\?'m^ηAO[^\ . (7.47)
fc=l,...,4

Similarly, using (7.4), (7.6), and (7.8), we see that

VlPUqnJlSOiη-^μ-1'2). (7.48)

Thus,
l2-mη-ll2+m, (7.49)
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as asserted.

L e m m a 7.7. When n=l one has

ΓO(l) ifm = 0,

\P[\]m + P?in\ = \ O(η312) ifm = 1,2, (7.50)

lθ(*75/2) ifm = 3.

Moreover,

(7.51)

(7.52)

f. Note that when n = 1, the bounds on P(

1

1) and Pψ diverge because two roots
( s ay 4i,i a n d 41,2) c a n be arbitrarily close and could even coincide. However,
P\ υ -f Pψ stays bounded, as we show now. Let us denote q1Λ,qlί2 the two roots
near i/2, and 91,3,91,4 the two other roots. By the definition of P{{]m, we have

3 f 1 1 )
f (P[l)

m + P[2)

m)qm = PJq)\ + — Λ. (7.53)
m = 0 ' ' IΛ4 —4l,l)J\o(4l,l) (4.—4l,2)-Pω(4l,2)J

By the identity (7.24), we see that this is equal to

1 1

" 91.3)^1.3) + (ί " ^1.4)^91.4

Note now that for; = 3,4, one has | P ^ U ) | = O{η4η-2η~1/2% by (7.35) and (7.38).
Therefore, we find from (7.53) and (7.54) the bound (7.50). The proof of Eq. (7.51) is
easier and is left to the reader. To prove (7.52), we note

P<AQ) 1 to-9i,i)te-9
(<? - 41,2)^(41,2) 4i,2 - 4i,i (4i,2 - 4i,3)(4i,2 - 4i, 4 )

and hence, by (7.35) and (7.38),

The lemma is proven. For further use, we also note two identities which are easily
derived from (7.39)

Y (P^kdiA'J f)(x) = y I y f dv n*qnje ^—-f(y)
£_j \ n,κ x ωn J J\ J La \ La J -̂  Ό' (n \ J \J'

k = 0 k = 0 \ 7 = l , 2 - o o *μ{qn,j)

- Σ J d / ^ y W > j ( * y)/(y)Y (7.55)
j = 3Ax ^μ(4fi,j) /

By (7.43), this projects onto the term with; = /. More precisely, this means e.g. in the
case 1=1, that

eiqn,ι(x-y)

f(y). (7.56)
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8. A Stable Manifold Theorem for Maps with Unbounded Linear Part

This section deals with the existence of a stable manifold in the case when the linear

part of the evolution equation is unbounded. We shall use this theory to control the

front problem at x = +00. Here, we consider, first on a purely formal level, an

equation of the form

with X in some separable Banach space B, A unbounded, but with spectrum away
from the imaginary axis, F maps a neighborhood of 0 in B to B and is a twice Frechet
differentiable function satisfying F(0) = 0, F(0) = 0.

We want to study Eq. (8.1); however iϊA is truly unbounded above, then the flow
itself is not defined for positive ί. We shall nevertheless be able to define a stable
manifold Ws, tangent to the "linearly stable space" Es, i.e. the spectral sub-space of A
corresponding to the left half-plane of its spectrum. We denote Eu the unstable
subspace and we assume that P s, and P", the respective spectral projections, are
bounded operators.

The construction of Ws is possible because it can be formulated in terms of the
semigroups eAS\ e~AUχ, τ ^ 0, and these semigroups are defined. Here, As = PSA, and
Au = PUA. In order to formulate the problem in terms of these semigroups, we
consider evolution equations on the stable manifold itself.

As usual, Ws will be viewed as the graph of a function Φ: Es -> Eu

9 and in fact we
shall prove the existence of Φ on a small ball Bs

r in E\ (of radius r, centered at 0). We
need to control the flow on Ws (where it will be seen to be defined for all t ^ 0), and
we denote \j/φ the solution (for fixed Φ) of

d φ

dt ' φ

where ψφ:Es->Es, and

Gs

φ(y) = PsF(y, Φ (y)), y e Es.

This is the flow in W\ projected onto Es. The solution of (8.2) is formally given by

φφ=eAst + \dτeAS(t-τ)Gs

φ°ψ?. (8.3)
0

The flow φt on Ws itself must be of the form

0 " Φ(χ)

which, upon differentiation, and restriction to the second component, leads to the
equation (on Es)

(8.4)
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where G%(x) = P»F^φ

X

(χ)

Equation (8.4) is equivalent to

Φ = -]dτe-Λ"τGu

φ°ψ?. (8.5)
0

We shall solve the existence problem for the stable manifold by considering the
system (8.3), (8.5), using techniques similar to those found in [5].

Given Φ, we solve (8.3), and this will define the right-hand side of (8.5), i.e. a map
Φ-> C(Φ). We shall show that the operator C is a contraction of a sufficiently small
ball of functions, so that (8.5) has a solution by the contraction mapping principle.

We now describe in detail the assumptions on A. In fact, A derives from two
semigroups, corresponding intuitively to the positive and the negative parts of the
spectrum of A. The Banach space B is a direct sum B = ES®EU. By Ps and Pu, we
denote the corresponding projections. We assume that As and —Au are the
generators of two equicontinuous semigroups of Class C o in the sense of Yosida [6],
on Es and Eu respectively. Finally, A is the direct sum of As and Au on their respective
domains in Es and Eu. Furthermore, we assume there is a constant D > 0 such that
the semigroups satisfy the bounds

Sί || eAH||£s,e
χut || e'Aut||£w) ^ D, (8-6)

with Xs > 0, λu > 0.

We make the following continuity and differentiability assumptions on F: With
the same constant D as above (for convenience) one has

) || ^ Z> max( || x ||β, || y || J 2 , (8.7)

||DF(x,y)(x',/)II ^ D m a x ( | | x | | s , | |y\\ u )max( | |x ' | | β ,/ϋ,

on a neighborhood of (0,0).

We shall fix below a small r > 0, and a σ > 0. We write Bu

r for the ball of radius r in
Eu centered at 0, similarly Bs

r for the ball in Es. We define

|| Φ(χ) - Φ(y) \\u ̂  σ | |x - y ||s, for x,yeBs

r}.

We also define, for Φ, ΨeAr σ, the Lipshitz distance

\Φ(x)-Ψ(x)\\u

Theorem 8.1. Under the above assumptions, the operator C has for every σ > D and
for every sufficiently small r > 0 a unique fixed point in A r σ .

Proof For every Φe Ar σ, we first show the existence and study the properties of φ φ,
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solving (8.3). We want to describe φφ as an element of a set Brσ of functions

Brσ = {φ:U+ x Bs

r->Bs

r\φ0(x) = x, ψt(0) = 0 for all t>0,

sup\\φt(x)~φt(y)\\s^σ\\x~y\\s}.

We equip the set Brσ with a Lipshitz distance

dB {φ, Φ') = sup sup —-—-—— -.
r ί^O xeBs

r \\X\\s

It is easy to verify that Brσ is a complete metric space for this distance.
We first study Eq. (8.3). Assume that φeBr>σ, and ΦeArσ and denote Hφ(φ) the

right-hand side of (8.3), i.e.,

HΦ(φl = eAH + \dτeΛS(t-τ)Gs

φoφ (8.8)
o

We shall show that H φ is a contraction in B r σ if r is sufficiently small. From

\\φτ(x)-φτ(y)\\s^σ\\x-y\\s

|| Φ(φτ(x)) - Φ(φτ(y))\\uίσ\\ φτ(x) - φτ(y)\\s,

and

| |Φ(ψΓ(x))| |u^σ |μ τ(x)L^σ2 | |x| | s

we deduce

max( || φτ(x) | | s, || Φ(φτ(x)) \\u) S max( || φτ(x) | | s, σ || φτ(x) \\s) g (σ + σ2)r.

Therefore, we have

t
2\2|| Hφ(φ\(x) - Hφ(φ\(y) I, ^ (ΰe'M + \dxe~ »«-«D2r{σ + σ2f\ \\x - y \\s.\

This implies Hφ[φ)eBrσ if

which is always possible if σ > D, and r > 0 is sufficiently small.
We now show that H φ is a contraction. We have

\\Hφ{φ)t{x)-Hφ(φ')t{x)\\s

] σ)(σ + σ2)r \\ φτ(x) - φ[(x) \\s

}
0

σ)21| x \\s~dBr(φ, φ') ^\\x \\sd^φ, φ'\
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provided

2σrD\\ + σ)2 < λs.

Therefore, H φ is a contraction and has a unique fixed point in Br σ . This fixed point is
called ψφ.

We next study the map C defined by the right-hand side of (8.5). We first show
that C maps Arσ into itself. If ΦeAr σ, then we have, as before,

\\Φ°ψτ

φ(χ)-Φ°ψx

φ(y)\\u£σ2\\x-yl,

and therefore,

D2(σ + σ2)2r
\\C(Φ)(x)-C(Φ)(y)\\u< λu \\x-y\\s,

for sufficiently small r. In other words, C maps Ar σ to itself. We next show that C is a
contraction. Note that

Gu

φoφτ

φ- Gu

Ψ°ψτ

ψ = (Gu

φoψ?_ Gu

φoψ*) + (Gu

φoψτ

ψ- Gu

ψoφτηm

Using estimates of the same form as above, we find

ϋ C(Φ)(x) - C(Ψ)(x) |L S D2{σtσ2)r(V +

sup\\Φ(ψτ

ψ(x))-Ψ(ψ^x))\\u).

σ)sup || φ?(x) - ψ?(x) II

In order to estimate ψ*(x) — t/^x) we use Eq. (8.3). We have

|| φf(x) - φt

ψ(x)L ̂  fdτe-^-'ί || G V ^ ) _ GV°
0

From this we get

•((1 + σ)sup|| ψ*{x) - ψ?(x)||, + ||x \\sdAr(Φ, Ψ)).
ISO

If Z)2(σ + σ2)(l + σ)r < λs/2, then we get

sup || ψ?{x) - φτ

ψ(x) ||, ^ 2 £ > 2 ( σ t f f 2 ) ' " II * IIΛ,(<P. n
t A

and taking r smaller, if necessary, we see that C is a contraction. Therefore, C has a
fixed point, as asserted.

A straightforward extension of the above methods, cf. [5], shows that if F is k
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times Frechet differentiable, then so is Φ. Note that this bound will always contain a
factor r.

We now apply the above theory to Eq. (4.10) near -f oo, calling the space variable
t instead of x. We define the space B through the following construction. To each
function/eC3, we associate the quadruple:

Given a quadruple/ 0,... , / 3 (e.g. the quadruple associated to a function / e ^ 3 as
above), we define a decomposition

where

and with enJ as defined in Sect. 7. When n=ί, the first sum extends from 1 to 3 and
the second over j = 4 only. We can decompose naturally bs

n (or bJJ) as a quadruple,
namely

K,m= ΣKJCP m = 0,1,2,3.
j=ί

We define

where γn = \ωn\/η (an approximation to the root of maximum modulus of (7.1)). We
define analogously Ibϋl,,,*, and when n = 1, the first sum extends from 1 to 3 and the
second over j = 4 only.

We now define B as the space of sequences of pairs

as above. We equip B with the norm

, ! H , |^L, i | ! ), (8.9)

where p1 > 0 will be fixed later.
The operator A of Eq. (8.1) is formally defined by

i.e. A, restricted to the component n of B is really f/~4^4ωπ. Associated with this
definition there is a natural decomposition of B into Es and Eu. If we number the qnJ

in such a way that Im qnJ > 0 fory" = 1 , 2 when n φ ± 1 (and fory' = 1,2,3 when n = 1),
then

j = o for ; v i , 2 ( a n d 3 whenn = l)}.
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It follows at once from the bounds on the qnJ in Sect. 7 that (8.6) holds with λ\
/lM>l/4, and/) = l.

We next analyze the nonlinear term F in Eq. (8.1). To an element beB and a value
of t there corresponds a value of Wn at t. In fact, we have

WJtt)= ΣKJ-
7 = 1

Note now that by virtue of Eq. (4.10), we have

where

n η Σ p q
p+q+r=n

We now bound this expression. Note that the sum over p + q + r = n above can be
absorbed through the norm on B:

Σ
p + q + r = n

P,q,rfO

uniformly in η. This leads to

We now note that

FnJenJ = pω 10,0,0, Nn > = enJP$3 Nn.

We use now the bounds on Pnm given in Lemma 7.1 and 7.6. We start with the case
nφ±\. We have

so that

We next analyze the case n = 1. We consider, as in Sect. 7, the operator

7 = 1

where P ^ is defined by (7.43). We estimate similarly Pγ] and P(*\ but we give details
only for Pγ'2\ Writing P (

1

1 '2 ) as \e1Λ}{efΛ\ + \elt2X^1,2!? w e m a y estimate this
quantity conveniently by considering

We first look at e%Λ + e%a> i e » w e want to bound P^1^ + P{^m. This has been done in
Lemma 7.7.
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We next consider the second term in (8.12). We have

k l , 2 - β l t i > = | l , ^ i , 2 ^ 1 , 2 ^ 1 , 2 > - | l ^ l , l ^ l , l ^ l , l >

= (QU2 ~ <7l,l)l θ > ^ t f l . l + 4 l , 2 » 4 l , l + <7l,l<?l,2 + tfl,2>

We now use Eq. (7.52), the decomposition above, and

But we have seen that for m = 3,

and

Therefore

Thus we see that if

\\b\\BSO(η2l (8.13)

the constant D in Eq. (8.7) can be chosen O(η~2). Thus we have shown the

Proposition 8.2. The nonlίnearity of Eq. (4.10) is bounded by

\\Fs\\BSO(η~2)\\b\\3

B.

An analogous bound holds for Fu. Furthermore F is differentiable in B and the
derivatives satisfy similar bounds.

The last assertion follows by polarization. In view of Proposition 8.2 we see that
for the front problem at + oo, Theorem 8.1 holds with an r of order O(ηί0), and with
a Φ which is bounded, together with its derivatives, by

9. Properties of the Linear Operator in the Main Sector

In this section, we start with the analysis of the differential equation for the main
sector. As we have seen in Eq. (4.19), it is of the form

- η2zιυ - Mηωz'" - (2 - 6ω2)z" + (c - 4i(l - ω2)ω/η)z'

+ (1 - (1 - ω2)2/η2)z - z\z\2 = h, (9.1)

where c > 4 , c — 4 = O(η), η>0 and η = ε112, and we impose the boundary
conditions

z (+oo) = 0, z(-oo)=l. (9.2)

We shall describe later the nature of the inhomogeneity h\ in any event, h, when
restricted to the interval (— oo, X~\, is in the space Hα x . We view z as a perturbation
of the solution / = lc > 0 of the second order equation

41" 4- cV + I - /3 = 0. (9.3)
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The existence of such solutions, and a detailed analysis of their properties have been
discussed in Sect. 5. We shall make extensive use of these results. We decompose z
into its real and imaginary part, and we write

z = l + a + ίb. (9.4)

This leads to a system of two coupled real fourth order equations in a and b, and we
view this system as a perturbation of the corresponding second order system. It is of
the form

4a" + ca' + a- 3al2 = kt + Reh, (9.5)

where

1 — ω2

k1 = η\r + aw) - 4ηωb'" + 6(1 - ω2)(Γ + a") - 4 ω{ΐ + a!)
η

(J + α) + 3α2/ + α3 + ab2 + ί^2,

k2 = η2bw + 4ηω(Γ + a'") + 6(1 - ω2)b" - 4 1 ~ ω b' (9.6)
η

Ά

Our final aim is to show the existence of a solution to Eq. (9.1) (or, equivalently, Eq.
(9.6)) by an application of the contraction mapping principle. With this aim in mind
we study first the linear operator L on the left-hand side of (9.6), where L is of the form

(a\JW + cd + a-Za\2\(Ua\
L\b) \4b" + cb' + b~bl2 )\L2b)' [ }

Clearly, L is diagonal and hence we can study the inverse of L in a and b separately.
In other words: The original problem is a perturbation of two real decoupled second
order equations.

The function space we consider controls the decay of the functions at + oo and
— oo. In Eq. (5.45), we have defined β as the rate of decay of /' at — oo. We now
choose α < β. We also choose a (large) positive constant X,

X = C\og(η-% (9.8)

with C sufficiently large. The space on which we study L" 1 is now H α > x . It was
defined in Sect. 6, but we recall the corresponding norm: We defined

The norm of/, / : ( — oo,X]—»C is given by

H α χ = sup \f(x)\m(x). (9.9)
xe(-oo,X]
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Proposition 9.1. For X as defined in (9.8) and for sufficiently small η>0, the maps L["1

and L2 * are bounded operators from Hα x to itself Their norms are bounded by

Remark 9.2. Similar estimates show that for g — ΐ/l or g = /"//', one has the bounds

Proof of Proposition 9.1. We consider first the operator L 2. Its inversion is based on
the observation that because I solves (9.3), we have, for any twice differentiable
function g,

^ Ί y ^ i y (9.10)
(In fact, the second term equals

We now note that the equation

y'-(logu)'y = v (9.11)

has the solution

/ \
y{x) = u{x) const + J ds v{s)/u{s) . (9.12)

\ xo J

Since we have

L 2 = 4(dx + (log l(x)ecx^Y)(dx - (log /(*))'), (9.13)

we find that L ^ 1 / is of the form
](x\ x p-cs/4 s

L^f(x) = ψ J ds6-^ j dtl(t)e<«*f(t). (9.14)- oo l\S) - oo

Our choice of boundary condition will become clear later. Since /' solves the
equation

4Γ + cJ" + J ' - 3 Π 2 = 0, (9.15)

we have for the case of L^

^ j ^ j y (9.16)

Therefore, we find that L~[ι f is of the form

L^f(x) = - γ \ ds-^π \dtl'{t)e"l*f{i). (9.17)
*f - oo * \S) - oo

We now start to bound the integrals in (9.14) and (9.17). By linearity, we may assume
|| / 1 | Hα χ = 1. By our definition (9.8) of X, and the restriction (3.5) on c, we have X <

(c - 4)~ 1 / 2. Therefore, (5.24) holds. In fact, this bound fails for X = oo, and this is the
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reason for our introduction of X. For s ^ 0, we find, using the definition of m,

J dtl(t)e«'*f(t) J
When X ^ s ^ 0, we see from (5.24) that

^ O(1)Jdtec'i\e-"2(t + I))2 ^ O(l)(s + I) 3.

(9.18)

(9.19)

We next assume x :§ 0. Then we have 1 > /(x) ^ 1/2 and hence, by the definition
(9.14), and by (9.18),

(9.20)

When X 2; x ^ 0, we find, using Lemma 5.2 and Lemma 5.3, and the bounds (9.18),
(9.19),

|m(x)L2 V(x) | ^ O(l)m(x)/(x) 1 + J"rfse-cs/4e2cs/8(s + I)
o

(9.21)

Thus we have obtained the asserted bound on L^"1.
The case of Lϊ1 is similar. For s ;£ 0, we have, by Lemma 5.7,

J
(9.22)

For s ϊ ; 0, we have, by Lemma 5.4,

]dtΐ(t)ectlAf{t)

(9.23)

Next, we assume x ^ 0 and bound the second integral in (9.17). Using Lemma 5.7, we
find

(9.24)

When x ^ 0, we use Lemma 5.5, and we find

~ i/2)s(s + I)

^ o(iy c 2 - 1 6 ) 1 / 2 ' (x +1) 3 g (9.25)

This completes the proof of Proposition 9.1. The proof of Remark 9.2 is left to the
reader.
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We now come back to our main problem. Equation (9.5) can be written as

(9.26)

We now decompose

kϊ = klί + fc12, with k11 = η2aιv - 4ηωb'\

k2 = k2l + /c22? with k2ί = η2bιv + 4ηωa'". (9.27)

We want to write LjιkjX as a differential operator acting on (a,b) plus a 'small'
remainder.

Proposition 9.3. There are bounded {linear) operators Oijf i = 1,2,7 = 3,4, on Hα *,
with a norm bounded by |logf/|5, such that for all / e H α > x which are four times
differentiate, one has

C (9.28)

(9.29)

| / , (9.30)

4L2" ^f = f'-C-f + (dx -I'll)' *O23f. (9.31)

Proof. We consider first D ~1, where Z) = dx — g for some function g. We may write
dx = D + g and expand. One has then the following identities.

(9.32)

g)

= dx + g-D-1g' + D-1g2, (9.33)

(we have used gD = Dg — g'). Similarly,

dl = D(D + g)2 + gD(D + g) + g2D + g3

= Dd2 + Dgdx - g'(D + g) + Dg2 - 2g'g + g3

= Ddl + Dgdx - Dg' + g" - g'g + Dg2 - 2g'g + g3,

so that

D-1dl = d2

x+gdx-g' + g2 + D-1{g"-3<fg + g3}. (9.34)

Finally,

θ* = D(D + g)3 + gD(D + g)2 + g2D(D + g) + g3D + g*

= Dd3

x + Dgδ2

x - g'(D + g)2 + Dg2θx - 2g'g(D + g) + Dg3 - 3g'g2 + g\
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We have the two identities

- g'(D + g)2=- g'D(D + g)- g'g(D + g)

= - Dg'dx + g"(D + g)- Dg'g + (g'g)' - g'g2

= - Dg'dx + Dg" - g'" + g"g - Dg'g + g"g + (g1)2 - g'g2

and

- 2gg'(D + g)=- 2Dg'g + 2(g'g)' - 2g'g2.

Collecting these terms, we get

D- *% = d3

x + gdl + g2dx + g3 - g'3x + g" - 3g'g

+ D-ι{g4- 6g'g2 - g'" + 4g"g + 3(g')2} (9.35)

= 8X + d2

xg - 3dxg' + dxg
2 + g3- 5g'g + 3g"

+ D-χ{g4- 6g'g2 - g'" + 4g"g + 3(g')2}. (9.36)

Going back to our original problem, we have

L,=*{dx-gi){dx-g2\ (9.37)

with g2 = I"/I', gx = -Γ'/Γ - c/4. We thus find

4Lϊ1a»>=(dx-g2)-1(dx-g1Γ
1dta

= (dx -g2y
ι{dl + dig, - 3dx9l + δxgj + g]~ 5g\gi + 2g'[}a

+ 4L^{gt - 6g\g{ - g"ί -f 4g'[gγ + \g\f\ (9.38)

Using the techniques of Sect. 5, cf. in particular the vicinity of Eq. (5.41), we see that
gί,g2, and their derivatives are bounded (by O(l)). Thus the last bracket above is
bounded and we find

by Proposition 9.1. Reapplying the identities for dk

x, we get

4LΓ V v = (dl + g2dx - g'2 + g\)a + {δx - g2)~γ{g'[ - 3g'ίg1 + g\}a

+ δχgia + gig2a + O3a (9.39)

- a" + (g1 + g2)d + (g\ + g\ - g'2 + gγg2)a + O4α

= a" --a' + O5α.
4

Here, and below, all O7 denote bounded (linear) operators on Hα > x, with norm
bounded by O(|log?/|5), as is seen by applying Proposition 9.1 and Remark 9.2.

In the case of the third derivative, we need a somewhat more detailed analysis of
the "error term." We have, using Eq. (9.34),

- 2g\ + g\)

g\). (9.40)
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Thus, we get

4Lf Ψ" = V--b + (dx -

The other cases are now analogous:

•ϊ1
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b. (9.41)

(9.42)

(9.43)4L2" V = a' - -a + {dx - Γ/iyιO8a.

The proof of Proposition 9.3 is complete.
The expressions a } — Lj 1kjl,j=ί92 (with ax = α, a2 — b) can now be written as

a-Lϊιkxl=a~ Wa" + ̂ W + i ωb' - r\\b- O^α,6), (9.44)
ID 4

b" + ^-η2V - ηωά + η~a- O2(α,b).
lo 4

Here O i 5 / = 1,2 is of the form

(9.45)

where the O^ are bounded linear operators from H α © H α J to HaX, with norm
bounded by O( | log η | 5), and g = /"//' or ^ = /'//.

We study next the operator M defined by the right-hand side of Eq. (9.44)
(without the terms Oy) in Fourier space, using techniques analogous to those of
Sect. 7. We see that the correspondence dx -> iq leads to the matrix (with constant
coefficients)

1 _i_ _ι_

— iηωq +
ηc

ηc
ιηωq- —

η2q2 irfqc
(9.46)

The characteristic polynomial of this matrix, when expressed in the variable
p = ηq/2, is of the form

J (^ JΔ (p) = (1 - p2 + iηp~J + (^- 2iωpJ. (9.47)

For η = 0, this polynomial has the roots p = ± 1, and one can check that for small η,
the four roots are of the form

ic
1/2

12

(9.48)
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We have used ω2 — 1 = O(η2). We also define q} — 2pj/η. The inverse of the matrix
(9.46) is of the form R(q)/Δ (ηq)9 where R is given by

(9.49)
ηc η q ίη qc

If we denote by r the pair of functions rί,r2, we can define M " 1 as follows:

( M " 1 r ) ( x ) = Y
Δ'(ηqj/2)η/2

Proposition 9.4. 77ze operator M " 1 is defined as a bounded linear map from
Ha >^©Ha > A- ίo ϊίse//I /ί5 norm /s bounded by O ^ " 1 ) . Ifg= Γ/ΐ or g — /'//, ί/zerc ί/ze
norm o / M ' 1 ^ - ^ ) " 1 w bounded by O(η~1/2).

Proof. We first observe that R(^ ) is O(l). Given the identities (9.48), we see that

{ ^2). (9.51)
\Δ'(ηqj/2)η/2\

To bound the norm of the operator M " 1 from HaX to itself, (in fact, from
Hα x 0 Hα x to itself, but we use the same notation for the norm on the direct sum),
we use again the estimates from Sect. 6. Note that | Im q}\ = O(η~1/2)» 1. Therefore,
we find that

i.e., the inverse of M is bounded by
We next bound M~ X(5X — g)~ι, with g as in the statement of the proposition. We

consider first M~\dx+ I ) " 1 . Setting s = (dx+ 1)~V, we see that M~1s leads to
integral expressions as in (9.50), which can be integrated by parts. E.g. for; = 2,4, we
get expressions of the form

j * R(qj)s'(y)

iqjΓ
yΔ>(ηqj/2)η/2e ' ( y ' 5 2 )

plus boundary terms. When taking the sup (over x) of these expressions (after
multiplying by the weight factor m(x)\ we find that the boundary term at X is
critical. Using the techniques leading to Lemma 7.4, we see that

^ χ ^ y (9.53)

We have I I ^ I I H ^ = II ̂  ΠĤ  ^ + ll(<5χ+ l ) " " V | | H ^ , a n d b y Lemma 6.2, this is bounded
by O ( | | r | | H ). Thus we have shown

^ V ιl2

 y (9.54)
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From this we get the inequality

where the last inequality follows from

and (9.54). The Proposition 9.4 is proved.
In Sects. 12 and 13, we shall need to study the operators

-idx)
mM 1, for m = 0,...,3. (9.55)

These operators exhibit strong cancellations, which come about as follows. The
projection P ( 4 ) is associated with the operator Aω9 while M is the "quotient" of Aω

and the second order operator (L1, L2). Thus, the large eigenvalues of Aω and of M
almost coincide, leading to the cancellation which we study now. We have

v x ) \ ) £_i J
j = l , 3 - o o

x ^ i j ιv

~ jiJχ

dyΔi^β)η/2'
Here, U7 is the matrix

/Re^f; —imqΛ
J Vlin^ R e ^ j /

The boundary terms at x have cancelled by a mechanism analogous to that of
Lemma 7.3. For the second derivative, we find

(( — idx)
2M~1r)(x)= ]Γ j ^ " Γ T T "

_ V f J V

U ? « ( ^ ) ^ - . , y U/«(g/K*)
i i ί ^ i *Δ'(ηqj/2)η/2 MΔ'{ηqj/2)η/2'

(9.57)

Similarly, we find

^ , 4 ί 'Δ'(ηqj/2)η/2

7 = i 4 f(ηqj/2)η/2 j=\

The matrix D is given by

o d,
- d τ 0
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In studying (9.55), we are faced by a product of matrices of the type of U,-. To simplify
notation, we write, however, all expressions in scalar form, except where the
matricial cancellation will be crucial. We see from (9.56)—(9.58), that (9.55) is an
integral plus a sum of boundary terms. We start by bounding the integral

γ + uy (gj-gi,iKgj-gi,2)(gj-i,3) R W J O ciQi(x-yK ( 9 5 9 )

•M (QIA- ^1,1)^1,4-^1,2)^1,4- tfi.a)Δ'{ηqj/2)η/2

The signs and integration limits are as in (9.50). By (7.35) and (7.38), we have

We are lead to a matrix multiplication (q} — qlt3)R(qj)9 expressed for legibility in the
Pj = ηqj/2,

* ( .φ j + o(^1/2) l + o ί O Λ 2^ + 0^) l + p̂  + o ω ; ι??

(9.60)

Note now that the quotients in (9.59) lead to the bounds

Combining this with (9.60) and (9.51) we see that the norm of (9.59) in HxX is
bounded by

OlkllH^ (9.61)

We next study the boundary terms.

Lemma 9.5. We have the bounds
4 T T Ώίn \ 4 U?R(ί7 •)

MΔ\ηqj/2)η/2

Proof. The proof is similar to the proof of Lemma 7.3 and is left to the reader.
We now summarize our results, by multiplying the various estimates. We have

already summed the integrated terms. The boundary terms for m = 2 contribute

and for m = 3, we get

We can improve the above estimates, as in (9.53).

Proposition 9.6. One has the bound

3

m = 0
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10. Perturbation Theory

In Sect. 9, we solved equations of the form

= ft. (10.1)

We now show how to obtain an approximate solution to any given order N of
Eq. (9.5) with h = 0, which we now write as

Lu = K(u) + v. (10.2)

Here, the unknown u has two components uί,u2. Furthermore,

\u2j \4u'2 + cu2 + u2-u2l )

with

, 1 - ω 2

^Mi, M2) = η2uι{ - 4ηωuf2 + 6(1 - ω2)u'[ - 4 —ωu\

^
W + WW

T 1 Ϊ l 1 2 !>

K2(u1, M2) = η2uι

2 + Aηωu"{ -h 6(1 — ω 2 ) ^ — 4

( 1 - ω 2 ) 2 , 2 ,

Finally, we have i; = (t j , v2) with

ϋ t = η2Γv -j- 6(1 — ω 2 )Γ — 4 ω/' H ^ ^

v2 = 4ηωΐ".

We can solve iteratively Eq. (10.2) by using the results of Sect. 9 and the bounds on /
from Sect. 5. We define

u0 = 0, uj = L~1 K ( ^ _ x) + L" ^ .

We fix, once and for all, an integer N (the degree of approximation). The constants
below will depend on N but not on η.

Proposition 10.1. One has the bound

\\LuN- K(uN)-υ\\^χ^O(l)ηN\logη\5N.

Proof. W e consider first the o p e r a t o r LΓ1. By P r o p o s i t i o n 9.1, we have
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An easy extension of this result leads to the bound, for M ̂  2N + 2,

supllSiL-^Hπ γ ^| log^| 5 sup| |3iu | | H (10.3)

We next analyze K. Let us assume that

Then it is immediate from the definition of K that

sup II d{Ku \\Haχ S O(l)fίί sup41| d{u | | H ^ + sup || δ{u \\^\ (10.4)

Since K is multilinear, we find by polarization, that

sup||3i(K(M)-K(u'))||H r

sup l l ^ t t - u O l l H . / ί + sup(||δitt||H + 1 1 ^ ^ ^ )Y (10.5)

It is here that we shall gain a small factor per iteration, see below. Note now that

sup ||3it?||Hχ^i7|logι/|5. (10.6)

Combining (10.3), (10.5) and (10.6), we get recursively for 2 ̂  p <Ξ N + 1, the two
inequalities

sup H ^ I I H ^O(l)ιy|logι;|5,
2 )

sup \\dj

x(up-up^)\\H ^O(l)ιy|log^|5 sup P χ
) + 2 ' j^2(N + 2-p) + 2

The assertion of the proposition follows from

LuN - K(uN) -v = LuN-LuN+ί.

11. The Fixed Point Problem

Before proceeding with the problem, we summarize the situation as it appears at this
point. In Sect. 4, we transformed the existence problem for the front to the form (cf.
(4.19)),

^ W i - w J w J ^ M w ) , (11.1)

and(cf. (4.15)),

Aωnwn = hn(wl n Φ ± \ . (11.2)

In previous sections, we have solved the problems

βΛ-w^wJ^fc, (11.3)
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and

Λωnwn = k (11.4)

for any given h (in the appropriate space Hα x ), by giving explicit inverses, on
(— oo, X~\. In the case of Eq. (11.4), the inverse has been defined by the integral (7.25).
We call this particular inverse A~». Note, however, that for nφ ± 1 , Aωn has a
two dimensional null space in HaX, which is spanned by the functions

eiqn'ίX, and eiq"'2\

where qnl and qn2 are the two roots of the characteristic polynomial (7.1) with
negative imaginary part. We denote

TΛtξtζ = ξeiq^{χ-χ) + ζe'Wί*-*). (H.5)

The most general solution of (11.4) for fixed h is then

(The requirement that wn = w_n will force relations between the ξ and ζ for n and
-n)

In the case n = 1 (we shall not explicitly mention the case of negative n any more),
the situation is similar, but somewhat more complex. In Sect. 10, we found an
approximate solution (/,0) + uN for Eq. (9.1), with h = 0. We make the ansatz

Λ (a
b

We find for given h the equation

The terms Kj2 are obtained as follows. We set (instead of (9.4))

z = / -f M1N + α -f i(u2N + b).

Substituting into (9.1), we get an equation of the form (9.5) with the same left-hand
side but with different right-hand sides. We find

Kj2 = Kj2I + Kj2J + Kj2K, f o r ; = 1 , 2

where

^12l) = LuN-K(uN)-v,

and

K12K = 6(1 - ω2)a" -

+ 2 a
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K22K = 6(1 - ω2)b" - 41~ω b'

Finally, the terms coming from uN occur in Kj2Ji which is a bounded operator from a
ball of radius 1 in Hα x 0 H α X to Hα x , with norm bounded by O(η | log η | 5 ). The null-
space of Lis easily seen to consist, in H α X , of the function (ΐ(x\0). In fact, all other
possible candidates are seen to have the wrong behavior at — oo. An inverse LΓ1 of L
has been defined by (9.14) and (9.17), and we denote below L " 1 this particular
inverse. The most general solution of the problem

<:)=(:;)

for given quq2 is therefore

where we define

τ^ΠΊm\ ( 1 1 9 )

We next consider the term

'k.Λ ίn\ fίϊΛa h\\
(11.10)

cf. Eq. (9.44). Here, O 1 ? O 2 were given in (9.45). We denote M x the inverse of M
given by (9.50). Then the equation

for given tl9t2 has the solution

'a

where Tίtξtζ = ξv1 + ζv2, and v l 9 v2 are the two eigenvectors of M with eigenvalue
zero (corresponding to p 2 , p 4 in (9.48)).

In the interval \_X, oo), we viewed the equation of the fronts as a dynamical
system. Equations (4.6) can be written as a flow

^ (11.12)

where

= 0,1,2,3}, (11.13)
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and the upper indices denote derivatives. A is the obvious operator induced from the
left-hand side of (4.10) while F is the (non-linear) operator induced from its right-
hand side.

We now formulate the existence problem for the fronts in terms of a fixed point
problem, in a space of the functions wn,nφ + 1, and a, b, augmented by parameters
ξn,ζn9τ. The construction will be based on the following trivial but important
observation. Assume 0 is an operator (such as L, M, or Λωn\ and that g is in its null
space, i.e. OgsψO. Denote by O " 1 an inverse of 0. Then the following is true: For
every £eC, if / solves

f+ζg = O~% (11.14)

(assuming O~1h is defined), one has

Of-h = 0.

This is the way in which we shall use the free parameters ξ, ζ, τ, which we discussed
above.

We shall now define two Banach spaces F and G, and a map S from a ball Bo

around 0 in F to G. The map S will be seen to be differentiable. Define r by

r=\\S(Q)\\G.

We shall show that there is a number σ > 0 such that
1) The ball BFσ of radius σ in F is contained in Bo.

2) r<σ inf

These two conditions imply the existence of a yoeBFσ such that S(y0) = 0. The
map S will be constructed in such a way that y0 will produce a solution of the system
(4.6).

The number pγ > 0 will be fixed later on. We shall not mention any more the
condition w_M = wm and we shall only consider n ^ 0, n odd.

Definition of F. The space F is a direct sum of two Banach spaces F = Fx 0 F 2 ,
where

F x = {w = (α, b9 K), 6 { 3 5 ) 7 ) . } ), α, b, w n e H α } , (11.15)

F 2 = {5 = ( τ , & , α e { u , . . } ) , τeR,ξn9ζneC}, (11.16)

with the norms

In the above definition, there is a slight abuse of notation, since we used w earlier to
denote the set of wn for all n including n = ± 1, while we now switch to the translated
variables a and b. We define the notation w1 = l + a + ib9 where / denotes henceforth
what used to be called / -f uN. The factor m(X) serves balancing purposes.
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Definition of G. The space G is a direct sum of three Banach spaces G =
G 1 © G 2 φ G 3 . The first will break translation invariance, the second will be
isomorphic to Fί9 and the third will be identified with the derivatives of the wn at X,
so that the theory of Sect. 8 can be naturally applied. We consider therefore vectors
X of the form

and we define a norm on such vectors:

^" sup ^ K J y " " 1 , (11.18)
0

where γn = \μ\/η (an approximation to the root of maximum modulus of (7.1)),
μ = ωn.

Definition. There is a natural map I from X to B, as defined in Sect. 8. The norm of I is
\/m{X) and the norm of I " 1 is m(X). We consider in B the space Eu, i.e. the unstable
subspace of the family of operators induced by the {Aωn} on these derivatives. This
space is a direct sum of two dimensional subspaces for each of the components of B,
except for n = 1, where it is 1-dimensional. We denote by Pu the corresponding
projection. We now define PQ to be the projection of I~ 1PUB onto the vectors whose
component x10 equals 0. The component x 1 ) 0 of X will be considered as an element
in the Banach space G1. We now define

G! = R, (11.19)

G 2 = F 1 ? (11.20)

G 3 = PyΓ 1 P"B. (11.21)

Definition of S. The operator S has three components, corresponding to the
components of G. The first component is

S(1)(w, Ξ) = Si J(0) + SMO) + ib(0)) - SJZ (11.22)

If S(1)(w,iί) = 0, then we have broken the translation invariance of the solution, by
fixing ^ ( 0 ) = SJ2. We define the second component of the operator S by giving its
image on each of the components of Fx. For n φ 1, we define

£ ) = wn - A-Jhn{ys) + Tn%ξntW (11.23)

and for n = 1 we define

Before proceeding with the definitions, we verify that S'^w, Ξ) = 0 implies that we
have solved (9.1) (on (—oo,X]). Indeed, using (11.14), and (11.11), we see upon
multiplying by M that
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Using now (11.10), we see that

Applying again (11.14), and (11.6)—(11.8), we see that we have solved (9.1).
Finally, we define S ( 3 ) by

S(3)(w, Ξ) = Pu

0(l~ 1PlTΓ(w, Ξ) - Γ ^ ( ( 1 - P")IT(w, S))). (11.25)

Here, we define for n ^ 3,0 ^ m ̂  3

Ί T V , S) = ( - iδx)
m( - Si2)(w, S) + wn + SB/)(X), (11.26)

while for n = 1, we define

T r ( w , S ) = Si( - i δ j " ( - (1 - M - 1Q)S<2»(W,S)

Here Q is defined as follows: In Sect. 9, we have found in Eq. (9.45) terms η2θi2.
These are linear operators acting on the pair (α, b). The operator Q is defined by

_ 2(Ol2{u,v)
Q

W
The existence of the function Φ has been shown in Sect. 8. The above definitions
(11.26), (11.27) are somewhat more complicated than might seem necessary, but they
will make the estimates less difficult. In particular, the terms linear in w are cancelled,
and by the results of Sect. 9 this implies that the derivatives in (11.26), (11.27) exist.
We again note that if S(3)(w, Ξ) = 0, then we will have solved the matching problem
at X. The constant X was fixed to be C l o g ^ " 1 ) in Eq. (9.8).

12. Bounds on the Approximate Solution

Here, we bound S(0), but we simultaneously estimate some of the terms of S(w, Ξ)
when

l | w | | F l + | | S | | F 2 ^ σ , (12.1)

for some (small) σ. We start by bounding the inhomogeneities hn. By the results of
Sect. 3, we have, for n φ ± 1,

\Sn\ = \sn\SηMlnl + ί\ (12.2)

and, when n = 1,

\ S χ \ < η S p

9 (12.3)

where 0 < p < 1/4 can be chosen arbitrarily. We shall choose p = 1/5 henceforth. We
have, for n Φ ± 1, by (4.13), (4.14),

Wn{x) = SJ{x) + wn{x)9 (12.4)
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so that, by (12.2),

sup \Wn(x)\ ^ O(η2p{]n] + ί) + σηPί]% (12.5)
xe(-oo,X]

and

'-'/lnl3). (12.6)

By (4.11) and (3.7), we find, with Γ defined by (3.3),

W1={Γ + Si)(/ + a + ib) = S,(l + a + ib)9 (12.7)

so that

sup I^WI^Oίl), (12.8)

xe(— oo,X]

and

. (12.9)
The expansion of hn(w) leads to the following expression (all sums are over
p -f q + r = «),

'# +1
r= ±1

^ α + πfc)-Sπ/lωBZ. (12.10)

(The last sum is only present if n = ±3.) Note now, that by the construction of the
stationary solution,

(η2-(l+n2ω2)2)Sn = η2 £ V Λ (12.11)
p + q + r = n

When w = 0, we have, by (12.11),

2 £ 3 2 ^ ω 2 ) 2 ) / 3 - ^ ω π / ) . (12.12)

The terms in (12.10) which do depend on w are bounded as follows, using (12.5),
(12.6), and the fact that σ is small

2Pi+Pi\n), (12.13)

Note that the sum over p + q + r = n in the definition of hn has been absorbed by the
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bounds (12.2), (12.3), (12.6), since

Σ D W SO(n-% (12.14)
p+q+r=n P Q Y

P>q,rfO

uniformly in η.
We next analyze ft^w). We have, cf. (4.19),

Mw) = ~(Σ*^W-wJwJ2(l-3S?)X (12.15)

where w^l + a + ίb. Recall that Σ * is the sum over | p | + | g | + I r | # 3. As in the case
of hn9 n Φ ± 1, we can expand

Σ
ί.rf ±1

3 £*
V

Similarly, when w = 0, using (12.2), (12.3), which imply, among other things,
1 — 3Sf = O(η8p\ we get

h^O) = Σ*SpSqSrP - /3(1 - 3S2) = O(η2σ{3 + υ + η8p)l3 = O(η8p)l3. (12.17)

Also,
II Ai(w) - hί(0)\\Haχ = O(ση2pi3 + 1)) + O(ση8p) = O(ση8p). (12.18)

We now start bounding S(0) itself. This means in particular that in the above
estimates w = 0. We first consider S(1). Note that /(0)= 1/2. Therefore, using the
definition (11.22), we find

S(1)(0,0) = 0. (12.19)

Next, we consider Sj,2), when nΦ ± 1 . We have, using the identities leading to
Eq. (3.8),

S<2)(0,0) = - A-J(η2 Σ ' 3 W r - MωπO (12.20)
p+q+r=n

_ /j — 1 / / 3 / _ 2 (i M 2 m 2 \ 2 \ o o Λ A — C / l " 1 /
— ~Λωn \l Vl —\ί—n(O))δn — OnΛωnί) = —δnΛωn ln,

where /„ is a polynomial in the derivatives of I (up to fourth order) with coefficients
which are bounded by O(π4). We now note that

Therefore, we have, by Lemma 7.4,

II A~nΊn | | H β χ ^ O ( A ~ 1 / 2) (12.21)

We finally analyze S^OjO). Since Oι and O 2 are linear in a and 6, we have
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We have bounded hx in (12.17), and we consider now Kί2 and K22. Note that K12(0)
and K22(0) are in HaX. For later use, we also note that L]'1Kj2{vι) is of the form

LJ % 2(w) = η(dx - g)' 'Oj, + η2ύj2 + Lj' O y 3 , (12.22)

where the ύij9j = 1,2, are bounded linear operators from HaX©Hα x to H α X , with
norm bounded by O(|log^|5), and g = Γ/ΐ or g = ϊ/l and Oj3 has norm O( || w ||F )
when || w ||F ^ 1. This follows by obvious (easier) variants of the calculations leading
to Proposition 9.3 and to Eq. (9.45). Applying now Proposition 9.1, 9.4 and 10.1 to
the terms h1 and Kj2, we see that

provided we take 8p — 1 > 2ρx and N of Sect. 10 sufficiently large. We can now take
the sup over n and we find

-^"| |Sί ι

2 )(0,0)| |H^ (12.23)

provided we choose 4px <3p — 1/2. Summarizing, we have finally found

(12.24)

We study next the third component of S. We begin by analyzing the case n Φ ± 1,
and we fix n. Recall that Pu and Ps are the spectral projections of Aωn onto the
unstable and stable subspaces, cf. Sect. 7. We have bounded these projections in
(7.45). We can now consider the term SJ in Tn9 cf. (11.26). Then we have

sup \P{J?m\\((-ίdxri)(X)\\Sn\η-p^ sup \qf\n\
μ (12.25)

Using (12.2) and the bounds (7.47), (7.48), this is bounded by

(12.26)

provided 2p — 1/6 > ρλ.
We next consider the other term in Tn, namely SJ,2)(O,O) = -SnA~nHn, cf. (11.26)

and (12.20). We have

\\P{J]SnA-n%\\ ^O(l)m(X) sup I P ^ J - ^ Γ

χμi, 1 / l l )Wlls . l ' ; " p l W n 3 y." m (12.27)

It is easy to check from the definition of A~*, and using (7.23), that dx and A~*
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commute up to boundary terms at X. Leaving the detailed discussion of the latter to
the reader, we bound (12.27) by

O{l)m(X)η4ί~j f/- 3/ 2μ" 1 / 2^" 1 / 2μV p ( W + 1 )^~P l lV^~X / 2

? (12.28)

Using, from left to right, (7.47), (7.48), Lemma 7.4, the definition (12.20) of /„, and the
bound (12.2) on Sn. Simple arithmetic leads to the bound

~Pl)(N~3) (12.29)

Thus, if we require 2p — 1/3 > ρί9 then we have the bound

II PψSnA-Jln lie, ύ Oto^Wrp-'W-* (12.30)

We next consider the case n = ± 1. Note that by Eq. (11.27), we have

Tt>(0,0) = Sl(- idxr( - ( 1 - M-1 Q)S<2>(0,0) + (1

We begin by bounding the contribution of the second term to S(3).

m = 0

x-qiΛ)(-i3x-qi,2)(-i3x-q )

Using the bounds (7.35), (7.38), and the decay of /, we see that

2 - ^ ) . (12.32)

We next consider the term in (11.27) which contains S^^O). Note that its
ingredients, / (̂O), Kj2 are all either derivatives of /, or multiples of /3, see (12.17),
(12.15) and the description of Kj2 after (12.22). Hence, using the same arguments as
above, we get again a bound of order O(η1/2). Therefore, we see that

| |P (

1

4 )T 1(0,0) | |G 3^O(^ 1/ 2-^). (12.35)

We can now combine these bounds with those of (12.30) and take the sup over n.
We obtain

We will have to know that the solution of the problem in [ — oo, X) arrives in this ball
when considered as a function in G 3 , as above. But this will follow from the size of
m(X\ provided X > C\\ogη\ for some sufficiently large C. Indeed, it is easy to see
that

By the definition of I this yields

,0)||B^-ί-
m{Λ)
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We now apply Proposition 8.2, and Theorem 8.1. We get

1, 1
}m{Xf

It follows that

lis<3)(o,o)iι < o ( ^ - * ; ι

where K > 0 is independent of η. At this point, we use that X is large, and we get

l|S(3)(0,0)||G3 ^Ofo 2 ' -") . (12.36)

If we combine now (12.19), (12.23), and (12.36), we see that we have shown the

Theorem 12.1. There is a p>0 such that the map S, acting on ( 0 , 0 ) e F 1 © F 2 is
defined and has an image which is bounded in norm by O(ηp), provided η is sufficiently
small.

Remark, p = 1/5 works.

13. Bounds on the Tangent Map

In this section, we shall bound the tangent map <5S. We shall use throughout the
following notation. We denote the "variation" of a function F by δF. This is the
Frechet derivative of F. It is a linear operator on the tangent vectors, which we
always denote by (δw, δΞ) (and similar notations for their components). We will
bound the operator δS on a ball

| | w | | F i + | | S | | F 2 g σ , (13.1)

and we shall in fact do this for σ = ηίi2 + p^2^

Theorem 13.1. For every (w,S) satisfying {13.1) with σ as above, one has

δS = an upper triangular matrix + small remainder, (13.2)

and this matrix will be given in detail in Eq. (13.16).

Proof. We first bound δhn(yv)δvί. Note that by (12.10), it is easy to elaborate all the
terms of this expression, and we get a bound very similar to (12.13), because hn is a
polynomial in its arguments, namely

| n | 3 μ M w ) ^ w | | H α 5 ^ O ( l ) | | ( 5 w | | F i ^ - 2 ^ + ^ w . (13.3)

Next, we consider δh^w). The same remarks as above lead to the bound for δhλ, cf.
(12.15), similar to (12.18),

α,x ||Fy. (13.4)
If we consider (11.24), then we see that ^S(

1

2) has terms of the form

L

In (12.17), (12.18) we have bounded h1;in (12.22) we have bounded LjιKj2\ and in
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(9.45) we have bounded O7. All these bounds were without the factor M " 1 . To
bound the variations, we observe that Kj2 is linear plus cubic. This implies by
polarization a bound on Lj 1δKj2(w)δw. Similarly, the O7 are linear, so that bounds
follow from (9.45). The action of M~ * is now controlled by applying Proposition 9.4.
We finally get the bound

( a \ 1 T δ τ - Tuδξuδζι HH. tX

!!^. (13.6)

Note that by the choice of σ, this is bounded by

We next consider (13.3). By (7.27), the inverse of Λωn is bounded by
Therefore, we see that

In terms of S{

n

2\ this implies

I t t | V P l W l W ( w , 2 ) ( δ w , δ Ξ ) - δ w n - T M ^ ζ J | H ^ i

(13.7)

We next analyze the variation of S(3). We claim that the only terms with "large"
variations in (11.25) are those coming from the operators Tw. We begin with the case
n ^ 3. We first observe that

<ST<r}(w, Ξ)(<Sw, δΞ) = ( - iθxn - <5S<2)(w, S)(δw, δΞ) + δwn + THtδξn%δζn)(X)

= {-idxT{A-Jδhn{w)δw + TnMn9^(X). (13.8)

By Lemma 7.5, these expressions exist. To bound them, we observe first that

(-idjΆ^δhjϊφw. (13.9)

We consider now the projections of this quantity on Eu and Es. Using the integral
representation Eq. (7.55), we get

iJUδΎ^(^ 5)(δw, δΞ) - ( - ίdxrτn,δξn,δζn) || Gs

(13.10)

^ η~3/2μ~ i/2f/2-2Pl +Plιm ii δψ/ | | F I ^ - P I N

Note next that T is an injection of F 2 into G 2 = F t as can be seen from

ll{7;.44ll,ίtJ.IIC2 = ll{rM { m 4 c jB | |F l = μ s ι | F 2 . (i3.li)

Similarly, we have

((-"VWffl = « 1 + Kn<2, (13.12)

as is seen immediately from the definition (11.5). By (7.44), we have, on the "sector" n,

0, (13.13)
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and

Pu{(~idxTTn,δξn,δζn}(X) = (δξn,δζn).

It remains to study the case n = 1. We have to consider

91

(13.14)

Note that

Substituting into the above equation, and using Proposition 9.6, and (13.6) we get

Note that by (9.63) and (11.28), we find

Finally, it is immediate to see from (11.22) that

<5S(1)(w,S)(<5w,(5S) = S^δaφ) + iδbφ)). (13.15)

Summarizing, we have shown that δS is, up to smaller terms, a "matrix" of the
following form:

We label the columns by " 1 " , τ, "w", and ξn, ζn9 denoting thus in short the subspaces
of FiC'l" and "w"), respectively of F 2 . Similarly the rows will be denoted G t ( = C),
G 2 ( " l " and "n" as above) and G3(n), respectively G3(l) (for the components of G3).
Then we see that <5S is, up to terms which vanish like some power of η9 of the form

1 n {lfd ξn,ζn

Gi

G2(l)

G2(n)

G 3(l)
G3(w)

0

0
0
0

δa(0) + iδb(O)
δa 0
0 δb

0

0
0

0

0

δw

0
0

0

1 n,δξn>δζn

Tl.δξuδζι

0

o Pu{(-idx)
kτn^όζn}(x)

(13.16)

Note that we have written the matrix elements as functions, rather than in the
conventional way. As an example, we should write, instead of TnMn>(5ζn, cf. (11.5), only
Tn, and define

u Re eiqnMx~X) iqn'2{x~X)
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We have preferred the more symbolic notation for its legibility.
We want to argue now that the matrix in (13.16) is invertible. This would be

obvious if it were upper triangular. It is not, but the following simple change of
coordinates in function space will bring it to triangular form. Instead of the variables
(a, b) and τ, we consider the variables

r ,13.18,

and τ. It is obvious that this brings the matrix to upper triangular form. Note also
that this change of coordinates is invertible, and by the methods leading to (9.53), we
see that from the differentiability of (/', 0) one has

HM- 1 T τ = B l | | H β β X = O(l). (13.19)

Here, we define the inverse of M slightly differently from Eq. (9.50) by replacing the
upper limit X of integration by + oo. The integrals exist and lead to (13.19) as can be
easily checked. Hence (13.16) is invertible, with inverse bounded by O(l) uniformly
in η. It follows that δS is invertible, with inverse bounded uniformly in η. Hence the
operator S has a fixed point in the ball defined by (12.1), when η is sufficiently small
and this fixed point is a solution of the existence problem for the fronts. The Main
Theorem is proven.
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