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Abstract. We construct rigorously the continuum limit of the O(N) non-linear σ
model in two euclidean dimensions with a hierarchical kinetic term. Asymp-
totic freedom and weak coupling Wilson renormalization group flow
are established.

1. Introduction

Non-linear σ-models in two space-time dimensions have proved to be useful in
several areas of physics: introduced originally as continuum versions of the
classical Heisenberg spin systems, they were subsequently used as toy models for
the study of asymptotic freedom and dynamical mass generation [1], as effective
theories of the quantum Hall effect [2] and, last but not least, as prototypes of first
quantized string theories in non-trivial backgrounds [3]. The simplest 0(N}
version of the σ-model exhibits many properties expected for QCD and serves as a
good playground for the Monte-Carlo (renormalization group) simulations of
non-linear theories with symmetries, see e.g. [4]. Its S-matrix is known [5] as well
as its spectrum for N = 3 [6]. Here we start a rigorous analysis of such systems in
the spirit of the constructive quantum field theory [7]. This should lead to the
construction of the Green functions of the model and to establishment of their
properties without recurring to their (as yet unknown) analytic form.

The action of the 0(7V) non-linear σ-model on a two-dimensional euclidean
lattice of spacing a, αZ2, is

._ , _ (1)
l*-y| = « \ a J

with φ(x) e RN, φ(x)2 = 1. In the present paper, to avoid the infrared problem, we
shall consider the theory in a finite volume, say the unit box \xμ\ £ .̂ Alternatively
we could add to S a magnetic field term h(a) X a2φ(x) which explicitly generates

a

mass and study also the thermodynamical limit. The problem of the continuum
limit is to find the "inverse temperature" β(a) and the field strength renormal-
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ization Z(a) such that the Green functions

Π φ(xί)e-s^Uδ(φ(x)2-l)dφ(x) (2)
ί=l

have a (non- trivial) α-»0 limit for non-coinciding points. The natural approach to
this question on the heuristic level uses the renormalization group [8]. In our
rigorous analysis, we plan to use a block spin technique. In this paper, we shall
examine a simplified version of the σ-model with (1) replaced by its hierarchical
approximation which will make the study of the renormalization group flow of the
model an entirely local problem. For the complete model one expects this to be
true only up to exponential tails which have to be additionally controlled.
Although largely simplified, the hierarchical model provides a very useful toy-case
of the real problem (see e.g. the work on φ\ [9]). We consider its study as an
important step towards the construction of the complete model, shedding light on
the new features brought about by the non-linear nature of (1) as compared to such
models as φ\. The version of the hierarchical model that we shall use has been
advocated in [10] and differs somewhat from the Dyson model [11]. It replaces the
action S on the lattice αZ2 for a = L~M° (L an odd integer) by

1 |φ>, φ(*)2 = l , (3)

where the lattice covariance [whose inverse appears in (3)]

(4)

M(x, y) is the largest integer M g M0 such that the integral parts of LMx and LMy
coincide. Gα mimicks the inverse Laplacian in the unit square of aTL2. The point of
(4) is that Gα may be naturally split into the long distance part and the local short
distance one:

, (5)

where x(y) denotes the point of LaΊL2 closest to x(y).
Note that the Gibbs state generated by (3) may be written as

.Φ), (6)

where dμG stands for the Gaussian measure with mean zero and covariance G, and
for more generality, we have inserted e-

a2v«Mχ» instead of δ(φ(x)2 — 1), the latter
being a limiting case of the previous one with va(φ(x))—^a~2β(a)λ(φ(x)2 — I)2

when λ-+ -f oo. Now, (5) implies the factorization of the Gaussian measure dμGa/β(a}

into the long distance and local short distance parts so that with the replacement
φ(x)-xjί>'(x) + ζ(x), (6) becomes

1

From (7) one can immediately read off the effective distribution of the long distance
component φf of the field φ. It is obtained by integrating out the short distance
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component ζ in (7) which gives

~ -

with

As mentioned before, for the hierarchical model the renormalization group
transformation reduces to the simple recursion for the single spin potential. Notice
that our recursion does not preserve the φ2 = l condition, smoothing the
singularity of the initial potential.

Equation (9) may be repeatedly applied producing a sequence of longer and
longer distance effective potentials vLna. To control the continuum limit one has to
show that for suitable choices of β(ά) and Z(α),

limva(Z(a)1/2φ,a) exists (10)
rt^O

for any fixed α. We shall establish (10) first and then study the Green functions (2).
It is convenient to scale (9) a little. As there is no genuine field strength

renormalization in the hierarchical model we may take Z(α) = β(ά) ~ ί . Denoting

ά2vά(β(ά) " 1/2φ, a) = uά(φ, a) ,

we obtain from (9) (dropping the a dependence) the recursion

e-UL&(φ) = [coκstSe-us(φ+Q-*γ~lζ2dζ]L2 (11)

with the starting point

ua(φ)=i~)(φ(x)2-β(a))2 (12)

and λ arbitrarily large. The constant in (11) will be chosen so that ua(φ) = Q at its
minimum.

2. Flow of the Effective Actions

The main content of the analysis to follow is that the transformation (11) upon
iteration drives uLna exponentially fast (in n) to a fixed form u*

uί(ψ) = |S4[iW1/2M- 1)2 + ...], (13)

with β& flowing slowly down (β& playing the role of the effective inverse
temperature, is defined as the value of φ2 at the minimum of uά). The non-linear
σ-model is thus driven fast to a more (φ2)2 like model. In fact (1 3) is reached almost
whatever model with the minimum atφ2 = β(d) we start with as can be seen from
the analysis below. Let us formulate the main result of the analysis of uLna. We
assume L>L0(y), (L2-\}y~v=λ*^λ^vo [see (12)].

Theorem. Choose

(14)
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with β ̂  βo(L, y), b2, b3 being λ independent computable constants (b2 < 0). Then for
ά = L~m,

e-uz(φ,a) converges when α—> 0 (15)

uniformly on compacts in (CN. The limiting e~ua{φ) is entire in φ, 0(N) invariant and
satisfies the stability bound

|β-"δ(*>|^exp[-iΛ*(|ReφH^^ (16)

Moreover, for φ real, ||φ|-/?(α)1/2|<β(α)α fα = 10~2, say),

Ua(9)= Σ 9a,n(\9\-βl'2

11 = 2

with

wά(z) is analytic for \z\<2β(a)a with \wά\<0(β(a) 7/4) there and with three
derivatives at zero vanishing. The value of φ2 at the minimum of uά(φ) βa

= 0(3)+ 0(1).

Remark. Equation (17) reflects essentially the behavior (13) around the minimum
of uά. Equation (16) shows that e~ua falls off fast away from the maximum.

Before proving these claims, let us roughly explain the main idea. A priori, the
control of the flow seems difficult since all terms φ2" are dimensionless and thus
naively marginal under the renormalization group recursion (11). However, once
we perform in (11) a shift of £ to the location of approximate classical minimum, a
single marginal variable remains corresponding to the location of the minimum β&,
the others contracting to the fixed point values exponentially fast (in the number of
iteration steps). To see this, consider (11) with uά as in (12) [with 0->α, β(α)-*βs'].
Here and below we shall often use the shorthand notation: f = β\l2,β = β(α). Take

φ = (f + σ)φ ( φ = — ). Write ζ = σφ + π with π φ = 0. Then
V \φ\J
Γ Γ i λ ΊΠL2

g-MjLa(^)_ const f dσdπexp — -y~1(σ2 + π2}— ^-(σ + σ)2 — ίL(σ + σ, π)
|_ vl 2y 2 V ']]

, (18)
where

fia(σ, π) - ua(f + σ, π) - - σ2 . (19)

Notice that uά(σ + σ, π) = 0(/6α~ ̂  if σ, σ and π are 0(j5α). Of course, σ and π are
not bounded and we shall have to work more in the large field region exploiting the
small weight, in the integral coming from exp[—|y~1(σ2 + π2)] and the stability
properties of e~α&. Now shift in (18) σ-»σ — λσ(γ~1+λ)~1 to get

C Γ 1 ΠL2

j C ι ~ 7 ~ I -1 — 1 / ^ 7 ^7\ Λ ^? ~ s SSΊ ~ ~\ I Iconst j dσdπ exp - - γ I(σz + π2)—-σ2 — uά(<£σ + σ, π) ,

(20)



Hierarchical Non-Linear σ-Model 537

where 2;
1. (21)

The structure of (20)-(21) is clear: A seems to have a fixed point λ* = (L2 — l)]^"1

where Jδf takes value J£* = L~2. This fixed point is approached exponentially fast

--— -)) no matter how large the initial λ is: λ'\λ= ̂  = L2γ~l

A A J J

= λ* + y~1, the non-linear σ-model is driven to the linear regime by the
renormalization group; ύ will stabilize exponentially fast too since now all powers
of σ are irrelevant except the first one which stays marginal and causes the slow
flow of βά determined from the higher-order weak coupling analysis in powers of

ΛΓ 1 -
The stability of e ua needed to substantiate these claims is expressed by (1 6). To

see why this property iterates, put

e 2 (22)

for g^ $λ*, and compute for real φ

]L2 = e~^^
Γoo ΊL2

J e

(γ~llφl+9βυ2)r~*(y~ί+9)r2rN~1dr

*'1 ΊL2

ί const j (y-* + grll2\ *. (φ) (23)

with gf= - - attracted again to /I*. Clearly, for (|φ| — β1/2)^β", we may use a

fraction of g' to kill the const[-](]V~1)L2 factor by the e'
0(β2oc} one and to

accomodate for the change β->β' = β(La) = β — 0(l). Thus

(^)' (24)

where ̂  is given by (22) with β-^β'. Equation (24) will imply the iteration of the
stability bound for large real φ.

We shall pass now to the actual proof starting with the first step of iteration
where λ may be arbitrarily large, then discussing the flow of uά in detail and finally
showing that the α-»0 limit may be taken. The first step of the iteration gets a
special treatment since it requires estimates uniform in λ.

3. From the Non-Linear to the Linear σ-Model

Let us compute uLa(φ,d) with ua given by (12). Notice that for real φ, e~Ua(φ}

^exp - ^(M-j51/2)2 =^λ/4(φ) τhus (24) implies (16) for e~
ULM with φ real,

I \φ\ - β'\ ̂ iβ/α, if the constant in (1 1) is ^ 0(/11/2). This will follow from the small
field analysis to which we turn now. Take |σ| < 3/?α.
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Consider

see (20) and (19). Write

~y-\σ2 + π2)-~σ2
(25)

by inserting under the integral l=χ + χc with χ(σ,π) being the characteristic
function of |σ|<|/?α, \π\<^βa. First we estimate Ic. This provides the large field
contribution to the small field uLa(φ) and we wish to show that it is non-
perturbatively small for |σ|<3βα, say. Write (f=βi/2 at the first step)

-

(26)

Straightforward algebra using boundedness of λ^£ — - - - and of σ [see also (33)
below] gives

λ

2/2

with 0( ) uniform in λ. The last term in (27) can be estimated by

λ

2/2

(27)

(28)

Using (29), we obtain the desired estimate

. (29)

l/2)e-°(f4c(} (30)

exhibiting the non-perturbative character of /c(σ). Thus, provided that I0(σ)
= 0(λ-ί/2\Ic(σ) is negligible.

To control /0(σ), we shall employ the weak coupling expansion in powers of-r
1 *

to the order -^ with simple estimates of the remainder. To this end, by Taylor

expanding, we obtain from (25) and (26):

3 / 1YP 1 1

-^o+P = I p! 3!o
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where

(32)
and < — >t

τ denotes the truncated expectation. The explicit form of va is

(33)

To easily obtain estimates uniform in λ, we change the variable σ to s = — - ((/ + σ)2

+ π2-/2), V

2 / 2

(34)

where r is a small integer. Note that due to the change of the variable, λ will appear
1 1

only in the propagator ——.—- of s. Now we are ready to perform the explicit —
y +λ

 m > /
analysis of the expectations appearing in (31). The calculation gives

log/0(σ) = log/o(0)- Σ

where

(3(y 1 -f

c2

04= "71

1 <&?> n
„ A^L- L-^

' 8s=Tf

, Lι

Γ

/^s\
(36)

with cf uniformly bounded in A,

|^6(σ)|^0(/-4+rΛ). (37)

Also

1/2) (38)

as mentioned above and so, due to (30), the representation (35) also holds for full
/(σ).

Now from (20) and the definition (25) of /(σ) we obtain

Γ i , 2 2

 5

 2, 1
+ - A σ +L Σ dnσn + Lg6(σ)

I 2 n=ι J
«Lα(/ + ̂  0) = const I + - λ'σ2 + L2 Σ <7>" + ̂ 2^(^) | - (39)
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To find the inverse effective temperature βLa = //2, let us search for the minimum of
uLa. From (35)-(39) it follows that the equation

dσ w , -ϋ,*) = 0 (40)
is solved by

^-). (41)
4/ 7

Since /' is the value of \φ\ at the minimum of uLa,

3+™) (42)

with
(43)

We shall shift σ by σ0 in (39) obtaining the ultimate small field representation for
uLa:

uLa(φ)= ΣgLa,n(\φ\-fΎ+wLa(\φ\-n, (44)
n = 2

where

_ 1 L2λ c2 ,n(f,-4+™
gia'2~2ί+yλ + f ' 2 + U }'

L2λ c
3 ' + +0(//~4+ra)'

(45)

wLα(σ) is analytic in σ, |σ| <2j8/α, with first five derivations vanishing at zero and

^« (46)
there.

It is straightforward now that the stability bound (16) holds also for small real
φ, I \φ\ — β'\ < β'" and thus for all real φ. The behavior for the complex fields is then
implied by the translation ζ-*ζ— i l m φ i n ( l l ) which yields

This establishes the properties of the first effective potential.

4. Towards the Renormalized Trajectory

We shall iterate now the above analysis for a general step (11). So assume the
stability bound (16) for e~ua(φ) and the small field representation as in (44):

ua(φ)= Σ 9,.n(\φ\-n"+*Λ<p\-f) (48)
n = 2
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for \\φ\-β1/2\<β* with f2 = β+0(l). Essentially the whole work has been done
already. For example, the stability bound (16) will iterate as before. Only the small
field perturbative analysis has to be carried out again, this time without having to
take care about big λ.

To this end proceed through (20) (with λ = 2#a 2)
 and introduce 7(σ) = /0(σ)

+ /c(σ) as in (25). For |σ|<3/?α, using the stability bound, we obtain

(49)

where <p = (/ + JS?σ + σ,π). After the first step (and, as we shall see also after the
next ones) we have L2y~1 + 0(/"2)^λ + 0(/"2)^A* = (L2-l)y~1, hence
JS? = (l+y;i)-1^ίΓ2 + 0(/~2). Also λy<e<\. Let first |σ| or \π\^Lβ*. Use

y-1β2^ (50)
2j Zj

and

\λ^σσ\^(Ly(λ^Y\σ\2 + L-ly-^σ2)^Ly-l\σ\2^L-ly-lσ2. (51)

Equations (50) and (51) may be dominated by ^y ~1(σ2 + ft2) >^y ~ 1L2β2 and thus
this contribution to Ic(σ) is bounded by e~0(fA*\ If \σ\ and \π\<Lβ<x, then

and

g L2γ ~ 1 \&σ\2 - -U*σ2 + (4/1

(52)
Λ

which can be again dominated by iy~1(σ2 + π2)^-^y~1β2θί, and so

|/e(σ)|ge-w4 > . (53)

Thus we turn into the perturbative regime, i.e. to I0(σ), where

+ £ 0B>a(M-/y + wa(M-/), (54)

and φ = (f + t$Pσ + σ,π). Using

ι ι ,r> _ . -I ~0 -A 2-2 (55)
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where σ = «Sfσ + σ and anticipating that g3 = 0(/~ *), 04 = 0(f ~2),g5 = 0(/3), we
rewirte (54) as

^ -l η / -I 7 -*• -7~9 -*• -*• Λ.4. ^ _^ι^9 J 1 ^

«= 2 A V7 σ π T5*7 π + 4jZ^+j3σπ ~4f3

3 1 _,„, 3 1 _ _ „ 3 1 _3.2sr^TT-*-

(56)

where

|0|^CΓ4+rα. (57)

Now, we compute /0(σ) to the third order in ύ° \ from which we shall extract the

λ ~\ l

-σ2 + u° -J
2 J o

U Λ A -third order in — 1 :

[ 1
-^7"V

2

in the obvious (abusive) notation.

Let us extract from (58) the terms up to -̂  order by writing

Σ ^^<(δ°)p>o= const + Σ ffn^ + ̂ W (59)
p = l P I n = l

with

« λJS?,,,

92 ̂  Pi W ? 93 ̂  ̂ ^3 + ̂ 3 W , (60)

Above, Pf (x) are polynomials in x = (/ ~ 1 , g3, g4, g 5) of order k where the order of
/-1 and ^3 is defined as 1, of #4 as 2 and of ̂ 5 as 3. The coefficients of P\ and dt

depend on λ.

|^(σ)|^0(/-*+ra) (61)

for |σ| <^~lβ", say. All other terms in (58) are also analytic in σ for |σ| <\<£~ lβ*
(as then φ = (/ + ?̂<τ + σ, π) stays in the small field region). Moreover

K(w~o)4>JU !<»">,! ̂ 0(/-4+«) (62)
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there. Let us assume inductively that

|w(σ)|^4Γ4 + roβ (63)

for |σ|< 2β\ Then in (58),

|<w>t|^2,4/-4+Γoα (64)

for \σ\<^'lβΆ. Thus we may rewrite (58) as

5

log /0(σ) = const + Σ <7πσ " + y6(σ), (65)
n= 1

where, by choosing r0 big enough, we may achieve that

|y6(σ)|^34Γ4 + f °α (66)

for \σ\<^^~lβa. Now, Taylor expand y6 to the fifth order. This gives

log/0(σ) = const + Σ (̂  + 0(/-4+-))σ" + y6(σ), (67)
n= 1

where y6 vanishes to the fifth order at zero. With the use of the maximum principle
for y6(σ)/σ6, we infer that for |σ| <3βα,

(recall that 5£ ~ LΓ 2). This contraction will lead to the iteration of the bound (63).
Equations (67) and (53) immediately imply [see (20)] that

uLa(f + σ,0) = const +^λ'σ2+ f (L2

(68)

The minimum of uLά is attained at

+m), (69)

which gives for the new effective temperature

βLά = f'2 = (f + σ0)
2 = βa-(N-l)γ--λ(λ + γ-1Γ%3 + Pl(x) + 0(f-3+n). (70)

Shifting σ by σ0 gives finally the desired small field representation of the new
effective potentials:

«L«(<P)= Σ 9n(\φ\-fr + w'(\φ\-f) (71)
n = 2

for |H-j5'|<j9'" with

g'2=±λ'+P2

2(x) + &, g',=L2^g3 + Pl(x) + &,

g'4 = L2^g4 + L2d4gl + &, g'5=L2^5gs + L2d5g
2 + L2d'5g3g4 + (9,

with (9 = 0(f-4+n). Due to (68), w' satisfies (63) with f^f for \σ\<2β'«.
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We still have to solve (72) to the leading order in 0/s. To this end put for

~2
Jm

/, -/, _ ίM-m,3 . bM-m,3 . -
9a, 3 — 0m, 3 ~ 7 ' 7 3 ' 9m, 3

-m, 3 , SM-m, 3

fm ,*, (73)

jM-m,4 . -

fm

a,5—m,5~ />3 τm,5
Jm

L2λ
where λfe is the kth iterate of λ->λ'= - - - andk 1+yλ

+r«. (75)

A straightforward analysis shows now that

and ξM-m stabilize, all three exponentially fast and that (75) iterates.
The crucial role in the stabilization of the leading order solutions is played by

the contractive factors in front of the leading terms in (72), and by the contractivity
to λ* of λ-+λ'. For example, for yk's we obtain

(76)

from which the behavior of y's follows.
Going back to the changes in the effective temperature, we may rewrite (70) as

(β^βml

βm-ι=βm + bM_m)2logL+bM^3βm^ogL+0(βm

3/2+^, (77)

where bk2 and fefe3 stabilize exponentially fast to the values b2 and i>3,
b2= — (N — l)y/logL, appearing in (14). From this it follows by a standard
induction that βά = β(a) + O(l) on all scales, as anticipated (see e.g. [12]).

This establishes the boundedness of the effective potentials on all scales. Note

that the third order perturbative analysis in — was necessary to arrive at this result

(the b3 term in (14) is indispensable for boundedness of βά). Note also the crucial
role played in the analysis by the asymptotic freedom of the model, that is the fact
that b2<0. Thanks to that, βά increased for small α and the weak coupling
expansion technique worked consistently on all scales. It may seem astonishing
that our hierarchical model is asymptotically free also in the planar N = 2 case,
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unlike the complete model exhibiting quite different behavior for two components
(the Kosterlitz-Thouless phenomenon [13]). This is due to the absence of the wave
function renormalization which in the real model contributes additional y/logL to
b2, and hence the asymptotic freedom appears there only in the non-abelian
theory.

It is worthwhile to compare the effective potentials of (48) with the initial (φ2)2

type theory. Writing

—(φ 2~ β)2— ~(M~/)2H—7(M~/)3H—72" (M ~/)4> (78)

we see that (78) is far from the renormalized trajectory approached by the effective
potentials u& as a->0 (see the next section). From the above analysis it follows that
on the renormalized trajectory λ = λ* + 0(f~ 2), #3 - 0(f ~ 3), \g4\ ^0(f~4 + m). To
improve the convergence to the continuum limit we could just replace the bare
potential of (12) by

u'a(φ) = 2-λ*(\φ\ — /?(α)1/2)2. (79)

This would realize in the leading order of weak coupling expansion Symanzik's
improvement program [14] for the hierarchical σ model.

5. Continuum Limit: The Effective Potentials

We still need to show the actual convergence of ua(φ, d) as α->0. So far we have
seen that they stay bounded. In fact, we have already proven that the β-function
stabilizes to the first two non-trivial orders. Only little work remains. We need to
vary M in α = LΓM, thus denote for any function Fa(ά) = Fm(M), δFm(M)
= Fm(M + l)-FOT(M). We can show the following:

(80)

(81)

(82)

(83)

(84)

5 (86)

% i = 2,4,5, (87)

\δwm(σ)\^C4δmfm

4+ε for \σ\<2β(mγ (88)

and

where the dot stands for the M-dependence. From (80)-(89), our claims about the
continuum limit follow immediately, as we may write

Σ δFm(M) (90)
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and

Σ 0(δm(Af))£ Σ (0(L-(M-m)) + 0(M"Π)<oo. (91)
M=m+ί M=m+ί

The relations (80}-(89) are established by induction in m, starting from m = M — l.
For the latter value they follow by inspection.

We start from (89):

, (92)

where the prime refers to M + 1 . Below we show that

δCL2 = 0(δJ. (93)

As for the second term on the right-hand side of (92), we write

x Σ [Je-M'^+ζ)--^1^C]j7~1[ί^Ww(φ + ζ)~ i^ lζ2dC]L2"p, (94)
p=l

translate ζ-»ζ-ίlmφ and proceed as in (23) and (24). As for ||Reφ|-/?(m-l)1/2|
>^β(m — l)α or \lmφ\ > β(m- l)α we may extract an additional e~0(β2cx} factor, the
bound (89) iterates in this region. For other φ, which satisfy ||φ| — β(m — 1)1/2|
<β(m-l)α, it will follow from (80) to (88).

We still have to show (93). But

δC~1=^δ(e~u-(f-^ + ̂ )e~^~1(d2+^dσdπ. (95)

Insert again 1 = χ + χc. For the χc term, we obtain from (89) the bound δme ~ °UW2°\
For the χ term, (82H88) gives 0(δJ estimate, both provided (80), (81) hold for
m-1.

Hence δum for small fields remains. As in the preceding sections, we start from
I(σ) estimating ( .

δ log/(σ) - δ log/0(σ) + ̂  log 1 + -f^\ ) . (96)
\ ^o(σ)/

Again, only the first term needs some care. It is [see (58)]:

δ log/0(σ) = δ [const + Σ ̂ ^ <(fi°)O J
L P P-

3 ! o

Consider the higher order terms first. So, for example, writing u°'r = u° + rδu0, we
obtain

(98)
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which is easily bounded by 0(<5m/m~4+ε) The same holds for <5<#>( and <5<w>t,
we again get the contraction of the bounds once five Taylor series terms are
extracted.

( 3 (—\)P \

Σ - — p- <(w°)Oj is the one of the variation δ of the
P = I P ! /

relations (59), (60), (68)-(70), and (72) and is straightforward. Notice that we iterate
the properties of δ ( g 3 f ) rather than of δg3 to avoid the cumbersome contribution

of y3(5 1 — I to the latter. It is just <5(03/) which contributes at low orders to <5/?m_ 1?

see (70). The iteration of the bounds on δgmti is due to the contractive properties of
(72) and hence of its variation. For (5/?m_1? we get

m'3+e), (99)

from which it follows that

(100)

so that (81) iterates with Ci ->CX(1 + 0(L'( ~m}/2+fm

 3 +ε)) Thus (81) holds for all
m for sufficiently big C±. This ends the proof of the convergence of the effective
potentials to the continuum limit and establishes the theorem formulated in
Sect. 2.

6. The Green Functions

Let us now study the correlations. We shall show that the Green functions at non-
coinciding points have continuum limit. Rewrite (2) in the rescaled form (Z(ά)

Gk(x1,...,xk)=~lφ(xί) Π e-»^dμGa(φ). (101)
Jv ί=l xeaZ2

Decomposing the Gaussian measure in (101) as in (7) and integrating out the
fluctuation field, we obtain

ί)) Π e-^WdμeΛφ), (102)
i = l xeLaZ2

where xt are the points in LaTL2 closest to x f. We shall iterate this, as long as the
blocked points stay non-coinciding. This leads to the expression

Gfe(x1? ...,xk)=4f Π FΛ(φ(x$ Π e-"*Mχ»dμGa(φ)9 (103)
£ t = l xeάZ2

where xt are in all? The F/s are given by the following recursion

J
F La(ψ) =

with the initial condition

Fa(φ) = φ. (105)
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To prove the existence of the continuum limit of the Green functions for non-
coinciding points, it is enough to prove that Fs(φ) have a limit when α->0 so that
the integral (103) also converges. Then its limit will give the Green functions at
non-coinciding continuum points xt in the unit cube in R2, provided that α is small
enough so that the att2 approximants xt still do not coincide.

First note that (f = βl12, β = β(Ld)) for \\φ\-βV2\<β«,

ULa(ψ)= Σ ίLα.l(H-/)l + *Lα(M-/)= "^ log f e'^'^ ^^dζ + Cθnst.
1=2 (106)

Differentiating both sides over φ, we get

Σ i

= -L^ Je-MO-iv-^ = -ίV'ίFΛφ)-*), (107)

where we have used (104) and (105) in the last step. From (107) we obtain the
following representation

^(<P) = WC1+^(M-Λ^

where a — La and

,

-1.

/ΓLα(σ) is analytic for |σ| <|j?α with two derivatives at zero vanishing and a bound

(no)
Note that FLa has estimates uniform λ.

Large field contributions to FLa will be controlled by the following stability
bound with a — La,

Our notation is in fact somewhat abusive, because for large fields we shall only
control the product Fάe~~ua which is an entire function.

Now (111) iterates under (104) as (16) before, provided the small field
representation (109) does with appropriate bounds. For small fields take

σ, 0) with f = β\12 now and write (104) using (55) as

m \\^Ύ 1+feι *+ό7*
>°) ι + ̂ Λ\ > ' L V 2/ /J / (112)

with |fc|^0(/~3+ε) and the expectation is with respect to measure
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in the notation of (56). A straightforward perturbative analysis supplemented by a
shift σ-»σ + σ0, where σ0 is given by (69) produces

(113)

where 0 = 0(/~3 + ε). Moreover (110) iterates due to the contracting & factor in
front of σ. Equation (113) implies that

^ 2 = ^ + ^ (114)

with ηmj converging exponentially fast to zero and

m-3+ε. (115)

Moreover, since bQ = b0(l + 0(L~(M~m} + fm

3+ε)) also bm^ stays finite when the
ultraviolet cutoff is removed.

This proves uniform boundedness of Fa. To show that they converge when
β-»oo, we study δFα which leads to the variation δ of (113) and (114) and is
standard by now, so that we leave it as an exercise. Notice again that on the

renormalized trajectory b{ and b2 pick up fixed Ol — \ and 0(-^\ terms

respectively so that in order to improve the convergence to the continuum limit by
implementing the Symanzik program to the leading orders, we should consider the
cutoff Green functions

1 k

v ΓT /?~ έ ̂ («)λ*(|φ|-l)2j f l (fn\ (\ Λ f.\
X 1 1 £• ^ί^Ga/β(a)\ψ) \* *®)

xeaZ2

instead of those of (2).
The renormalization group approach, especially simple for the hierarchical

model, allows studying also short distance asymptotics of the continuum Green
functions, especially the logarithmic corrections to scaling, see [15]. This requires
a study of the composite correlations, and although straightforward, will not be
pursued in this paper.
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