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Abstract. Let H = — A + V on I2(2), where V(x), xeTL, are i.i.d.r.v.'s, and let
GL(x,y; E + iη) = <(x\(HL — (E + iη))'i\yy, where HL denotes the operator H
restricted to { — L, — L+ 1, . . ., L} with Dirichlet boundary conditions. We use a
supersymmetric replica trick to prove that

for some m > 0, σ > 0, K < oo , uniformly in L and E. This estimate, together with
the usual necessary estimate on the density of states, implies zero conductivity
and gives exponential localization by the Frόhlich, Martinelli, Scoppola, and
Spencer method.

1. Introduction

The replica trick has been used in the physics literature to study the Anderson
model by field theoretic methods [1]. It expresses the Green's function (or squared
modulus of the Green's function) of the random Hamiltonian as a two-point
function (or four-point function) of a field theory with n independent replicas,
which is then averaged over the randomness of the potential (introducing a
coupling between the replicas). The quantities of interest are calculated, and then
the limit is taken as the number of replicas n-»0.

This /t->0 limit is very mysterious. To circumvent it, Parisi and Sourlas [2] and
McKane [3] introduced the supersymmetric replica trick, in which both Bose
fields ("commuting variables") and spinless Fermi fields ("anti-commuting vari-
ables") are used in equal number of replicas, giving an effective total number of
replicas n = 0 without any need of taking a limit. This has been applied to the
Anderson model [4].
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The supersymmetric replica trick is mathematically rigorous on a finite lattice.
This was first explored by Klein and Perez [5] who used a supersymmetric cluster
expansion to study the density of states in the Anderson model for large disorder or
large energy. Subsequently Campanino and Klein [6] used the supersymmetric
replica trick to obtain the sharpest results on the smoothness of the density of
states in the one dimensional case. They studied the resulting one-dimensional
supersymmetric field theory by means of a supersymmetric transfer matrix and did
explicitly the integration over the anticommuting variables, obtaining a formula
for the density of states from which they derived the smoothness properties.

In this article we obtain an estimate that gives exponential decay for the
averaged squared modulus of the Green's function in one dimension. We use the
supersymmetric replica trick to rewrite it as a four-point function of a one
dimensional supersymmetric field theory and we do explicitly the integration over
the anticommuting variables. We then extract the exponential decay from the
resulting formula.

This estimate, combined with the usual necessary estimate on the density of
states, gives zero conductivity and exponential localization. The former is almost
immediate and the latter is obtained by the Frόhlich, Martinelli, Scoppola, and
Spencer [7] method, where our estimate replaces Fustenberg's theorem. For
previous results see the reviews [13, 14] and references in [10].

It is our hope and part of our motivation in this work to prove a similar
estimate in higher dimensions, at least for high disorder or low energy.

The one-dimensional Anderson model is given by the random Hamiltonian
H = H0 + V on /2(Z), where

and F(x), x e TL, are independent identically distributed random variables with
common probability distribution v. If ΛL = { — L, — L-f 1, ...,L}> HL will denote
the operator H restricted to 12(ΛL) with boundary condition u(x) = Q for x not in
ΛL. ForzeC, ImzφO, let

GL(x,y\z) = (x\(HL-zΓl\yy for

G(x,y,z) = (x\(H-zΓ1\y> for

notice that GL(x, y\ z)-»G(x, y\ z) as L-+OO.
If μ is a probability measure, its characteristic function is given by μ(f)

= $e-ίtvdμ(v).
We are now ready to state our main result.

Main Theorem. Let v = av1 -h(l — α)v2, where 0^α<l, vλ is an arbitrary proba-
bility measure, and v2 satisfies

CO

j 0and
ί |v2(0lpl|logί|ώ< oo for some p± < oo (1.1)

00

f \v2(t)\pdt^Cp~(i/σ} for some σ>0, C<oo (1.2)
o
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and all p2^p<oo for some p2. Then there exists m>0 and η0>0 such that

\x\} (1.3)

for all L, x e ΛL, E, η e R with 0<η^η0 and some K < oo.

Notice that (1.2) is implied by (1.1) plus

|v2(ί)l = 1 ~ ΦΓ in a neighborhood of zero for some σ > 0 and c> 0 ,

(1.2)'
and that there are singular continuous v2 satisfying these conditions [8].

The other ingredient for localization is an estimate on the density of states. In a
form suitable for our needs it can be stated as follows :

For every α, β>0 and £0>0, there exists <5>0 and L0>0 such that for all
^£0 and L^L0, we have

e-αL"}^-5L". (1.4)

If v has a bounded density, this is a simple consequence of a result of Wegner
[9]. It can be proven with the use of the supersymmetric replica trick by the

00

methods of Campanino and Klein [6] if either J \v(t)\ptκ'ί/2dt < oo for some p< oo
o

and κ> 0, or if v = (x,vί + (1 — α)v2, ί \v\dv l < oo and (1 + \t\)*v(J\i) bounded for some
ε>0 and j = 0, 1. Using different methods, Carmona, Klein, and Martinelli [10]
proved (1.4) for any v such that J \v\εdv < oo for some ε > 0 and its support contains
more than one point. As a consequence they were able to prove exponential
localization for any such v, in particular if v is a Bernoulli measure.

Corollary 1. Suppose (1.3) and (1.4) hold. Then given E0>0 there exists ε>0,
C1 < oo, mί < oo, η^ >0 such that

for all xeZ, |E|^£0 and 0<η^ηί. In particular the conductivity

σ(E)=\imη2 Σ |x|2E(|G(0,x; £ + z^)|2)-0

for all £eR. '4° X=~°°

Corollary 2. Suppose (13)and(l A) hold. Then given E0>0 there exist d1,d2>Qand
L!>O such that

for all \E\^E0 and L^

Carmona, Klein, and Martinelli [10] have obtained a sharper estimate in great
generality by different methods.

Inequalities (1.5) and (1.4) are all that is needed to apply the Frohlich,
Martinelli, Scoppola, and Spencer method [7] in one dimension, so we get

Corollary 3. Suppose (1.3) and (1.4) hold. Then the spectrum of H is pure point with
probability one and the corresponding eigenfunctions decay exponentially.
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This article is organized as follows: in the next section we introduce the
supersymmetric replica trick and perform the integration over the anticommuting
variables. The Main Theorem is proven in Sect. 3. Corollary 2 is proven in Sect. 4
and Corollary 3 in Sect. 3.

Note. Kotani [15] has proved that our estimate (1.3) implies γ(E) >0 for a.e. £, where γ(E) is
the Lyapunov exponent. He also showed that (1.3) and (1.4) combined imply y(£)>0
everywhere. Of course, this also follows from Corollary 3.

2. The Supersymmetric Replica Trick

The supersymmetric replica trick [2-6] says that, if x l 9 x2 e ΛL, z e C with Imz >0,

LΦ, (2.1)

where Φ(x) = (φ(x), ψ(x), ψ(x)) is a "superfield" with φ(χ) e R2 and \p(x\ ψ(x)
anticommuting "variables" [i.e., elements of a Grassmann algebra: ψ(x)2 = ψ(x)2

= ψ(χ)ψ(χ) + ψ(χ)ψ(χ) = 0], *(*) φ(y) = Φ(χ) - Φ(y) + ί(v(*)vϋ>) + v(y)v Wλ
and L !

DLΦ- Π d*(y) with dΦ(y)=-dψ(y)dιp(y)d2φ(y)
y= -L 7Γ

(see [11, 12]). Notice that \e~φ(y}'φ{y}dΦ(y) = \.
Since we are working in a finite lattice, (2.1) is mathematically rigorous.

To compute functions of ψ, ψ we expand in power series that terminate after
a finite number of terms due to the anticommutativity. All
{ψ(y),ψ(yy9 y=—L,—L+ί,...,L} anticommute. The linear functional denoted
by j dψ(y)dψ(y) (it is not an actual integral) is defined by [11]. To simplify our
equations, we will abuse the notation by writing Φ(y)2 = Φ(y) - Φ(y)9 Φ(y)2

= ψ(y)'φ(y).
Since GL(xί9x2'9z) = GL(xί9x2'9z)9 and since for Im£<0 we have, similarly

to (2.1),

- z)Φ] (y) DLΦ ,
y=~L

we get [4], for any E e IR and η > 0,

xexpj-i Σ V(y)[_Φ+(y)2-Φ_(y)2l
( y=-L

-ί Σ ίΦ+(y
y=-L

L

xDLΦ+DLΦ,, (2.2)

where Φ + ,Φ_ are two replicas of the superfield Φ.
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If we now assume that J υ2dv < oo, so v is twice differentiable with bounded first
and second derivatives, we can average over the random potential in (2.2) to
obtain :

Lemma 2.1. Let j v2dv < oo, E e R, η >0. Then for all L and x l 5 x2 e ΛL, we have

x Π Γ(Φ + 002,Φ_(y)2;£,,
y=-L

I y=-L

1

LΦ + D L Φ_, (2.3)

w/iere Γ(r,s; E9η) = v(r-

We will now use the fact that the right-hand side of (2.3) is a 4-point function of
a one-dimensional superfϊeld theory to do explicitly the integration over the
anticommuting variables for simplicity we will take x1 = 0, x2 = x with Q^xe ΛL.

Consider (we will suppress £, η in the formulas)

j=ι

It is easy to see that zln(Φ + , Φ_) is separately supersymmetric in Φ+ and Φ_,
hence there exists a function Ωπ(r, s) of class C2 on [0, oo) x [0, oo) (see [12, Sect. 4])
such that Jπ(Φ+,Φ_)-ί2π(Φ2,Φ2_).

Thus (2.3) can be rewritten as

= -f ΩL(Φ + (0)2,Φ_(0)2)

x exp {(η/2) [Φ + (x)2 + Φ _ (x)2] } ψ+ (x)φ _ (x)

2,Φ_(x)2) Π dΦ+(y)dΦ_(y).
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We can now do explicitly the integration over the anticommuting variables in
(2.4) to get

,x; E + iη)\2 =

^_(0)2]} Π Γ(φ+(y)2,φ.(y)2)
y = 0

-z Σ [_Φ+(y) Φ+(y+i)-Φ-(y) Ψ-(y+V]

We will now change to polar coordinates and recall that

0 ° 2π o

is the Bessel function of order zero. We will use Γ(£, η) to also denote the operator
multiplication by the function Γ( 9 - ' 9 E 9 η ) 9 and K(η) to denote multiplication by
the function f ( r 9 s ) = e(η/2)(r+s\

We thus have

Lemma 2.2. Let J v2dv < oo, E e IR, η>0. Then for all L and 0 g x e ΛL, we have

E(|GL(0, x; E + iη)\2) = <Ω L ,K(η)Γ(E 9 ή)(SΓ(E9 η))xK(η)ΩL_xy, (2.5)

< , > is the inner product in the complex Hίlbert space

00 00

: [0, oo)2->C measurable; l|/| |2 = 4 j J \f(r2

+,r2_)\2r + r^dr+dr_ <oo
o o

and S the operator on 3f given by

(Sf)(r2

+,r2.)=- J ]j0(r+s+)J0(r_s_)f(s2

+,s2_)s+S-ds+ds_ . (2.6)
0 0

3. Proof of the Main Theorem

Let us first assume that J v2dv < oo. From (2.5) we get

E(|GL(0,x; E + iη)\2)^ \\K(η)Γ(E9η)(SΓ(E,ηγK(η)\\

x||QL(E,fj)| | ||ί2L_x(£,^||, (3.1)

where all the norms are in Jf, the first one being the operator norm on Jf.
We first prove

Lemma 3.1. For all n and all E e R, η > 0,
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Proof of Lemma 3.1. We will undo (2.5). If we go through its derivation we can
check that

\\Ωn(E,η)\\2 = <ΩBOM), Ωn(£,i7)>

where W(j\ j= — n, — n + 1, ...,n are independent random variables such that
W(0) = 0 and both W(j) + E and -W(-j)-E are distributed like v for
7 = 1,2, ...,n, and H0 n is the operator H0 restricted to Λn with zero boundary
conditions.

We must now estimate \\K(η}Γ(E,η)(SΓ(E,η)YK(η)\\. Since K(η)Γ(E,η) is
multiplication by a function ^ 1 in modulus, and since S is unitary on Jf (see
the discussion in the proof of the following lemma), it suffices to prove

Lemma 3.2. Let v be as in the Main Theorem. Then there exists b>Q and η0>Q such
that

} (3.2)

for all EeR and 0<η^ηQ.

Proof. Let us define the double Hankel transform of order zero by

0 0

2 2Then HO is unitary on L2([0, oo)2,dr + dr_) and Hί^gll^g ||#||ι, so by the Riesz
Convexity Theorem we get a Hausdorff-Young inequality for H0 :

(see the discussion in [6] for a similar situation). Here all Lp norms are with
respect to ([0, oo)2,dr+dr_).

From (2.6) we have that

From this it follows that S is unitary on Jf and we have a Hausdorff-Young
inequality for S:

,r2_)|^^^ (3.3)

for l<p<2,- + -=l.
P P

Since v = αι;1 + (l— α)v2, we write Γ = aΓ1 +(1 -α)Γ2, where Γ—Γ^E,^ are
defined in the same way as Γ with v replaced by v f, i = 1, 2.

Thus

ΓSΓ = α^SΓ! + α(l - α)^^ + α(l - α^S^ + (1 - α)2Γ25Γ2 ,

so

l-(l-α)2(l-||Γ2SΓ2||). (3.4)
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In view of (3.3), the proof of Lemma 3.1 in [6] gives

\\Γ2SΓ2\\ £ ||Γ2(r2

+?r
2_)||^ [|v2(ri -rL)e~«* +r~ψp

for any 2^p^oo.
We now estimate

2 2 0 0 0 0 2 2

P o o
j oo oo

4 o o 2 + ~ + "'
I oo oo

4 - o o |u|

where we made the change of variables u = r+— r _ , v = r++r_.
If we now let v = \u\ coshθ, we get

I 00 00 1 OO OO

4 -oo o 2 = 4 -oo

Making now y = ηp\u\eθ, we have

j GO OO

^~ ί du J l^ίM^'e-^V-My
τ -oo f|p|a|

1 oo Γ oo

^7 ί du\v2(u)\p\ \\Qgηp\u\\e-(»™*M+ J
4 -oo L o

for p large enough by (1.1) and (1.2), where lim D(p) = Q.
p->oo

Let p(η) = [C\logη\~]σΞΞCl\logη\σ. Then for η small we have

||v2(r*-rl>Γ*(ri+rΞ>||^ (3.5)

for some C2 > 0.
Inequality (3.2) now follows from (3.4) and (3.5).
This finishes the proof of the Main Theorem if J v2dv < oo. But since all our

estimates are independent of this fact, it is not hard to see that this additional
hypothesis can be removed by an approximation argument.

4. Proof of Corollary 1

In view of (1.4) it suffices to show that

E(|G(0,x;£ + ̂ )|2^OΓ(2~ε) (4.1)

for some ε > 0 and C < oo and η sufficiently small.
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By the resolvent equation

(4.2)
for any L such that |x| g L.

Now, let β>Q, £0>0, and |£|^£0. We have

E(|GL(0,x; £+ί>,)|2) = E(|GL(0,x; E + iη)\2;

by (1.4) if L is large enough.
Choosing L such that η(WV+1>-1 = e'

Lβ we get

Also, by (1.3),

as η-+Q if we pick 0<β, such that l/β — σ>ί.
Since the third term can be similarly estimated, (4.1) follows from (4.2).

5. Proof of Corollary 2

By symmetry it suffices to estimate

for some appropriate d1>Q.
Using Chebychev's inequality and (1.3), we get that

c2L
(σ+1)"1} (5.1)

with c 2 >0if 2(d1 + c1)c"1<m.
By the first resolvent equation

Gt(0, L; £) = GL(0, L; £ + iη) - iη[_GL(E)GL(E + iί?)] (0, L) . (5.2)

Therefore,

P{|GL(0,L,£)|>2exp(-ίί1L
<σ+1)-1)}

(5.3)
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By taking η = exp( — c1L
(σ+iΓi) and c^O, d1>0 as in (5.1) the first term in the

right-hand side of (5.3) is bounded by exp( — c2L
(σ+1} -1). With this choice oϊη the

second term is estimated by:

P{dist(E,σ(HL))<exp(-i(c1-d1)L^+1^1)}^exp(-c3L
(σ+1)"1) (5.4)

with c3>0 using (1.4) if c1-di>0.
Since we can satisfy both conditions by taking cl=2dl small enough, this

finishes the proof.
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Note added in proof. 1) In the Main Theorem, if v = v2 (i.e., α = 0), the proof can be modified to give

for any 1 ̂ p< oo with Kp< oo. In this case there is nothing to prove for Corollary 1.
2) Lemma 3.2 is close to the best possible since we can show that the left-hand side of (3.2)

converges to 1 as η 1 0.






