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Abstract. In this paper we study the global initial value problem for the
spherically symmetric Einstein-scalar field equations in the large. We intro-
duce the concept of a generalized solution of our problem, and, taking as initial
hypersurface a future light cone with vertex at the center of symmetry, we
prove, without any restriction on the size of the initial data, the global, in
retarded time, existence of generalized solutions.

Section 0. Introduction

In [1] we began the study of the global initial value problem for Einstein’s
equations in the spherically symmetric case with a massless scalar field as the
material model. In terms of a radial coordinate r and a retarded time coordinate u,
whose level surfaces are future light cones with vertices at the center of symmetry,
the spacetime metric has the form

ds? = —e?’du® —2e’ A dudr+r2d2?,

where d2? is the metric of the standard 2-sphere. We reduced Einstein’s equations
to a single nonlinear evolution equation for the function i = 6(r¢)/0r, where ¢ is the
matter field. If £ is a function of u and r we denote by f the mean value function of

f:
T, r):=(1/r) g) Flu,rydr

Then, letting

g::exp[-—4n?(h—ﬁ)2i—r]
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and
o0 1.9

=2 20

the nonlinear evolution equation is:
1 _
Dh=—(g—q) (h—Ph).
h=7,9=9) (h—h)

If his a classical solution of this equation, then setting e’ ** =g, ' " *=gand ¢=h,
the above metric together with the matter field ¢ satisfy Einstein’s equations

R,,=870,40,.

The integral curves of D are the incoming light rays. The initial data of our problem
is the function h at u=0. In [1] we proved, for general initial data, the local, in
retarded time, existence of a classical solution (Theorem 1 of [1]). We also proved
that if the initial data is sufficiently small, there exists a global classical solution
which disperses in the infinite future (Theorem 3 of [1]). In this paper we shall
study the global problem for arbitrarily large initial data. Such data will lead to
gravitational collapse. Now, there may not in general exist a classical solution for
all retarded time.

In the field of hydrodynamics we have the Navier-Stokes equations describing
the motion of a viscous incompressible fluid. Also there, we can prove the global
existence of a classical solution only if the Reynold’s number of the initial data is
sufficiently small. But for large initial data a classical solution may exist only for a
short time. This situation lead Leray in his fundamental work of 1934 [2] to
introduce the concept of a generalized solution of the initial value problem of
hydrodynamics. He called such a solution “a turbulent solution” and he proved
that for arbitrary initial data of finite kinetic energy there exists for all time at least
one turbulent solution.

In the present paper we shall introduce an appropriate concept of generalized
solution for the mathematical model we are considering. This model differs from
hydrodynamics in being of hyperbolic rather than parabolic character. Also, in our
problem the spacetime itself is constructed from the solution. In [1] we defined the
mass m(u, r) enclosed within the sphere of radius r at retarded time u by

m:=(r/2)(1—g/g).
The total (Bondi) mass M(u) at retarded time u is then given by

M(u):= lim m(u, r). One of the main difficulties of our problem is that the total

r— o
mass M does not provide an estimate for the solution in the interior of the sphere of
radius 2M. Another main difficulty stems from the fact that one of the Einstein
equations is the local mass equation:

Dm = —nt%/g, where ¢&:=2rDh.

It is therefore necessary to require a generalized solution to satisfy not only the
nonlinear evolution equation for h, but also the evolution equation for the local
mass m. (This requirement is automatically satisfied for classical solutions.)
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The principal tool of our investigation is what we call the main integral
identity. Letting y,,(u; r,) denote the incoming light ray through r=r, at u=u,
and setting

Ouy,ry):={, N0 <u<u,,0<r<y, (u;r)},

the main integral identity is given by:

"ty g¢ 1 g

[ Zyrydr+2n [f S—drdu+ = | g(u,0)du= | =(0,r)dr,
0g QGrr) §°T 20 0g

where ry:=y,,(0; ;). The main integral identity equates the sum of three positive

definite integrals, the first of which is an integral over the future light cone u =u,,

the second a spacetime integral, and the third an integral over the central line, to an

integral over the initial future light cone u = 0. The quantity in the integral over the

2 -1
future light cone is <]_Tm> . As we shall see, this integral provides the

necessary estimate for the solution in the interior. The spacetime integral provides
an additional estimate which is essential in showing that the generalized solution
satisfies the local mass equation. It should be noted that the main integral identity,
in contrast to the mass-flux relation, holds only in the domain of outer
communications.

The plan of this paper is the following. In Sect. 1 we define what we shall mean
by generalized solution and we state the global existence theorem (Theorem 1);
Sects. 2-5 are devoted to the proof of this theorem. In Sect. 2 we introduce a
regularization of the nonlinear evolution equation depending on a positive
parameter ¢, and we derive the corresponding local mass equation and the integral
identities which follow. The e-regularized problem is in fact the original problem in
the presence of a white hole of mass ¢/2 and with the boundary condition that the
scalar field vanishes on the anti-event horizon. In Sect. 3 we prove the global
existence and uniqueness of classical solutions of the e-regularized evolution
equation. In Sect. 4 we derive various g-independent estimates for these solutions.
In Sect. 5 we study the limit ¢—~0 of removing the white hole, making various
compactness arguments which lead to the proof of Theorem 1.

In a subsequent paper we shall study the structure and uniqueness of
generalized solutions.

Section I. Generalized Solutions and the Global Existence Theorem

Let us be given initial data ho(r) in C'[0, co[ and such that the initial Bondi mass
M, is finite. Let Q denote the complement of the central line:
Q:={(u,7r),0=u<o0, 0<r<oo}.

Definition. A global generalized solution of the problem is a function he C*(Q)

such that at each u, h belongs to I?(0, 00) and | h*dr is bounded by a continuous
0

function of u, having the following properties. h satisfies the nonlinear evolution

equation Dh= %(g—g) (h—h)in Q, h, g and § being continuous in Q, and h(0, )
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=hy(r). Also, at each u, g/g belongs to L'(0,r,), r, arbitrary. Furthermore, for
almost all u,

exists and g'/2&/gr'/? € LX((0, uq) x (0, 74)), ug, 1o arbitrary. In addition, h is weakly
dlfferentlable in Q and Dh= ér’ and m is weakly differentiable in Q and Dm

=— g &,‘2 Finally, for each (u,r,) € Q, the main integral identity

j S dr - 2m ff g5 9> drdu+ = Ig(u 0)du = fg_(O,r)dr
Q(u1, "1)9 0g

holds, where Q(u,,r;)={(u,r)|0<r<y, (u;r), 0<u<u,}.

All the conditions of the above definition are needed in order to have a
meaningful solution of Einstein’s equations. The purpose of this paper is the proof
of:

Theorem 1. For each initial data hy € C*[0, 00[ of finite initial Bondi mass, there
exists at least one global generalized solution of the problem.

Section 2. The Regularization Method

We shall now give a regularization of the nonlinear evolution equation depending
on a positive parameter &. The regularization method is based on following
redefinition of the mean value operation defined in [ 1], Sect. 3. If f; is a function of
u and r depending on ¢, we set:

filu,r):= —ffe(u r)dr’. 2.1)
We then have

AR

0 _
f“FE((r“)ﬂ) o or r+e

We note that fi(u, 0)=0. The principal unknown function shall now be denoted by
h,, and h, shall be given by

— 1 =
We also define
® ~, dr
A= | (h,—h)? — )
o= =Ry 2.3)

and we set

g, =e 4mde (2.4
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and

ge:= ﬁj‘gs (2'5)

We note that §,<g,. Denoting then by D, the differential operator,

0o 1_20
D€'=%—§ge‘a—r’ (26)

the e-regularized evolution equation is:

1
2(r+ )
The characteristics of this equation shall be denoted by y,. They satisfy the
ordinary differential equation,

dr_ 1
w29
We note that, since §,(u,0)=0 and 0g,/0r is bounded by 1/g, the e-characteristic

through any point on the central line is the central line itself.
We now define the ¢-local mass function by:

(2.8)

_(r+e)
m,="—

We have m,(u,0)=¢/2 and m,<(r+¢)/2 for r>0. Also,

(1=3i/9.) - 29)

om, _(r+e) g, 99,
o 2 g*or

=2 % (h,— 2.
g

Thus m, is a monotonically nondecreasing function of r at each u, bounded from
below by ¢/2, and we can write

= —2~ +2n I (h h,)*dr. (2.10)
We also define the e-total mass
M (u): = lim m,(u,r). (2.11)
We shall derive the evolution law of &,, A, and m, along the characteristics ¥,.
We have s N
~ 1 t0h 1 _ 0h 1 Oh,
= -—— .y ——e— = — h
Deb, r—l—cgau 2% T+8£<D +2 £6>dr
LGy,
2(r+ ) gs E.
Setting th —
etting then D= f (2.12)

*T 2r+e)’
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and using the e-regularized evolution Eq. (2.7), we obtain:
oh, 0g
= J(2omora F)ar-ainho= | B0 Ry+ a2 [ar— 5.0

) ok
- _[ga(htl_ﬁs)]r:()-i_ j gsg—dr
0 r

and since g,(u, 0)=0, we conclude that

¥

=1 gih, h)— (2.13)

0
In particular, &,(u,0)=0. From (2.3) we obtain

oOh, 1

DA—IZ(h hz)[2 e

Gu(h,— k) +D.h,— Dh] .

1
2(r +é) 21 b= h*

Using then (2.7) we find

1
2+

Taking into account the fact that D,r= —g,/2, we obtain from (2.9):

(r+8);—rD A=———g(h,—h)>+2(h,—F)D,J,. (2.14)

1 - - (r+8) g_s (Dsgs Deg-s>
Dm,=——g§.(1—-3,/9.)+ z — 22 2.15
49( 3./9:) 2 g\ g, 7. (2.15)

Now, by (2.4): D.,g,= —4ng,D,A, and
_ 1 = 1_dg, 1 _
Dege_(_r'_'_—s)g<l)ege+ §g8~6r~>dr_2(r+ )gs(gs ge)'
Substituting in (2.15) we obtain:
g 1 1_ 04, }
Dm,=2n(r+e —-[ DA, + —[DAgdr+ ———§ = G,g,——d
v+, o DAt g 30

On the other hand, for general f it holds:

1 f
(rﬂ)gsffge T TTod. 5( +e)g. 5, (2.16)

Hence

2n %
Dsmsz— E]:gg |:(r+8) oF 2gs or

By (2.14), (2.3), and (2.12), (2.13) the integrant is:

0D, A, 1 0A, - 0
gg[(r+8) 9. or :’ 2g—£(ha—ha)Dshs=éa (frs .

oD,A, 1 6A£] b 217
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Therefore, since £,(u,0)=0, we conclude that the evolution law of m, along the
characteristics y, is

Dyn,=— g2, (2.18)

Integrating this equation along the e-characteristic y, ,,(u; r,) throughr=r, at
u=u,, we obtain the e-mass-flux relation:

ms(ulﬁ rl) =ms(0a rO,a)_ T £ [ﬁsz/gs]xs,ul(ul 5 rl)du 9 (219)
where ry .= x,.,,(0; 7{) is the value of r at which this characteristic intersects r=0.

2m, \ !
£ .18) implies that
r+8> , (2.18) implies tha

Since ¢,/g, = (1 —

2m, \ "2 n & o1 m
iy=2(1— 3 _ 24 g —fF
Ds(gc/gs) < r+8> < (7'+8) g, + Zga (7’+8)2>
_ ge 582 1 gﬁ Qg_s
SR T2g o o

Let 0 be a fixed positive real number. We have
(9e 9 Qi o 9o ) 4 1 9 9; 1
‘ 9.\ _ 109 (9. 1
=D - —509.1=5-
:i[ <g> o ()00

Thus, by (2.20):
rg, & 1
D5<I.~edr) 2nj ) 2 Tro —§[g£],=,,.. (2.21)

Integrating this equation along y, , (u; r,), we obtain the e-integral identity:

ri

Je 9. & e,
£<g-5) (ul,r)dr+2nQd 5{51 ri) ge ( + )drdu+ ng(u 5)du - g <g—e>(o’ r)éFEZ)

where Qd,a(ub ry)= {w,n0<u<uy, o<r< Xe,ul(u; r)}

If , is a classical solution of (2.7), the spacetime which is the manifold R x R*
x 8% endowed with the metric ds® = — g,g,du* — 2g,dudr + (r + €)*d2?, together
with the scalar field ¢ =h, is in fact a classical solution of the original Einstein-
scalar field equations R, = 870,¢$d,4. The boundary R x [r=0] x §? is, in view of
the fact that §,(u, 0) =0, a past null cylinder, namely an anti-even horizon, of cross-
sectional area equal to 4ne®. Thus the e-regularized problem is in fact the original
problem in the presence of a white hole of a mass m,(u,0)=¢/2, and with the
boundary condition that the scalar field vanishes on the anti-event horizon:

h(u,0)=0.
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Section 3. Classical Solutions of the Regularized Problem

In the following we shall assume that the initial data satisfies the falloff conditions
ho=0(r"3) and 6h,/0r=0(r*) as r—00 in order to obtain the fastest possible
falloff at null infinity. The results easily extend to the case when we only assume
that M, is finite.

Lemma 1. For every initial data hy(r)e C'[0,00[ such that hy(r)=0(r"3) and
0go/0r(r)=0(@r~*), and for each & >0, there exists a unique global classical solution
h(u,r)e C'[0, 0o x [0, oo of the e-reqularized evolution equation taking the given
data at u=0, and such that at each u=0, h,(u,7) =0 ~3) and oh,/or(u,r)=O0(r %)
as r—0oo.

Proof. First, we can prove the existence of a local classical solution by using the

argument of Theorem 1 of [1]. To prove global existence we argue as follows: Let

[0, uo[ be the maximal interval of existence. We shall show that uy=0o. For if u, is

finite, we shall demonstrate that h,(u, r), which is by assumption a C'-function on

[0, uo[ x [0, 00[, can be extended to a C'-function at {uy} x [0, 00[. The local

existence theorem with data at u=u, would then contradict the maximality of u,,.
We first derive global a priori bounds for h, and 0h,/0r. Setting

x(u): = sup |hy(u, )|, (3.1)
r=0
we have
Ihe_ﬁelézxa (32)
and from (2.7):
LYAEES (33)
Integrating this along an e-characteristic we obtain
x(u
sl Slholro 01+ § 64
Hence
x(u)
x(uy) Sxo+ f
where
Xg:= s1>113 [ho(r)] . (3.5
It follows that
x(uy) Sxqe"e. (3.6)

Differentiating now (2.7) with respect to r we obtain:

(ahe _ (gs_g-s) aha + 1
o) (r+e or  2r+e)?

[— 3(gs_g-s) +4ngs(hs—ﬁs)2] (hs—h—s) . (37)
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We have |—3(g,—3d,) +4ng.(h, — h,)*| (3 +167x?). Setting then

oOh,
Yu):=sup |- (u, 7)) (3.8)
rz0 | OF
we obtain:
oh 1 X
tll< s 2
D‘<6r> =8y+82(3+16nx ). (3.9)

Integration along an e-characteristic yields

%(ul, ro| = ah"( Fo,0)| + .f Y (”) = du+ I x(”) (B4 16nx2(w)du.  (3.10)

Hence

sy vot 17 aut T 6 116wy,
where
oh
Yoi=Sup =0 (3.11)
It follows that

y(u,) ettt [yo + —35 ,:I: x(u) 3+ 16nx2(u))du] . (3.12)

We conclude that h, and 0h,/0r, and therefore also 0h,/0u are uniformly bounded in
[0, uo[ x [0, 00[. To prove that h,(u,r) can be extended to a C! function at {u,}
x [0, oo[, we need to show that oh,/0r is uniformly continuous in [0, u[ x [0, co[.
Actually, we need only show uniform continuity with respect to r. Uniform
continuity with respect to u would then follow by the following argument: From
(3.9) and the a priori bounds, it follows that D, (0h,/0r) is uniformly bounded:

ID(0h,/or)|=C.

Givenuy, r; and Au; >0, let r; 4+ 4r, , be the value of » at which the e-characteristic
through (u,,r,) intersects the line u=u, — Au,. Then 4r, ,<1/24u,, and we have

oh, oh, “
o ) = S = duy )| £ jAul ID,(Oh,/or)\du

oh, oh,
+ 'ﬁ(% —Auy, 1y +Ar1,s)— ﬁ—r(ul —Auy,ry)

éC‘A%+’78(Ar1,g)§c'A“1+’1a(%4‘“1), (313)

where #, is the modulus of continuity of oh,/dr with respect to r.
Let 0<r| <r,, and let us denote by y,(u; r,) and y(u; r{) the e-characteristics
through r=r; and r=r{, respectively, at u=u,;. We set

oh, oh, »
ws(u)‘ = a a—r(u: Xa(ua rl)) . (314)
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Then, from (3.7) we have

dyp, (0g, Oh, g, ahs) , o
du - <ar or )(u i) < or or . +f;:(us Xs(ua rl))_fs(ua Xe(ua 7'1)) 5

3.15
where ( )

1

fsi=m[

- 3(gs - g-s) + 47rge(ha - ]7[5)2] (ha - Es) . (3 1 6)

We have

o, _ 1 oh

= +8)2 S L300~ 30+ 12ngh~F)?]

+ m (hs - Es) [3(gs - g-s) - 8nga(hs - h—s)z + 47'[298(118 - 58)4] . (3 1 7)

Hence
sup (,{*’ <5 2)/(3-!-487rx2)-i- x(3+32nx% + 64n2x*). (3.18)
r=0
From the a priori bounds it then follows that df,/dr is uniformly bounded,
s
<b,. 19
SUP (| =01 (3-19)
Therefore
[ feus Qs PO — fous xeus PN S b1 (a5 7)) — 115 17)) - (3.20)
We write
g, 5hg> (591 5hs) <69L>
- =\ A" 'wa(u)
<ar or (u, x.(u;r1)) or Or (u, xe(u;r1)) aor (1, xe(371))
CRLCE M€ I [
OF ), gt 1) O ), zetwsrind \ OF ) guiriy
We have
g, _ [4ng,(h,—h,)*—2( )]. 3.22
arz ( + )2 ga E. gs gs ( . )
Hence
0%g 2
sup |22 < = (8nx?+1). (3.23)
r20 | OF I

Thus 6%§,/0r* is uniformly bounded,
2 -

sup
rz0

<b,, (3.24)

and therefore

(D)
O J w, retws ) O ) w, yetwsry)

Sho(r(u; 1) — 1, (u; 11)) - (3.25)
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Taking into account (3.20), (3.21), and (3.25), we conclude from (3.15) that

1
L UGGV ACE VR (3.26)
u €

where b=byc+ b, and c is the uniform bound of y(u) in [0, u,[. Integrating (3.26)
yields:

)dwg

[p.(uy)| S e {Iwe(O)Hb g Oew; 1) — 2:(u; r’l)du} . (3.27)
Now it holds:

)
% (5 1) — xo(u; 7)) = (r; — ;) - mean value {exp [ | < g”) du':l}
selri,ri] or (', xe(u',5))
<(r,—7)) - et w2 (3.28)

Thus, denoting by #, the modulus of continuity of oh,/0r with respect to r and by #,,
the modulus of continuity of the data dh,/or, we have

n(ry — 1) S e {no(e"*(ry —r1)) +2eb(e™** = 1) (ry —17)} . (3.29)

We conclude that 0h,/0r is uniformly continuous in [0, uo[ x [0, oo[. The global
existence of a classical solution follows. The facts that h,=O(r~3) and 0Oh,/or
=O0(r %) at each u are easily deduced from a priori bounds. Finally, the uniqueness
of the solution is proved by using the argument of Theorem 2 of [1]. O

Section 4. Derivation of ¢-Independent Estimates

In this section we shall derive estimates for the solution of ¢-regularized evolution
equation in a region r = §, § any given positive real number, which are independent
of ¢ if e<9/2.

At u=0, h, coincides with the initial data of the original problem: (0, r)
=h(0, ) =h,(r). Before deriving the estimates, we shall for later reference compare
at u=0 the quantities g, and g, to the quantities g and g. In this paragraph all
quantities are at u=0. Let

\'——38

d © )
7 _;[( Y r+e’

Then, since h,=h, and therefore h, = ;_—:—Sﬁ, for r=6 and e<d, we have

e, e °°(hh)2
|A— A, = {[—(h—h)z—?<h—h+Th>j] lé f
< |h—h] ||
+2 it U 2r(+)3dr_ ° ), 4.1)

where 0 —_ dr
€)= g (lh—hl—th)Z?‘ 4.2
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Hence for =4 it holds:

¢~ 4nEldC®) < 9e < AHEIHCD) (4.3)
g

Let now e<n<d. For r=4, (4.3) implies that

gs( )— _—j gs(r,)d

1r
> e—4n(8/n)C(r1)___j ¥)dr .
1+¢/5 7190

Setting r'=s+17 <1 — ;), we obtain

%ig(r’)dre (1 _ f’r-> -%£g<s+n(1— ;))dsg (1— g)g(r),

since g(r) is a monotonically nondecreasing function of #. Thus for r > §, we have

(1 —1/9) o~ 4mEmCon 5
For r=0, (4.3) implies that also:
d antemcm 4 M ) 7 4.5
g5 (J"gg r+11> ( +550))9 4.5)

From (4.3) and (4.4) together with (4.5), we conclude that for each § >0 and for each
k>1, there exists a gy(d; k) >0 such that for all e<¢y(d; k),

19 _9: 49
ki=g, = g

holds for all r= 4. Also, ¢,(J; k) is a monotonically nondecreasing function of é.
Consequently, for all e<egy(0; k), we have

dr

=
Q-
Qi

dr

IIA
e
Si|s

dr<k|
']

Q<

for all =46. It follows that
Igs dr— f dr,

XD g
and my(r)—m(r) uniformly in [,r,], r, arbitrary. Since also
Mo ~m(r)=2n | £ (h,— F)dr—0
for r— o0, uniformly in ¢ (M, , stands for M,(0)), we conclude that M, ,— M, as

¢—0. Hence excluding the case of trivial initial data, M, ,/M,—1 as ¢—0. That is,
for every k>1 there is a u(k)>0 such that for all ¢ < pu(k) we have

1
%M0§M0,e§kMo~
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We shall find it convenient to assume 6 < d,, where
dp:=min{2u(2), M} .

Then for all e<6/2 we shall have My/2<M, ,<2M, and 2M, ,= . The above
results will be referred to in Sect. 5.

Lemma 2. For every ¢>0, the following inequality holds:
| h2(u, P)dr< — + | W3()dr.
) 8t o

Proof. We have

imZ __w 2 ﬁ 2 __OO age 16952
_Oo(ga—g-s) 1 I 2_1—2
_g (r+e) [2(h‘ he) 2h‘S dr
Therefore

of(%  \ 1% (h—k)? . 13, 1 1
au<§ hsdr> = 2{95 (r+e) dr 871:!) or dr 8n (1 =g.(u,0) = 8

0

Integrating this with respect to u yields the lemma. [J

Lemma 3. For each 0<0=<0, and each ¢<0/2, the following estimate holds:
sup |, (u, )| <b(u; 9),
rzo0

where
1 1/2
b(u; 8): = 51/2< + f hz(r)dr> .

Proof. We have

r

r 1/2
i, DI <~ § Iy, P dr < li,z(f nu, rﬁdr’> ,
Yo r 0
hence
12
sup |y (u, )| < 51/2<f h(u, r)dr) .

The conclusion then follows from Lemma 2. O

Lemm 4. For each 0<6 <6, and each ¢<6/2, the following estimates hold.:

oh,
_ar— (u’ 7')

sup |h(u,r)| < c(u; 6) and sup <c(u;9).
r=0 rzd

Here
c(u; 6): =e"?? (do—f— %b(u; 5)> ,



600 D. Christodoulou

and
c'(u; 6)=e"? {d + 2147 [3+4n(b(u; 0)+c(u; 6))*] (b(u; 8)+ c(u; 5))} ,

where

oh,
o )

do:= sup lho(M), dy:= sup

Proof. We integrate the e-regularized evolution equation (2.7) along the
e-characteristic y,(u; r,) through r=r, at u=u,:

1 “‘ 1 —
h(uy,r)=h0,74 )+ [ 'ehs] du— l:— 8——'8h£] du .
( 1 1) ( [¢] ) j 2( + )( g) . g 2(7‘+8) (g g) . (4‘6)
Taking r, =9, along y,, we have
1 1

( ')< <1
r+e 9. g‘=r1+a=5

Therefore, by Lemma 3,

ui

|

1 - 1 % )
! [m 9.— 9. lhel]xadué %5 g b(u; d)du.

Thus setting
x(w): = sup h(u; ),
rzé

we obtain from (4.6),

x(u) Ldo+ 21 ] x(u)du+ f b(u; 8)du .
d0
It follows that
sup |h(u, r)| < c(u; 9). 4.7)
rzé

We now integrate the derivative equation (3.7) along the e-characteristic y,:

ah" (gx ga) ah
a—r(“1>r1) (0> 05)+j[ (r+e) 6r] du

1
Using (4.7) and Lemma 3, we can estimate the second integral on the right by

55 T 3+ dnb(u: 8)+cus 8)2] (b(us 9)+c(u; 8))du.

Thus setting

oh,
—aT(ua l") .

y(u): = sup
rzo
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We obtain from (4.8),
Yu)<d, + %E() udu+ 217(1) [3+ dr(b(u; )+ c(u, 6))2] (bu; 5)+c(u; 8))du.

It follows that

P ) =

sup =c'(u;0). O

rzo

Lemma 5. The solution of the e-regularized evolution equation has at each u the
following falloff property:

r;f»?o,e{<4Mo > I (u, ’)'} Ski(u), (4.9)

r 4
Su _—
YZ41‘?0,s{(4M0,8>

where k. (u)—k(u) and k(u)—k'(u) as ¢e—0, uniformly in u. Here:

k(u):=e3u/32M0{ Egg{ |:<4M ) ]ho(r)|:| 11/2 4]1:4 } (4.11)

' 1
1)« — pUl4Mo r
oo (e el )
3 1 3 S
Proof. For any differentiable function f such that f and rdf/dr belong to I*(0, c0)
and lim rf%(r)=0, it holds:
o rfz(r)<°for2 gzdr
1 V= or

Let us take f=h, and r; =4M, , (by Lemma 1 h,=0(r" '), we then obtain:

o ~\2

I (r+e? <%> Mo,
4Mo o or

(see (2.10)) since g,/g,=1/2 for r24M, ,. Hence

1
271

and

oOh,
4M, . o (u,7)

} <kyu), (4.10)

and
oh,

dr<

4M, B (4M, ) <

h.(4M, )| S 5575 (4.13)

For r=z4M, ,, we have

E(r)=rfr—e[(4Mo,s+a)a<4Mo,s>+ j ha(rsdr'].

MO,s
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Taking into account (4.13) and setting

3
x(u):= @55?0’5{<4M0 8) |h(u, r)l} (4.14)
(by Lemma 1, h,=O(r~ *)) we may estimate h, for r>4M, , by

1 | (4M, +¢) r M, ,\? :
= +8[ Toex 4§ x ( 4 >¢n]

e 11 (M,
<|{(1+-—-—) ) .
-K +4M0,s> 27 T2 J( r > (*13)

gs_g-s m, MO g
= 2t 4.16
20r+¢) (r+e)? g:= r? (4.16)

Taking r; 24M, , and taking into account (4.15) and (4.16) we derive from (4.6) a
linear integral inequality for x(u) which implies

x(u) <k (u), 4.17)

We also have

where

- — g3u/32Mo,. h
ks(u) ¢ {’_Z_S‘:l]‘?o,c[<4M0 s) | O(r)l]

1 e u
1 . . 4.18
+8w”< +4Aui)4wuw} (*+18)

This establishes (4.9). We then obtain (4.10) by deriving from (4.8) a linear integral
inequality for the quantity

r 4
o= s {(a0,2)
using the previous results. [

Let us now denote Q;={(u,r)|0=u=<uy,r=0}, where 0=0<J, and u, is an
arbitrary positive number.

oh,
4M0,e E (u, V)

Lemma 6. The family of functions {0h,/0r|0<e=<0/2} is equicontinuous in Q;.

Proof. By Lemmas 3 and 4, the families of functions {h,—h,} and {dh./or} are
equibounded in Q;:

lh,—hJ<Co and |0h/Or|<Cy, (4.19)
where C, and C, are independent of ¢. It then follows from (3.7) that in Q;,
oOh,
<1
(%) s
and C, is independent of &. As a consequence of this, we need only demonstrate the
equicontinuity of the family {dh,/0r} in Q4 with respect to r. Equicontinuity with

5 52 (3+4rnC)Cy:=C,, (4.20)
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respect to u would then follow, since we would have: (see (3.13))

oh, Oh,
W(ula r)— W(”l —Auy, 1)

us

< T o @njoniaut |

uy— Auy

o,
—Aug,ri+4ry ) — W(“l —Auy,ry)

SCo- Aug+n(dry ) S Cy - Auy (G Auy), (4.21)

where #n denote the common modulus of continuity of the family {0h,/0r} with
respect to r.

Let now 6 <7} <r,. Then, taking u, <u,, the e-characteristics y, , (u; ;) and
Xe.u,(4; 71) are contained in Q; for 0 Su=u,. Defining y,(u) as in (3.14), we obtain
from (3.15) and (3.21):

dy, (Qcis) [(6@) (%) ]
=\ A we(u)—l_ -
du OF ) w, yotwsr ) O ), yetwsrry OF /) w, zatusr)

Oh, ,
X ( 0 ) +f£(u9 Xe(u; 7‘1)) —fe(u> Xs(u; rl)) s (422)
"/ (. xotusry))

where f, is given by (3.16). Using now (4.19), we can estimate in Q, (see (3.22) and
(3.17)):

62

52 (47'CC0 +2):=K,, (4.23)

and

AP

or
and K, and K, are independent of . It follows that

(%), ()
or (U, xe(u;r1)) or (u, xe(u;r1))

[fots 25 7)) = [ty 2(us PO S K QU5 70) — (15 7)) - (4.26)

Taking into account that (4.26), (4.25), (4.19) and the fact that in Q,, 0g./0r <1/0, we
conclude from (4.22) that

2
_252 Ci(3+12nCY) + 55 Co(B3+8nC3+4n2C):=K,,  (4.24)

éKO(Xa(u; rl)_Xs(u; r,l)) s (425)

and

.|
du

where K=K,C,+K,. Integrating (4.27) yields

< 5 stl + K (xo(u; 1) — 245 7)) 5 (4.27)

po(uy)| e’ { ly0)] +Ku(§: VACHSVEyAUR r’l))du} : (4.28)
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Now, since both e-characteristics are contained in Q, it holds:

Xs(u; rl) —Xs(u> 7/1) = (rl _r/l) -mean Value

selri,rql

X < exp f <ags) du’:l} <(ry—r))er 2o, (4.29)
or W', xz(u';5))

Denoting then by # the modulus of continuity of dh,/0r with respect to r in Q5 and
by 7, the modulus of continuity of the data dh,/dr, we have

n(ry —r1) e {no(e"?’(ry —17)) + 20K (">~ 1) (ry =1} . (4.30)

Thus, since K is independent of ¢, the lemma follows. [

Lemma 7. The family of functions {h,|0<e=<8/2} is equicontinuous in Q,.

Proof. The equicontinuity of the family {h,} with respect to r in Q; follows from the
fact that the family {oh,/0r = (h,—h,)/(r +¢)} is equibounded (by C,/d) in Q,. Thus
we need only show equicontinuity with respect to u. Let againr; + Ar, ,denote the
value of r at which the e-characteristic y, ,,(u; r;) through (u,, ;) intersects the line
u=u; —Au,, 4u; >0. We have:

h—s(“1ar1)_”72(“1‘41u1,r1)§ f [Dsﬁe]xs,ul(%;ﬁ)d“

uy — Auy

+|E£(u1—Au1,r1+Ar1 s)—Es(ul_Aula rol. (4.31)

Since 4r; < Au,/2, (4.19) implies that the second term on the right in (4.31) is
bounded by

Co

_ — C
lhe(ul—Aularl+Ar1,s)_h£(ul_Aulsrl)l§ ’—OAri,s— 25

Auy.  (4.32)

By (2.12) and the e-mass-flux relation (2.19), we can estimate the first term on the
right in (4.31) as follows:

j [Dh]x u(ur;)

uy— Au1

u £, }
du
uy JnAul |:2(r+3) Xe,u, (W5r1)

1 2 172 1/2 1 MOa 12 1/2
<o T 18T te) (w2 (MO0) T gy @33)

Uy — Au1

Hence we obtain

_ M 1/2
ho(uy,71) = h(uy — duy,ry)| < l:co Auy + < 7:’£> ‘(A“1)12]~ (4.34)
Thus, since M, ,/M,—1 as ¢—0, the lemma follows. [J

Section 5. Compactness Arguments; Proof of Theorem 1

We now begin the proof of Theorem 1. We confine our attention to a fixed but
arbitrary interval 0<u=u, In this section, Q shall denote the domain
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Q:={(u,1)|0=u=suy, r>0}, Q; the domain Q;:={(u,r) e Q|r=46}, and Q, ,, the
domain Q; ,.:={(u,r)€Q|6=r=r,}.

Let us set §,,:=0,/2", m=0,1, 2, ..., and ¢,:=06,/2", n=1,2,3,....

We consider the sequence {h, [n=1,2,3, ...} of solutions of the ¢,-regularized
evolution equation taking the given initial data h, at u=0. By Lemma 4 the
sequences {h, }, {0h,/Or} and (by Lemma 3 and the regularized evolution
equation) also {0h, /0u} are equibounded in Q, foreachmandeachn=zm+1. We
start with m=0; by the Ascoli-Arzela theorem we can select a a subsequence {h,,  }
converging uniformly on compact subsets Q; . of Q, to hl;, a continuous
function on Q;. At the next step m= 1, we can select a subsequence {h,, ,} of the
subsequence {h, } converging to hl;, a continuous function on Q;,. Now hl;,
agrees with h|s, on Q, , therefore h|;, extends hl; to Q. We keep extracting
subsequences in this way, that is extracting each subsequence {h, , } out of the
previous subsequence {h, , _}; for each m, h|; extends h|; _, to Q; .

Then, the diagonal subsequence whose i term is the i term of the
subsequence {h,  _ }, converges uniformly on compact subsets Q;, of Q to h, a
continuous function on Q which for each m agrees on Q; with h|; . We shall
denote this diagonal subsequence simply by {h, }, keeping in mind that n now
ranges only over a certain subsequence of the sequence of positive integers.
Lemma 4 implies that & satisfies in each Q; the bound

sup |h(u, r)| = c(u; 9), (5.1)
r>é

and Lemma 5 implies that at each u, h=0(r"3) for r—o0 and

Sup. {<4M ) Ih(u, r)l} Sk(w). (52

By Lemma 6 the sequence {0h, /0r|n=1,2,3, ...} is equicontinuous in Q; for
each mand each n=m+ 1. Consequently, by the Ascoli-Arzela theorem, for each m
the subsequence {h .4 can be chosen so that the corresponding subsequence
{oh,, ,/or} converges umformly on compact subsets Q; . of Q; to h'; ,
continuous function on Q; . Then the diagonal subsequence will be such that the
corresponding subsequence {0h, /0r} converges uniformly on compact subsets
Q5.r, of O to I’ a continuous function on Q. It follows that for each r’, r">0,

T Wdr=h()—h(r"),

and therefore h’= 0h/0r and h is continuously differentiable with respect to r in Q.
Then Lemma 4 implies that oh/0r satisfies in each Q; the bound

sup
r=90

=c'(u;0), (5.3)

Oh
E(ua r)

and Lemma 5 implies that at each u, dh/0r=O(r~*) for r—o0 and

r
s ()

4MOZ (u,r)

} <k'(u). 54
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According to Lemma 2,

I hZ (u,r)dr< é—« + j h2(r)dr.

Now for every § >0 and every r, >,
ro ro
{ h2dr— | h*dr,
J o
uniformly in u. Consider the sequence {f,,} of functions

foe 0 for r<é, andfor r>m
"™ |k for ,<r<m '

The f,, form an increasing sequence of measurable functions such that

~ffmdr-— j hzdr< + j hidr.

8n
By the monotone convergence theorem, h%, which is the pointwise limit of f,, for
m— 00, is integrable on (0, o). Thus (since h is measurable, being continuous for
r>0) he [*(0,00) at each u and

i + i (5.5)

0 0
Let

~

Lo =(rte)hy, = [ b, dr.

(=]

By Lemma 3 and Lemma 7, the sequence {h, [n=1,2,3...} is equibounded and
equicontinuous in Q; for each m and n=m+1. Hence the same is true for the
sequence {{, |n=1,2,3...}. Consequently, by the Ascoli-Arzela theorem, for each
m the subsequence {h,  } can be chosen so that the corresponding subsequence
{C., .} converges uniformly on compact subsets of Q,,m,rO to {|s,, a continuous

function on Q; . Then the diagonal subsequence will be such that the correspond-
ing subsequence {{, } converges uniformly on compact subsets Q; ,, of Q to {, a
continuous function on Q. Lemma 3 implies that for each § >0,

{(u,0) = 0b(u; 9).

It follows that at each u, {(6)—0 as 6—0. On the other hand, we have d(, /or
=h,,—h, uniformly on compact subsets of Q. Hence

(1) =0, (0) = § 0L, Jor)dr— .

But £, (r)—{,, (6)—={(r) —{(9). Therefore {(r)—{(6) = f hdr. Since, by the previous
k)
paragraph, he L!(0,r,), r, arbitrary, letting §—0, we obtain

{(r)= ;hdrzrﬁ.
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We conclude that i, converges to h uniformly on compact subsets Q; ,, of Q. Also,
h'is a continuous function on Q and satisfies in each Q; the bound

sup |h(u, r)| S b(u; 9). (5.6)
r=o

Furthermore, the fact that, at each u, h belongs to I*(0, 00) implies that at each u, h
belongs also to L*(0, 0o0) and 6h*(u, §)—0 as §—0. In addition, (4.13) implies that

— 1
Ih(u, 4Mo)l < 577 » (5.7

r _
r§356{<4ﬂlo>'h““r”}

is bounded by a continuous function of u.

The facts that h, , h, , 0h, /Or converge uniformly in each Q; ,, to h, h, dh/or,
respectively, and that h, , h, , 0h, /Or tend to zero as r—oo uniformly in u and n,
imply that h, , h, , Oh, /Or converge uniformly in each Q;to h, h, dh/0r, respectively.

For each 6>0 and each ry>9,

and (5.2) implies that

ro dr ro _ . dr
B S =2
{(hen B, ) vy f (h=h)*—, (5.8)

uniformly inr €[4, 7,] and u e [0, u,]. By Lemma 5 (see (4.15)) since My/2< M, ,.
<2M, for rz8M,, we have

R s (2He),
where C is independent of  and n. Hence, if r,=8M,

o dr C?*[(8M,\?
2 < 2 0
fo-nrfsfe(e) =500 6o

The same inequality must hold for | (h—ﬁ)zdr—r. Given now any 5 >0, we can

ro

2 2
choose r, such that CT (81:‘/10> <n/3.

By (5.8), we can then choose N such that for all n= N,

_dr T ~ ., dr
T—{(hsn—hen) rte <77/3

n

Then,

dr

__ro oy
[~y 5

— j(hsn ,.

n

dar

+Im—%k1+Jm —h) §ﬂ+ﬂ+ﬂ=m
ro r ro " 3 3 3
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We conclude that

dr
r+e,

uniformly in Q, for any 6> 0. Therefore also

A= TRy s ai=T -

ge,: =exp(—4nA, )—g:=exp(—4nd),

uniformly in Q, for any § >0. The fact that, at each u, h— h e I?(0, co) implies that,
at each u, 6A(u, 0)—0.

We know then that g is a continuous function in Q. At each u, g(u, r) is positive,
continuous, and monotonically non-decreasing in r. Hence g(u, r) tends to a limit
as r—0. We set g(u, 0): = lim g(u, r). Then g is continuous with respect to r even at

r—>0

r=0. The sequence {g(u,1/m)m=1,2,3,...} is a non-increasing sequence of
continuous functions of u which are >0 and =<1. It follows that g(u,0)
= lim g(u, 1/m) is a measurable function of 4 which is =0 and =1.

m—> o 1

We now consider §: = ;j gdr. 1t follows from the above that § is continuous
0

with respect to  for all » = 0 and §(u, 0) = g(u, 0). We shall now show that g is also
continuous with respect to uin Q. Given any # > 0 and r, > 5/2, by the continuity of
g with respect to u in Q we can choose ¢ such that for ju—u'|<e, we have

lg(u,r)—g',n|<n/2r, forall reln/2,ry].
Then

[ g(u,s)ds— | g(u, 5)ds
0 0

n/2 :
= g lg(u, s)—g@’, s)lds

+ 1 loe g, 9lds< ] + (g;-) o=,

r
Hence [ gdr, and therefore § is continuous with respect to u in Q.
0

We know from the above that

) d
§ go,(u, ) dr— [ g(u,r)dr,
Y Y

uniformly in u for y, é fixed, 6 =y >0. Thus for every y>0 and every >0, there
exists N(y,n) such that for all u€[0,u,], we have

<n, forall n=N.

] ]
jg(ua r)dr— Igsn(ua r)dr
Y Y
Given now any #'>0, let N'=N(y/2,4’/2). Then we have

<n'/2 forall n=N’,

J ]
j g(“a V) dr— j gsn(u7 T) dr
n'/2 n'/2
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and therefore

(u,r)dr

) é 4
_fg(u, r)dr_ jgsn(us r)dr é
0 0 n

’

" non
+ j[ Ig(u,r)—gen(u,r)[dr<5+5=11’ forall n=N".
0

We conclude that s
[ g.,(u,r)dr
0

9
converges uniformly in u to { g(u,r)dr. For r =8, we write
0

0 r
rg(r)= [ g(u, s)ds+ [ g(u, s)ds .
0 s
Since

[ g, 5)ds
I}

r
converges to | g(u, s)ds uniformly in Q; ,, r, arbitrary, we conclude that
9

1 r
(r+8)3s, = | g,,(u, s)ds + £ 9., (u, s)ds
0

converges uniformly in Q; ,, to rg. Therefore g, — g uniformly in compact subsets
Q5.+, of Q. Furthermore, the fact that for rgr0 we have

(rO n) =
(r+e) ?

3= 7 G )+ | g, (),

n"o

and
- Fo - 1r ,
gy =->g(ro) + ;I g(r)dr,

together with the fact that g, —g uniformly in Q;, implies that g, — g uniformly in
Q,, for any 6>0.

Let us recall the function ¢y(d; k) which is defined in the first paragraph of
Sect. 4. We may assume that ¢,(d; 2) < /2. Let N(m) denote the smallest positive
integer such that ey <¢&(0,,; 2).

We shall now show that at each u, g/g e L'(0, r,), r, arbitrary. First, for each m

é’;. <ZS:> (u,r)dr— I <§> (u,r)dr,

uniformly in u, since g, (u, 6,,) is uniformly in n and u bounded from below by a
positive constant. By the e-integral identity (2.22), for each u; =0, we have

;m (Ze:) (uy,M)dr< {' (g_:) 0,7)dr.
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Since rqy . <ry+uy/2, if n=N(m) (see first paragraph of Sect. 4)

oo (g rwmiz (g iz (g
| (;}—) O, ndrs | (——) ©0.ndr=2 | (5> ©,r)dr
Om

6m &n m &n
rytug/2 g
<2 (5_> O,r)dr:=C(r{ +u,/2). (5.10)
0
Hence for all n= N(m), )
I (g—> (u,r)dr=C,
Oom \Ye,

and C is independent of either n or m. It follows that also

rj‘ <€_> (u,r)dr<C.

ém g

Consider the functions _
£z g/g for rzd,
™70 for r<é,

Ateachu, the sequence {f,,|m=0, 1,2, ...} is an increasing sequence of functions in
L}0,r,), r, arbitrary, such that

| fou,r)dr<C (independent of m).

0

By the monotone convergence theorem g/g, which is the pointwise limit of the f,,
for m— o0, belongs at each u to L'(0,r,), r, arbitrary, and

ry

J (g) (11, 1)dr SCry+u/2).
We shall now show:

Proposition 1. The property that, at each u, g/g € L*0,r,), r, arbitrary, together
with the finiteness of M(u), is equivalent to the property that, at each u, h e I*(0, 00).

Proof. Since

1

&

gdr= - r{;rd log(ry/rg) = —ry log(1/g(ry)) + 6 log(r,/64(5))

+ -(‘; log(rl/rg)dr s

g/ge*(0,r,) implies that log(1/g)e[*(0,r,), and therefore that
log(1/g) € L}(0, ;). On the other hand,

rjol log(1/g)dr=rlog(1/g9(r,)) +47zrjo1 (h—h)?dr,

and if we take r; =4M, we have

T (h—Ry2dr<M/n.

ri
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Thus the integrability of log(1/g) on (0, r,), r, arbitrary, together with the finiteness
of M implies that h—he L*(0,00). Finally since

Thedr=T (h—Ry2dr— k%),
] o

the square integrability of h — h with respect to r implies the square integrability of
h with respect to r. The reverse implication is established by considering that

T1og(1/g)dr=4x | h2dr,
0 0

and

rj’ [g —1—log (g)] dr=r,log(1/4(r,))+ 5 log(1/g)dr. O

0
For each (u,,r,) € Q, we define the characteristic y,,(u; r,) through r=r, at

u=1u, to be the solution of the ordinary differential equation % =— % g(u, ),
satisfying the condition y(u,) =r,. The existence and uniqueness of y,, (u; r,) for all
(uy,7,) € Q is guaranteed by the continuity of g and 0g/0r in Q. We shall now show
that the ¢,-characteristics y, converge uniformly to the characteristics y. The ¢,-
characteristic y,, , (u; ;) through r=r; at u=u, is the solution of the ordinary
differential equation,

dy., 1.
E’ - 296,,(”7 Xs,,) s

satisfying the condition , (u,)=r;. Thus, we have

Ay — 1
i)%—ll = — 5 [9_5,,(“7 Xen) - g—(uv X)] s

and (y,, — ) (u;)=0. Integrating, we obtain
(e 0= 5 19,00 £, 00) — 00, LNV
1
= 3 19,00, 1000 gt NNt

430 10,0010 =, 6 GO . (51)

We set y, (w):=|y, w)—xw)|. Then y, (u;)=0. Since (u;,r;)€Q, we have
(uy,7,)€Q, for some 6>0, and therefore (u, x, (1)) € Q; and (u, x(u)) € Q; for all
u=<u,. By the uniform convergence of g, to g in Q; we have |g, (', x(u))
— g, y(w))| =n,, where #,—0 for n—o00. Also the fact that the sequence {07, /0r}
is equibounded in Q;,

oG, _1
n < _
F a :57
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implies that 1
1Gen(ts 26 (W) = G, (W5 WIS 52 32, ()

Hence we obtain from (5.11) the inequality

1 1%
ye"(u)é Enn (ul —u)+ '2_5_ j. ys“(u/)du/'

It follows that y, () <#,- d(e“ ~*/>—1). We conclude that y, —0 uniformly in u
for n—o0, and therefore the e,-characteristics x, converge uniformly to the
characteristics y.

The function h, satisfies the integral equation

i) = 0 o)+ § | G0 (ha,.—Egn)](u’h"(u;rl))du.
Let (uy,7,) € Q. Then (u,,r,) € Q; for some ¢ >0, and we know that for each § >0,
h,, —h uniformly in Q;,
h,,—h uniformly in Q;,
g.,—¢ uniformly in Q;,
J.,—¢g uniformly in Qj;,

and h, h, g, g are all continuous functions in Q. We also know that y, (u; r,)
—x(u; ry) uniformly in u. It follows that for n—o0:

hy (1) = h(uy, 1), ho(t, (05 71)) = ho(x(0; 1))
and
Uy —a _ Uy — ‘) _
{ [__(g% 9e) h,, —, } du— [——(g % (h—h du.
ol 2(r+e,) (=l (0 e, (4371)) <j> 2 MY (w23 71))
Therefore, for all (u,,7,) € Q it holds:

h(uy, 1) =ho(x(0; 1))+ (j) [(iz}@ (h-ﬁ)] du. (5.12)

(u, x(u;71))

We conclude that h satisfies in Q the nonlinear evolution equation in the integral
sense.
We shall now show that & is continuously differentiable with respect to uin Q.

We know that 0h/Or is a continuous in Q. We set f:= ggz_Tg)(h—ﬁ). Given

(uy,7)€Q and Auy, let vy + Ar, be the value of r at which the characteristic y
through (u,,r,) intersects the line u=u; — Au,. Then from (5.12) we obtain
(h(uy,ry) —h(uy — Auy, ry))
Au,y
_ 1 #1 . (h(ul'—Aul,rl‘i‘Arl)_h(ul—Aul, rl)) Arl
- Aul u1JAu1 f(u’ X(ua rl))du+ Arl Au1 s
(5.13)
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and we have

Ary 1 o1
— = ~g(u, y(u; ry))du.
Au, ~ Au, mJMI 29(“ x(u;ry)

Since his known to be continuously differentiable with respect to rin Q, as 4u; -0

_ oh 1 _
the right side of (5.13) tends to the limit (f+ 555) (uy,ry). Hence h is
continuously differentiable with respect to u in Q and

oh 1 i} —~ 1_0h
i 5(9—9) (h—h)+ 395
We conclude that he C*(Q) and satisfies the nonlinear evolution equation in the
differential sense in Q.
From the e-integral identity (2.22) it follows that for ry=d, but otherwise
arbitrary and for each m and n= N(m):

j‘j‘ % 522,, dudr < C(rO + u0/2)

Qonro 95, (r¥8) = 2m

(considering the fact that Q; , CQ; . (uy,7,) and taking into account (5.10)).
The constant C depends on r, and u, but is independent of either n or m. Thus the
sequence

G, (r+e,)

is contained in the closed ball of radius C/2r in I*(Q;, , )foranyr,=d,and eachm
and n= N(m). In virtue of the weak compactness of the closed balls in I?, we can
choose for each m the subsequence {h,,  } so that the corresponding subsequence

ggn/,zm ésn, m
gzn, m (7’ + 8n, m)ll2
converges weakly in I*(Q,, ,,) for any r =4, to a function defined on Q, , which

we denote by
g'? ¢
7,

and which belongs to the closed ball of radius C/2n L*(Q;, ,.), Fo arbitrary. Then
the diagonal subsequence will be such that the corresponding subsequence

ge” &,
Ge, (rtey)'?

converges weakly in I? on compact subsets Q; ,, of Q to

g'? ¢
G

{g;/ * &,

n=1,2,3,...}
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a function on Q whose restriction to each Q,,equals (¢'/¢/gr'/?)|,, . Consider the
measurable functions

) 0 for (u,1¢Q;,
fm' = 91/2 é
(—_ —1/2> for (u,r)€Q;,, .
g r 3,

Qro):={(u,r) e Qlr=ro},

the sequence {g,7|m=0,1,2,...} is an increasing sequence of functions in
L}Q(ro)), 1o arbitrary, such that

i f2dudr<C/2n.
Q(ro)

m

Setting

The function g'/2¢/gr'/?, which is the pointwise limit of the f,, for m—o0, is
measurable, and by the monotone convergence theorem belongs to I*(Q(r,)), 7
arbitrary, and
H = ——dudr <C/2n.
Qo) g~ T
By the above paragraph, for any I* function ¢ whose support is a compact set
in Q we have:

1/2
ngg" +e)” - 7z Laudr {1 o Cdudr. (>14)

Since g1/?/g, is notless than 1 and converges uniformly in Q; for any 6 >0to g*/%/g,
(5.14) implies that for any C*® function ¢ whose support is compact and contained
in the interior of Q, we have

i & gdudr— (] Epdudr. (5.15)
Q Q

Now

o, . (h,—h,)
o Jen (r+e,)

(see (2.13)). Hence, for any C® function ¢ whose support is compact and contained
in the interior of Q it holds:

_ (h, —h, )
- Tin e ——dud 5.16
jgjgsn (7’+8n) 5565"6 uar . ( )
Since g, (h,, —h,,)/(r +¢,) converges uniformly i in Q, for any 6>0to g(h— h)/r, the
left-hand side of (5.16) converges to — f g'(hr;h) ddudr. By (5.15) the right-hand
Q

0 .
side of (5.16) converges to |f égdudr. Therefore, for any C* function ¢ whose
o
support is compact and contained in the interior of Q, we have

L = h)¢d dr _m dudr
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We conclude that & is weakly differentiable with respect to r in Q and

oc  _(h—h)
o I
Since g/G=1, the fact that g'%¢/gr'*eI*(Q(r,)) implies that
£/ *r'? e L2(Q(r,)). Thus, for almost all u &(u,r)/g**(u, r)r'/? € L*(0,r,). Let
us set r=rge”* and E*(u, s)=E(u, 1), §*(u, s)=g(u,r). Then since,
¥o 2
f—(u s)ds= fé—(u )— (5.18)

(5.17)

(E*/g*11%) (u, -) € L*(0, 00) for almost all u. By (5.17),

0&* 0& _ —
N )
Therefore

© *\ 2 ro

fi*(?_f_> - 1 gn- h)2—<I g(h— h)2

0 S

=£}5—==—@m>gm» . (5.19)

Since §* £1, we conclude that for almost all u £*(u, - ) belongs to the Sobolev space
H,(0,00), and in fact than &*e L*0,r,; H,(0, o0)). By the Sobolev imbedding
theorem for almost all u E*(u, - )€ C/?[0, o[ and &*(u, s)—0 as s—oo. It follows
that for almost all u, &(u, r) is continuous with respect to » and &(u, r)—0 as r—0.
Since

0 =e@)+ a0, (5.20)

letting 6—0, we conclude that

&)= lim j G(h— E)d—’ (5.21)

We note that the function g(h— h)/r is not necessarily Lebesgue integrable on
(0, 7,). However for almost all u the above limit exists and equals &(r). The fact that
&/g'* r'’* e IX(Q(r,)) implies of course that (¢/g'/?) (-, 8) € [*(0, u,) for some § > 0.
Then, as a consequence of (5.20) &/g*/*(-, r) € L*(0, u,) for all r>0. It follows also
that the restriction of ¢ to the characteristic y,,(-,r;) through each (u,,r;)€Q
belongs to I*(0,u,). For every s, e [0, oo[, we have the Sobolev inequality

ag* 2
sup {i*Z(S)}<c§ <é*"'+ <§> )ds, (5.22)

where c is a universal constant, independent of s,. Since §* is a monotonically non-
increasing function of s, (5.22) implies that

E¥2(so) _ NS Lo [08F\2
g so) — g (So)s{(é ’ <8s> )ds_ f-*<é 2 (83) >ds.
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a {(E)ofselb(es (e om
se[0, o[ g 049

Taking into account (5.18) and (5.19), we obtain from (5.23) that
g2 d 1
sup {( )(r)} {5 o g(O))} (5.24)

re]0,ro]

Hence

Since g is continuous with respect to r at r =0, (5.24) implies, if we let r,—0, that at
almost all u ¢2/§—0 as r—0. Integrating now (5.24) with respect to u we obtain

T sup {(%)(u,r)}dugc{ﬂ gt LT ) - gt O»du} (5.29)

0 re[0,ro] Q@ro) 9
Since
ro_ —_dr
) =&tro)+ [ Gh—R
we have

(5 ><r)<2(f ><r0>+g<f Gh— E)‘”)

It follows that r =r,(ry>0), (£2/7) (r) £2(E%/§) (ro) + C, where C is a continuous
function of u (considering the falloff property of h— h for r—o0). We then conclude
from (5.25) that

¢
sup {—_1 73 (u,7) 0 € L0, 1) .
r20 (9
Since, by dominated convergence,

[ (g(u,1)—g(u, 0))du—0 as r-0,
0

letting r,—0 in (5.25), we obtain

ug 2
f(é )(u rdu—0 as r—0.
o\g
We summarize the results of the last paragraph in:

Proposition 2. At almost all u, £/3*'? is a continuous and uniformly bounded function
of r such that £/G'*—>0 as r—0. Also, at each r £/§'* € L*(0,u,), u, arbitrary.
Furthermore,

€ LZ(O’ uO) )

¢
Sup (== U, r
r;lt:)) gl/z( )

and

Uuo

62
f(—.)(u,r)du—»O as r—0.
o\g
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According to (2.12)

ah—en _ 1 - (hsn_ﬁan) ésn
ou 29 (r+e)  2r+e,)’

For any C* function ¢ whose support is compact and contained in the interior of
0, we then have

ho—=he) | & - ¢
H(z S ST n)>¢d dr=— [k, 5 dudr. (526)

Since h,, converges to h uniformly in Q, for any § >0, the right-hand side of (5.26)
o¢

converges to — [f i u dudr. Since also h, and g, converge to h and g respectively,
Q

uniformly in Q, for any § >0,

_ (h,— hsn) 1 _(h—h)
“— snm ” g—¢d dr.

Now, ¢/r is also a C* function whose support is compact and contained in the
interior of Q; consequently, by (5.15)

i

¢
G + o) dudr—»%{;dudr.

We conclude that
— Hh dud = ”(1 UlD) —é )¢dudr.
r 2r

Hence h is weakly differentiable with respect to uin Q and Dh= 25 Consider now

= f (h— h)"d— It follows from the preceding that A is weakly differentiable

with respect to u in Q and

1_0h 1_0h dr
2 _—___
DA (h h) +I2(h h)[Dh-i— G5 =593, h]

_ L  me N L P (4
_ng(h h)+{(h h)[ar(h h)+gar r(h h) r}r.

Taking into account the fact that

1 59 2 -(h h) oh 2_ 24 (h hy?
(h h)> + o 2 (h h)?= > 2 (h—n)*+ ol B
we obtain "
DA= f[ g(h—h)— 5} (h— )—2 (5.27)
Since g=e %™, g is weakly differentiable with respect to u in 4 and

Dg= —4ngDA.
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. 1
We shall now compute the evolution law of ;f gdr, 5>0. We have
9

< fgdr) %%(!gdr>—2igg+ 5( +59 gg>dr
i
T 2r

219 i sae)— Lgg- 2" 15,24
7 (r§—0(0)— 5,99 =~ g(gDAﬂngg 5 )dr (5:28)
We can write

0DA
o dr.

[gDAdr=§ DAd(rg)=rgDA—5G(5)DAG)— | rj
o o )
Substituting this in (5.28), we obtain
1r 1g
D (;g gdr) =~ 5:690)+ *7 60)DAG) ~ 596~ )~ 4ngD
4

r 1
f 6DA —g% dr. (5.29)
5 or 27 or

From (5.27), we have

obA 1 aA (h h)
r or 2 o r

Hence (see 5.17).

L 0DA 1 04 "_(h—~) r aé 1
ig( o 5g5>dr:£g p fdr=£§5dr—§§ _5(5) (5.30)

Substituting (5.30) in (5.29), we conclude that
1 1 _ i} B 2n
D<—§gdr> =f—5-G(g—§) —4ngDA+—¢&, (5.31)
rs 2r ¥
where
19 .. 2n , 4 _
Jor=—57304(0)— 5 £(d)+ —-9§(9)DA(9). (5.32)
We shall now show that at almost all u f;—0 as 6—0. The first term in f; tends

toOatalluas 0. By Proposition 2, the second term tends to 0 at almost all uas §
—0. It remains therefore to be shown that:

Lemma 8. At almost all u, 6D A(u, §)—0 as 6—0.
Proof. According to (5.27),

DA(%)= f[ g(h—h)— é]( - )d—2~

Thus e i = dr
DA < = § gth—h)?*— + [ || lh—h]=. (5.33)
2 8 r F} r
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We decompose the first integral in (5.33) into
o] _ r o1/2
Lo=hy 5 =1 g(h— s 2 e h)2 (5.39)

5172

(since we are interested only in the limit 6 —0, we can assume Jd < 1). We estimate

5172 51/2

) f g(h— h)2—< I g(h— h)2 -:—n(g(é”z)—g(é))—»O as -0,

by the continuity of g with respect to r at r=0. Also,

2 d 1/2 2d" 912
) j g(h— h) <5 j g(h—h) ——(1 g(0))—0 as -0.
o1/2
We conclude that at all u,
@ ~, dr
6§ g(h—h) P_ao as 6—0. (5.35)
]

We decompose the second integral in (5.33) into
51/2

fléll dr I 1] 1h— Al 2+ f 1€l 1h— hl 2 +I|§llh hl - (5.36)

We estimate
61/2 d o1/ d 61/21 2 1/2 /4§12 h_i;l-z 12
5" an-R% <1 - ~=<§idr> (;QL B dr)
r s gr F) r

Now, at almost all u ¢/g*/*r'/? € L*(0, r,), r, arbitrary. Therefore at almost all u the
first factor in the above inequality is finite and tends to 0 as —0. The second factor
is equal to ((g(6'/?)— g(6))/4m)*/?, which tends to 0 for all u as §—0. Hence

§1/2 dr

0 f A —h| 3 >0

as 0—0, for almost all u. Also,

5 | m-n% <o gt ar éél’z(fgd’)”z(f gth—Fy? )1/2
0

8172
1/2 11 2 1/2
§<5> (j—é—dr) -0 as 6-0,
47 og r

for almost all u. Furthermore, since we have Ilh h|~— <C, where C is a

continuous function of u, the third integral in (5.36) 18 bounded by a multiple of
sup ||, which, by Proposition 2, is finite for almost all u. We conclude that at

almost all u w dr
o] [é”h—ﬁlr—z—»O as 0-0. (5.37)
4

Considering (5.35) and (5.37), together with (5.33), the lemma follows. [
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Thus, for almost all u and all >0, f;(u,r)—>0 as 6—0. Hence, from (5.31),

-0

1imD<1fgdr> =— 1~gv'(g—g')—47rngA+ 2—n~62, (5.38)
rs 2r r
For all C* functions ¢ whose support is compact and contained in the interior of
Q, we have I I
—f (—f gdr> Dédudr= [{ D <—§ gdr> $dudr .

o\Ts Q rs

As ;[ gdr—g for 6—0 uniformly in the support of ¢, it follows that
o
- “ gD¢dudr = hm U D < [} gdr) Pdudr .

Since ¢ f; is dominated by an integrable function (see Proposition 2 and proof of
Lemma 8) and tends to O almost everywhere as 6—0, by the dominated
convergence theorem, we have

lim ij( Igdr)q}dudr— if 1me< fgdr)¢dudr

-0 Q

We conclude that § is weakly differentiable in Q and

Dg= limD<1§gdr> =— 1—g’(g—g)—~41rg‘DA+ 2—“62 . (5.39)
rs 2r r

-0

It follows that m:=(r/2) (1 —g/g) is weakly differentiable in Q and

We conclude that the mass equation is satisfied in Q. Thus (see [1, Sects. 2—41]) the
complete system of Finstein’s equations is satisfied in Q.

We now compute the evolution law of f (g9/g)dr, 6>0. We have

Di (g/q)dr={ <D(g/g) + 5 (g/g)> dr— 7 g(g/g)

_ 1dg 1gdg 1
(D(g/g)+——‘(:—~—£Z g>dr——g

and, since g/§=(1—2m/r)" !, the mass equation gives,

2 272D 2(g\? 1 -
D(g/g>=(1~—'") ( '”+§’;g-)=;<§) Dt 5 269

r r

g & g, -
PRSI PR 4
27zg_2 s g(g 9) (5.40)
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Hence we obtain
pfgliyar=—21f L Ear— L) (5.41)
) 99 sge 290 )

since it holds:

lim | (g/g)dr= | (g/g)dr,

603 0
and also

g 52
hm DI (g/g)dr= —2an >—dr— 5 g(O)

we obtain by dominated convergence, in the same manner as in the preceding, that

{(g/d)dr is weakly differentiable in @ and
0

D j(g/g)dr_—zn j g 52 S dr— ;g(O) (5.42)

Integrating the mass equation along the characteristic x,,(-; ;) through
(uq,7,), we obtain the mass-flux relation

uy 1
m(uy,r)+mn§ [— éz] du=m(0,7,), (5.43)
0 g Xul('ﬂ'l)
wherery: =y, (0; r). Finally integrating (5.42) along y,,(-; r,), we obtain the main

integral identity:

j S+ 2m ff gé o drdu+t - J g(u, O)du—f SO0,

Qu1,r1)

where

Quy, )= {0, DI0 <P < 115 7,), 0<u <y}

The proof of Theorem 1 is now complete.
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