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Abstract. Through a Daniell-Kolmogorov type construction, to any Markov
quantum semigroup on a C*-algebra there is associated a quantum stochastic
process which is a dilation of the semigroup, and satisfies a covariance rule
which implies the weak Markov property.

Introduction

In the classical framework, a Markov semigroup is a semigroup (Pt)t^0 of
probability transitions on a (n eventually compact) space X. The Daniell-
Kolmogorov construction (cf. [3, Sect. 1.2]) is a natural procedure for associating
to such a semigroup a strong Markov process which dilates it.

The simplest way of viewing this construction is to build a family (μx)xeX of
probability measures on the space XR + of all (borel) trajectories as an inductive
limit of the measures μϊu...ttn on j r ^ •••»'»> (tί <... <tn) defined by

/£,...,*„(/)= ί/(*i, .->*,^
x

More algebraically, consider the Pt as positive maps from C(X) (the algebra of
continuous functions on X) into itself, assuming they preserve the class of
continuous functions. For any t choose a C*-algebra At isomorphic to C(X); then,
for tί<t2, consider the conditional expectation εt2?ίl from Atl®At2 onto Atί

characterized by
(0.1)

On the tensor product Atn®...®Atl, one defines a family (Etk)k=lί^n of
conditional expectations onto the sub C*-algebra Atk®...®Atί through the
induction formula

The Markov process lies in the inductive limit of the C*-algebras Atn®...®Atι

along the filter of finite subsets {tl9..., t j of R+. Its filtration is given by the
inductive limit of the Et(t e (ί1 ?..., ίπ}), and a time evolution (σs)s> 0 is provided by
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the canonical isomorphisms oίAtJg)...®Atl with Atn+s®...®Atl+s. The filtration
and the time-evolution are linked by the covariance rule:

αso£ ( = £ ί + s o ( j s , Vs,ίΞ>0. (0.2)

One should notice that this covariance property is a step towards the strong
Markov property, which reads

for any stopping time τ [although (0.2) involves only the stopping times τ = ί].
Written for t = 0, it implies the weak Markov property of conditional inde-
pendence of the future with the past, given the present (cf. our comment after
Theorem 3.1 of this paper). Together with additional assumptions for instance
whenever almost all trajectories in the process are right continuous, the covariance
formula (0.2) actually implies strong Markov property.

In the C*-algebraic framework, a Markov quantum semigroup (φt)t>0 is
defined on a C*-algebra with unit A: it is a semigroup of completely positive maps
from A into itself which satisfy ^f(l^) = l^, Vί^O; no continuity requirement is
assumed.

It has been for a long time an open question whether such a quantum
semigroup could always be dilated by a Markov quantum process. After Evans
and Lewis showed that it could be dilated by a semigroup of ^-algebraic
endomorphisms of a larger algebra [4], Accardi [1] attempted to repeat the
Daniell-Kolmogorov construction with a loss of the conditional expectation
property in (0.1) above. Only recently the existence of Markov dilations was
proved by Hudson and Parthasarathy [5] with analytical assumptions on the type
of the infinitesimal generator of the semigroup. (For further bibliography, for the
terminology and the physical relevance of this problem, cf. Accardi [2], and the
Lecture Notes n. 1055 in which [5] is published.) The problem is also stated and
nearly solved, but only for von Neumann algebras, in [8]. (I am indebted to the
referee for having pointed out to me this reference.)

In this paper, the problem is solved in full generality: to any Markov semi-group
is associated, through a Daniell-Kolmorov type construction, a quantum dilation
which satisfies the covariance property (0.2) above, and thus is a Markov process.
The precise statement is detailed as Theorem 3.1.

The main difficulty we had to face, referring to formula (0.1) above, is the non-
positivity of a product φt(a2)aί when both a1 and a2 are positive elements of A. In
other words, as soon as the C*-algebra B is non-abelian, there is no natural way to
write a completely positive map from A into B as the composition of a
representation of A in a larger C*-algebra containing B, with a conditional
expectation of this algebra onto B. The first section of the paper is devoted to a
solution of this problem: to a pair (A, B) of C*-algebras with unit and a completely
positive map φ from A into B, with Φ(IA)

 = 1B> is associated a C*-algebra A*ΦB
which is generated by two representations {a^>a*φίB} and {b->lΛ*φb} of A and B
respectively, and a conditional expectation Eφ from A*φB onto the range of B
satisfying
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This construction, which is a mixture of Stinespring's construction [6] with the
notion of free product of C*-algebras (cf. [7]), will be canonical up to the choice of
an auxiliary state on B; and Sect. 2 is devoted to functorial properties of this
"amalgamated free product" A *φB, in order to be able to iterate it.

In Sect. 3, the problem is solved as Theorem 3.1: those properties allow us to
associate to a finite subset Γ = {tu . . .,ί j of R + a C*-algebra

together with conditional expectations (Et, teΓ) of 9lΓ onto its sub C*-algebra
3lΓπ[0>ί]. The (Slĵ E,) form an inductive system and, as explained for the classical
case, the inductive limit provides the covariant quantum Markov process which
dilates

(Φt)t>0

All this construction can be repeated in the W*-algebraic framework, just by
considering σ-weak closures wherever we consider norm closures, and Theorem 3.1
can be stated for von Neumann algebras, all the morphisms (states, completely
positive maps, conditional expectations, *-endomorphisms) being then normal.
Our paper can then be considered as an improvement of the results of [8].

Some further comments on the result: our construction is a rather rough one,
and highly non-commutative. In order to develop a satisfactory theory of stopping
times (which are the main tool for studying stochastic processes, together with the
supermartingale theorem which is still missing in the non-commutative case), we
need at least two more properties:

- when imbedding the C*-algebra A in the bigger C*-algebra 21, where the
quantum process lies, one should expect that the center of A", or at least part of it
(the ideal center) should be imbedded in the center of 2Γ;

- continuity properties of the quantum semi-group (φt)t^0 should imply
continuity properties in the dilation,.for instance right continuity of the filtration;
none of them is satisfied in our construction.

We know how to remedy those two deficiencies separately, by adapting what
we have done here. However, a satisfactory theory of Markov quantum dilations
will be developed only when they are solved together.

1. An Amalgamated Quasi-Free Product of C*-Algebras

1.1. We are dealing with the following objects:
- two C*-algebras with unit, A and B
- a completely positive map φ: A->B which respects the units: φ(ίA) = ίB

- an auxiliary state ω on B (on which no special requirement will be made).

1.2. We start with a concrete realization of (φ, ω), that is a triple (Ω, H, K) where
- K is a Hubert space together with a (non-degenerate) representation of A in

L(K): K will be written as a left y4-module.
- H is a closed subspace of K, imbedded with a representation of B (H will be

written as a left ^-module), such that
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- Ω is a unit vector in H implementing ω:

For applications, we have:

b), \/aeA, VbeB.

(such a triple exists with arbitrary H by Stinespring construction. Notice that to K
can be added any left ^-module).

1.3. We shall adopt the following notations:

H~ =HQ(£Ω (orthogonal complement of Ω in H)

L = KQH (orthogonal complement of H in K)

L+=KQH =L0Cί2

L=KQAH (orthogonal complement in K of the cyclic span of H
with respect to the action of A)

L+=KQAR- .

We have L'CL, LcL+ CL+ and, in most cases, L = L+ (but we won't need it).
£+®N WJJJ ^ ^ infinite tensor product of countably many copies of L+, with
respect to the unit vector ΩeL+.

We shall consider
- the vacuum vector Ω = Ω®N,
- the creation operators l(η):

(ηeL+ ηx®...®ηn®Ω is the generic vector of

(1.3.1) the canonical isomorphism of L+®L+(g)1N with L+®N, which to the
elementary tensor η®ζ[ηeL+, <feL+<8>N] associates l(η)ζ.

(1.3.2) the decomposition L+®N = (CΩΘL φ (L+®Π®L) of L+®N, obtained by

writing L+®N as a direct sum of the L+®in+1)θ(L+®n®£Ω)) instead of an
increasing limit.

which is a left - B-module, as an ampliation of the left fi-module H.

(1.4.1) We consider the canonical isomorphism W: K * ΩH^K(x)L+®N given by
the following chain of identifications:

+ ®N)φ(CΩ<g>L

(1.4.1)
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so that K *ΩH is imbedded with a structure of left ^-module, as isomorphic to an
ampliation of K.

Our purpose is to show that the C*-algebra A *£ B generated by the ranges of A
and B respectively in K *Ω H does not depend on the particular choice of {Ω, H, K),
as soon as H and K are "big enough;" that there is a conditional expectation onto
the range of B whose restriction to 4̂ is ^ and that the construction has functional
properties which allow us to iterate it.

7.5. Writing J/ = H~©(CΩ, and decomposing L+ Θ I N as in 1.3.2, we get

From this decomposition, the structure of ^-module on K *Ω H can be recovered
as follow: the sum H@L&K of the first two components is mapped by W onto the
subspace K®(CΩ of K®L + Θ 1 N ; gathering two by two the other components, we
get ^-invariant subspaces of K *Ω H

(H~ ® L+ ®π® L)©(L+ ® ("+ 1 }® L);

the restriction of W is given by trivial identifications:

(1.5.1) wH will denote the natural isomorphism of H with the first component of
K*Ω H written as above. We have

VξeH.

(1.5.2) b-+lA*φb will denote the natural representation of B in

if (K *Ω H) = J2?(JΪ)® $£ (L+ Θ 1 N ) .

α-»α *% 1B will denote the natural represenation of A in

5£(K *Ω H) =

We have

1.6. Lemma. Lβί C Ϊ'W K*ΩH (decomposed as in 1.5 above) be in a component

L+φn<g)L, n^O.
1°) Let a be in A, and b in B such that ω(b) = 0. Then

{a*%\B-iA*%φ{a)){\A*%b)ζ

belongs to the sum (L+®"(x)L)φ(L+®("+1)®L) and is equal to

{pL,abΩ®ζ)-ω{φ{a)b)ζ

(where pL+ denotes the orthogonal projection on L+).



96 J.-L. Sauvageot

2°) Letk^ί9al9 ...,akeA, bl9 ...,bkeB such that ωφx) = . . .=ω(fe λ ) = 0.

ft

te/<?«0 to 0 ( L + ® < Π + Λ ® L ) , and we have

<C i,O = ( - l ) k Π ω(^(α^)<C,C>.

Proo/. 1°) For making B to act on ζ, we identify C<ΞJL+<8)"®JL with
Ω®ζe£Ω(g)L+®n®L as a vector in

and, because of ω(&) = 0, (l^*^fo)C is the vector fcί2®C in H'®L+®n®L;
(lΛ*φφ(a)b)ζ is the vector ω(φ(a)b)ζ + pH-φ{a)bΩ®ζ in

For making yl to act, we identify H~®L+ ®"®Lwith a part of K®L + ® n ®L,
and we get

= (ρH-abΩ®ζ)@(pL+abΩ®ζ)

2°) is obtained by iterating Γ).

1.7. Proposition and Definition. Let (Ω,H,K) be as in 1.2, with the following
properties:

(i) The B-module H is faithful (i.e. b e B, bξ = 0, Vξ e H => b = 0).
(ii) The A-module L = KQAH is faithful.
Let A*%B be the C*-algebra in L(K*ΩH) generated by the (faithful)

representations {A3a^a^\B} and {Bafc->1^*£&}. Then:

(1.7.1) There exists a (unique) conditional expectation Eφ from A*ψB onto the
range <LA *$ B of B, such that

• E%la*%ίB-] = lΛ*%φ(a), VaeA
• V n ^ l , V α 1 ? . . . , α n G ^ , Vbl9...9bHeB

with ωφ2) = . . . = coφn) = 0?

(1.7.2). Tfte C*-algebra A**φB (with the representations which generate it, and the
conditional expectation Eφ) does not depend on the particular choice of (Ω, H, K)
satisfying specifications (i) and (ii) above.

Proof of the Proposition.
1) Write, for fc = l , . . . ,n and ξ in H

• ζk=YkYk_1...Y1wHξ.
Then, as in the proof of Lemma 1.6, ζ1 is the vector pLaxb^ in the second
component L( = L+®°®L) of K*ΩH.
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k

By Lemma 1.6, for every fc, ζk belongs to ff) (L+ ®7(x)L), and thus is in the kernel
j=o

of w%. We have shown w%Yn... YxwH = 0. An easy induction argument leads to the
result that, for any n ^ l , α 1 ? . . . , α π in A, bu ...,£>„ in J5,

lies in the range of B. As the J3-module H is faithful [we identify B with its image in
jSf(ff)]5 we can write

£?(«) = U *Φ (wj&αwfl), Vα e A *<$ B.

2) Let q0 be the projection on L=KQAH, as a subspace of the second
component L of K * Ω # . For w ̂  1 ?jet̂ <3M be the projection on L/+ ® L+ ®(π" 1}(χ)L, as
a subspace L+®n®L. (L/+ =KQAH~: cf. 1.3). Then

- gπ(nΞ>0) commutes to the a*^\B{aeA).
- For any n^O, any fc^O, any α 1 ? ...,akeA, any b 1 ? ...,bk, 6̂  + ! eB such that
J = . . . = ω(bk) — 0, then

i=ί

(this comes from Lemma 1.6.2).
From these two properties, an easy induction argument shows that, for any

fc;>l, a n y al9...9ak A , a n y bu ...,bk i n B,

lies in the range of A in &{qn(K
As q0 separates A9 there exists a conditional expectation E'from A *^ B into the

range of A, such that

Let us now prove the following property:

(1.7.3) Let J be a bilateral ideal of A *ψ B which is both in the kernels of E and £'.
Then J = {0}.

For α in J satisfies αgn = 0, Vn^O and αwH = 0. Thus ααwH = 0, \/aeA; thus
α// = 0 for ?/ in (AHnL) = LQU; thus α|L = 0; thus αfc|L = 0, VfeejB; thus α | H - Θ L = 0;
thus (xa\H~(g)L = 0, VaeA; thus ot\(L+ΘL,+)(S)L = O; thus α|L + @ L = 0; and so on.

We now see that (with the same H) when replacing X by a smaller Kx (but still
L1 = K1QAH separating A), then we replace A *J£ B by a quotient algebra, but the
kernel of the quotient map will be an ideal J of elements α of A *J£ B such a\H = 0 and
α|L i = 0, thus £J(α) = £/(α) = 0. By 1.7.3, the quotient map is faithful.

Same thing when replacing H by a smaller Hx (still containing Ω and
separating £), without change of L.
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2. Inductive Properties of A *ψB

2.1. Let Ao and Bo be sub C*-algebras of A and B respectively. Then Ao *£ Bo will
denote the sub C*-algebra of A *£ B generated by {a0 *£ 1B, a0 e Ao} and {\A*% b0,
b0 e Bo}. For instance, A *$ C β and C ^ *£ J5 are the canonical images of A and B
respectively in A *%B.

2.2. Proposition
1°) Let Ax and Bγ be C*-algebras with unit; φγ a completely positive map from

A1 into Bu with ^1(1^) = l B l ; Q a representation (i.e. a *-homomorphίsm ρ(lAί)
= \A) of Ax in A, π a representation of Bx in B and ωί a state on Bx such that:

φ Q φ1

Then there exists a representation ρ * π from At *£* Bγ into A**φB characterized by:

2°) // both ρ and π are injective, then ρ * π is also one to one.

Proof of the Proposition. Let (Ω, H, K) be a concrete realization of (φ, ω) as defined
in 1.2, with H and K satisfying conditions 1.7 (i) and (ii), so that ,4 *^ B is faithfully
represented in K * β ί ί .

Through π and ρ, /ί is a left Bx-module and K a ^41-module; (Ώ, H, K) is also a
concrete realization oί{φuω^).

Let (Ωo, i ϊ 0 , Ko) be another concrete realization of (φl9 ω x) satisfying 1.7 (i) and
(ii) for A1 and Bx. Define

so that AJL *φ ̂ ! is faithfully represented in Kx *ΩHx.
Let V be the natural isometry from K into K x . It satisfies:

. VΩ = Ω

ξ = bγVξ, VξeH,

and, with obvious notations

• F p L + = p L i + F ( t h u s F ( L + ) c L + ) .

Let F b e the isometry V\H®(V]L+)®" from K*ΩH = H®L+®M into K x *
Ω H !

= H 1 ®(LΪ)® N . Then FΓFFΓ* is the isometry F®(F[ L + )® N from K®L+®^ into
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We set ρ*π(α 1 ) = F*α 1F, \/a1eA1 *%\BU to obtain the conclusion of 1).
For we have:

and ^ffW^w^wj^K, so

2) Is a consequence of 1.7.2, which implies that, when ρ and π are faithful,
Aγ *%\ Bί is faithfully represented in K *ΩH.

2.3. Corollary. Let Ao and Bo be sub C*-algebras of A and B respectively such that
φ(A0)cB0. Let φ0 and ω0 be the restrictions respectively of φ to Ao and of ω
toB0.

Then Έ%(A0 *%Bo)C<£A *%Bθ9 and the C*-algebras Ao *%Bo and Ao *^0°Bo are
canonically isomorphic.

2.4.Proposition. Let Ao be a sub C*-algebra of A(lAeA0) and ε a conditional
expectation from A onto Ao (β(l^) = 1̂ ) such that φ°s = φ. Then there exists a
(unique) conditional expectation ε* from A**φB onto A0**φB such that:

(i) E%oz* = E%
(ii) ε*(α*£l β ) = ε ( α ) * £ l β , Mae A

(iii) Vn^l, Vα l 9 . . . ,α Π e4, Vfc1,...,fcBeJ3, with ω(b2) = ...=ω(bn) = 0,

with

and

Proof of the Proposition. Set φ0 = φ\Ao, and let (Ω, H, Ko) be a concrete realization
of (φo,ω) satisfying 1.7 (i) and (ii).

Let K b e a ,4-module such that:
- Ko is a closed subspace of K and a sub ^40-module.

PκoVκoj)Pκo
- L = KQAH is a faithful ,4-module.
Let Vo be the identity isometry from Ko into K, and V0 = V0{H®(V0]L+)®M be

the induced isometry from H * β Ko into H * β K: as in the proof of Proposition 2.2,
αo-»Fo*αoFo is an isomorphism of Ao *%B onto Ao *%QB.
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What we have to show is the following property:
(2.4.1) Vn, bγ, ..., bn, au ..., an as in the setting of conclusion (iii) of the proposition,
then

For Property 2.4.1 will provide an implicit algorithm for calculating

and verifying it lies in Ao *£ B. The existence of ε* = Vo* Vo will be proved together
with properties (i), (ii) and (iii); the unicity will be insured by the existence of such an
algorithm.

Let us prove 2.4.1. We first write, for k<n, (xk = al + (xk

2, with al=(ak

- s(ak)) *£ ίB and al = ε(ak) *£ ίB - ίA *£ φ(ak). As we have φ(ak) = φ(ε(ak)), we have
just to consider two cases: either α k6kerε, or akeA0.

For Coin K*ΩH, set

Consider these two situations:
a) ζ o e I m F o , au...,%_! eΛ0, α fcekerε. Then ( l ^ ^ k K k - i lies in ImF 0 ;

W(ίΛ*bk)ζk-1 lies in K 0 ® L + ® N and Wζk lies in ( K 0 K o ) ® L f .
b) C o e(Kθ^o)®^ + ® 1 N CL + (x)L + ® N , au...,ak-1eA& α k ekerε and

(x)
Then Lemma 1.6 insures that ζk_1 lies in L+ ® L + ®N, so that W(1A *% bk)ζk_1

lies in H~ ®L+®McK0®L+®**: and again Wζk lies in (KΘK0)(S)L+®M.
From a) and b), an easy induction argument leads to the result:

Wζne(KΘK0)®L+®*< if CoelmFo, and Vo*ζn = 0.

As a consequence of the characteristic property 2.4 (iii) and the algorithm it
provides for computing ε*, we get the following corollary:

2.5. Corollary
1) In the situation of Proposition 2.4, let A1bea sub C*-algebra of A such that

G{AX)CAV Then

(a) ε*(A1 JB)cA1*JB.
(b) // ε1 is the restriction of ε and φ1 the restriction of φ to Au then, in the

canonical identification of Aγ *$x B with Aγ ^B (cf. Corollary 23), εf identifies
with the restriction of ε*.

2) Let ε t and ε2 be two conditional expectations in A such that ε1ε2 = ε1,
φoεx— φ. Then ε\ε% = εf.

3. Daniell-Kolmogorov Construction

3.1. Theorem [Markov quantum semigroups admit quantum Markov dilations].
Let Abe a C*-algebra with unit; let (φt)t^0 be a quantum Markov semigroup of A,
that is a family (φt)telSi+ of completely positive maps of A into itself indexed by the
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positive numbers (or any additive subsemigroup of R + J which satisfies:

φo = identity of A and φs°Φt = φs+ti Vs>

Then there exists
- a C*-algebra 91 with unit, generated by a family (ρt)t^0 of faithful

representations of A into 91 (ρs(lA)
 = lyι> V S ^ O )

- for any t ^ 0, a conditional expectation Et of 91 onto 9lf, the sub C*-algebra of
9ί generated by the {ρs(A\ s^t} [E ί(l9 ϊ) = l J

- a time evolution {σ s,s^0} that is a semigroup of *-endomorphisms of 91
[crs(l3,) = 1 ,̂; σsoσt = σs+t, Vs, ί^O; σo = identity of 91], with the following
properties:

(i) EsEt = Es, Vs, ί e R + , s ^ t
(ii) σ soρ f = ρ s + ί , Vs, t e R +

(iii) σsoEt = Et+soσs, Vs, ί e R+ (covariance rule)
(iii') £ s[σ s(9I)] = ρs(^4), Vs^O (weak Markov property)
(iv) £ 0 o ρβ(fl) = ρ o (^(α)), Vα e A, Vs e R + .

Comments. Conclusion (i) means that the {9Xί? Et}t^0 are an increasing filtration of
91.

(ii) insures the coherence of the notations: ρs04) can be interpreted as the
algebra of events at time s (the present at time s), and σs as the time-evolution; the
past of time s will be 9ls = \J ρt(A), and the future will be

(iii) is covariance property. Written for ί = 0, it implies

I = σlQo(A)-] = ρs(A),

which is the weak Markov property (iiiO: all the information contained in the past
9IS and concerning the future σs(9l) in actually contained in the present ρs(A).

(iv) is dilation property; identifying A with 9I0 (through ρ0), it reads

φs = E0oσs\A:

the ^-algebraic semigroup {σs}s^0 dilates the quantum semigroup {^t}ί>o

Proof of the Theorem.
(3.1.1) Let Γ = {ί1,...,ίn} ( ί 1 < ί 2 < . . . < ί n } be a finite subset of R + . To Γ is
associated a C*-algebra 9tΓ, generated by n (faithful) representations ρf (t e Γ) oϊA,
and a family {Et, t e Γ} of conditional expectations of 9IΓ onto the sub C*-algebra
9ίf generated by the {ρfC4), s^ ί } , through a decreasing induction process:

For n = l, we set 9lΓ = ̂ l, ρft = identity

ρf2 = { α - ^ α ^ l ^ } , E f ^ E j , with φ = φt2-tί.

Let Γ 7 = {t2,...,tM}, and suppose you have constructed 9IΓ', the ρf', the £f',
. Then, identifying ρf2'(^) = £f2(9IΓ) with ^ , we write
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and set

Γ f { α - ρ f ( α ) * f U if teΓ
Qt \{a->lmr*fa} if t = t,

Γ _ ί ( E Γ ) * if teΓ (cf. Proposition 2.2.1)
f ~~ 1 πω if t tlh$ l i t = t1.

(3.2.1) Let Γ and Γx be finite subsets of R + , with Γx C Γ. Then there exists a faithful
representation ρfx of 9IΓ l into 9IΓ which satisfies:

1) Qr^Qf^Qt, VίeΓ l 5

2) ρ ^ o E f ^ E f o ρ ^ , VίeΓ l β

This can be proved rather easily: by composition of the ρfl5 we can suppose
that Γ has just one element more than Γv If this element is the first one, we are in the
situation of 3.1.1 above, and properties 1) and 2) come from the definitions.

If it is not the first one, we proceed from this element by a decreasing induction:
Let Γ = {tu...,tn}, Γ = {t2, ...,*«}, Γ{ = ΓίnΓ; suppose you have got ρf(

faithful with properties 3.1.2, 1) and 2); then you set

Orχ = Qr{ *ft2.tl IΛ (Proposition 2.2.1),

which identifies 9ίΓ l with the sub C*-algebra

%-A of 3IΓ;

property 1) is obvious, and property 2) is Corollary 2.5 (1).
(3.1.3) We go now through the inductive limit by setting:

where #" is the filter of finite subsets of 1R+, ordered by inclusion.
Property (i) of the conclusion of Theorem 3.1 is an obvious consequence of 2.5

(2), and property (iv) results obviously from the construction and 1.7.1.
The existence of the time evolution σs (which in this particular case will be one

to one) comes from the construction in 3.1.1, which only depends on the differences
tk — ίk_l5 and is thus invariant by time translation:

Let Γ = {tu ..., tn} and Γ + s = {t1 + 5,..., tn + s}. Then there exists obviously an
isomorphism σξ from 2ίΓ into 2ί Γ + s which satisfies:

• <x[oρf = ρf+

+/, Vs, ί e R ,

We get the (σ s) s^0 by going through the inductive limit.
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