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Abstract. Absence of bound states and asymptotic completeness are proven for
a quantum particle in a time dependent random (Markovian) short range
potential. Systems with confining potentials are also considered and un-
boundedness of the energy in time is shown.

1. Introduction and Results

In a previous paper ([!]) we started studying the quantum dynamics generated by
random time dependent Hamiltonians of the form

Ή(t) = H0 + V(ξ(t)\ (1.1)

where H0 is a self adjoint operator on some Hubert space tf (typically 3tf = L2(ίRv)
or /2(ZV) with HQ= —Λ\ {ξ(t)\teU} = ξ a path of a stationary Markov process on
some state space E with a unique invariant measure μ and V(-) a function on E with
values in the self adjoint operators on Jf.

In this paper we continue the analysis of such systems. The first and main part of
our work is devoted to the case Jίf = L2(RV) for v ^ 3 and H0= -Δ, V(ξ)
multiplication by a short range potential V(ξ9 x) (i.e. sufficiently rapidly decaying at
spatial infinity). From [1] we learn modulo some non-triviality condition assuring
(1.1) to be "sufficiently time dependent" that such a system leaves any bounded
region of its phase space in time mean (this is the "RAGE-theorem" 4.2 in [1]);
however we don't know how. It may tend to spatial infinity, or have unbounded
kinetic energy, or both. We only know states with bounded energy to approach
spatial infinity like a free particle (from Corollary 4.4 in dimensions v ̂  5). We prove
this to be the right behaviour in general. More technically we show the dynamics
generated by (1.1) to be asymptotically complete (with respect to the free one). Let us
formulate our result as a

Theorem. Let HQ = — Δ be the ordinary kinetic energy on L2([RV) with v ̂  3. Further
assume the short range potential V(ξ,x) and the process ξ( ) to satisfy the conditions
2.1-2.5 of Sect. 2. Then i f U ( ξ \ t , s ) denotes the unitary propagator associated to (1.1\
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the wave operators

f-»±oo x~ '

exist and are unitary with probability one. In particular all states /eL2(IRv) have time
bounded energy (in the sense of [7]) and a free asymptotic as ί-> + oo:

lim ||U(ξ|ί,s)/-e-'H°(ί-'>(fl W/H =0;
f-> + 00 ~

f/2£ scattering matrix

S = (Ω~)*Ω +

being unitary.
Note the condition v ̂  3 on space dimension. We think some additional work
should relax this restriction; for a discussion of the (mainly technical) assumptions
2.1-2.5 we refer to Sect. 2. In the second part of this paper we consider the opposite
situation of a confining potential (i.e. such that lim V(ξ,x)= + oo). A simple

|x|-»oo

application of the results in [1] shows that such systems always have time
unbounded energy. Thus, as time goes on, states with higher and higher energy are
excited (think of a harmonic oscillator, weakly and locally perturbed by a random
force). For a precise formulation of the results see Sect. 6, which can be read
independently of the rest of the paper.

The paper is organised as follows: Sects. 2 to 5 concern short range systems. In
Sect. 2 the necessary assumptions on the potential V and the process ξ are listed and
discussed, we also give some of their immediate consequences. The completeness
proof then follows the beautiful time dependent approach of Enss, more precisely its
Jafaev version (see [2,3 and 4]). However the lack of energy conservation make
useless the usual estimates on the cut-off free propagator. Instead we use weaker
results on the full free propagator proved in an appendix; similar estimates have
already been used by Jafaev in [5]. In order to compensate the weakness of these
results, we will need some extra information on the interacting propagator U(t, s), in
the form of a local decay estimate proved in Sect. 3, using a stationary bound on
kinetic energy. Equipped with this propagation estimates we proceed in Sect. 4 to the
asymptotic completeness proof.

The main analytical work, now concentrated in the stationary energy estimate
used in Sect. 3, is done in Sect. 5 and consists in controling boundary values of some
resolvent (L —z)"1 as z becomes real from the upper half plane. We use fairly
standard methods somewhat reminiscent of the three body problem: weighted L2-
spaces, Birman-Schwinger kernels and Fredholm theory; however the setting is
unusual since the operator L is neither self adjoint, nor elliptic and perhaps not even
spectral. Finally Sect. 6 is devoted to the study of confining systems.

2. Hypotheses and Preliminary Results

The conditions to be fulfilled by the potential V(ξ, x) are of three distinct types:
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1 ) Decay conditions are well known to be critical in scattering theory. The borderline
for the existence of ordinary (i.e. short range) wave operators

being at
V(x)~ IxΓ 1 as x-κx).

But, as already stressed by Jafaev [5], completeness of the scattering by time
dependent potentials will be very hard to obtain, at least technically, for potentials
decaying slower than |x |~ 2 at infinity due to the infrared singularity of free
propagation. In fact our method seems to break down at exactly this point for two
reasons: first in the resolvent estimate of Sect. 5 where we are unable to use Agmon
type arguments, and instead have to use the less effective Kato estimate (Lemma 5.2);
second in the estimate on free propagation (last statement of Lemma 4.1). Note that
in both cases the condition v ̂  3 is also essential.
Since we don't want to worry about local singularities, we assume:

for some s > 2.

2) Smoothness conditions are not usually needed if the potential is time independent,
but as seen for example in Kato [6], any loss of regularity in the time behaviour of
the potential have to be compensated by some smoothness in space in order to get
good control of the evolution. The following will suffice:

/ v \
for some «>Maxl 2,- 1, and

d"xWεC(E x [Rv)nL°°(£ x Rv) V | α | ^n. (2.2)

We stress however not to know any physical motivation for such a restriction.

3) Non-triviality conditions clearly are necessary, for the system has to feel the time
dependence of the potential which, destroying quantum coherence, is responsible for
the unitarity of the wave operators. We assume

|Var(K( ,x)- F( ,j;))>0 for a.a. (x,y)eO x Rv,

[where Θ is some non-empty open set in (Rv.

We used the notation

Var(/) = \\f(ξ}\2dμ(ξ}-\lf(ξ)dμ(ξ)\2 Z 0

for any feL2(E,dμ). This seems somewhat stronger than the corresponding
assumption of our first paper, where (2.3) is only required to hold on Θ1 x (92 for
some open sets Θl, Φ2 c Rv. However a moment of reflection shows that under the
smoothness condition (2.2) this is not a real restriction. Note also that (2.3) imply
Var(K( ,x)) ̂ 0 on Rv, and since by (2.2) this is a continuous function of x there is an
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open set 0' c Uv such that

Var(K( ,x))>0 for xeΘ'. (2.3)

We turn to the assumptions on the generator A of the Markov process (ξ(t)}. They
are of two types (recall (Ξ9 2£, P) denotes the underlying probability structure, and
E( ) is expectation with respect to P):

4) Symmetry. Doing scattering theory, we want the potential to be defined on the
whole time axis, i.e. the process {ζ(t)} to be indexed by felR. A convenient way of
doing this is to assume it to be symmetric:

(e~Atf)(ξ) = E(f(ξ(t))\ξ(0) = ξ} = E(f(ξ(0))\ξ(t) = ft

or equivalently its infinitesimal generator A to be self adjoint. Together with the
assumptions already made in our first paper we obtain:

(A is a positive self-adjoint operator on I) =L2(E,dμ)

I with the non-degenerate ground state 1: A l =0.

5) Compactness. Although not strictly necessary it will be technically very
convenient to assume:

A has compact resolvent. (2.5)

This condition is fulfilled by any jump process on a finite state space, any diffusion on
a compact manifold or even any P(φ)ί -process, in particular the oscillator process
(see [7]). (From the proof it will be clear than in fact only compactness of V(ξ, x) x
(-Δ-iA + iy1 really matters.)

We will use freely the spectral representation

with

0 = λ0< λ^λ2^ " being the repeated eigenvalues of A. Either ί) is finite

dimensional, or lim λn= + 00. Note also that the eigenspace to λ0 = 0 contains the
n-» oo

constant functions of ξ.
Conditions 2.1-2.5 are all the assumptions we will need in this paper. We now

briefly discuss some immediate consequences.
Clearly all hypotheses of Sect. 4 in [1] are fulfilled, so there is a nice propagator

U(ξ\t,s) for the Schrόdinger equation

))ψt. (2.6)

Since the smoothness condition (2.2) imply (i)-(v) of [1] with the identifications:

X = L2(UV), Y = H"(Uvl K(ξ) = i(-A + V(ξ,x)\ S = (l-Δ)nί2,

they are two constants M\β' such that for t ̂  5:

||(1 -Δ)n/2U(ξ\t,s)(l -ΔΓn/2\\ ^M'eβ'(ΐ-s} F-a.s.. (2.7)
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Furthermore, via Cook's estimate (see [8]), the decay condition (2.1) imply the
existence of wave operators

Ω ±(ξ I s) = s-lim U(ξ I ί, s)*eiΔ('- >
/-» + 00

with the intertwinning property

Ω±(ζ\t)= U(ξ\t,s)Ω±(ξ\s)e-iΔ(t-* (2.8)

Finally on L2(RV x [Rv x E\dvxdvydμ(ξ)\ let

LQ=p2-k2-iA9 (2.9)

where ~p = —iVx and "£= — iV r L0 clearly generates the contraction semigroup

Multiplication with (V(ξ, x)— V(ξ,y)) being a bounded self-adjoint operator, it then
follows from a standard perturbation theorem (see for example [9] theorem X.50)
that

L = LO + K(ί, x) - V(ξ, y) D(L0) = D(L) (2.10)

also generate a contraction semigroup, easily identified with the expectation
semigroup of [1]:

e-ίL'\l/o®$0®l (2.Π)

for solutions ψt and φt of the Schrodinger equation (2.6). The map φ -> $ denoting
the anti-unitary complex conjugation on L2(IRV).

3. Propagator Estimate

As explained in the introduction our completeness proof relies on some estimate of
the interacting propagation. In this section we derive it from a stationary estimate of
the kinetic energy to be proved in Sect. 5.

Let C be Hubert-Schmidt on L2(ίRv), and assume its integral kernel, which we
also denote by C, satisfies

Then for ^e^([Rv), the Schwartz space of test functions, and with S = (1 - Δ)n/2 a
simple computation shows

(SU(ξ I ί, 0)<A, CSU(ξ I ί, 0)ψ) = (φt ® ft, (S ® S)Q9 (3.1)

where we have set ψt = U(ξ\t90)\l/ and used the same symbol for inner products in
L2(1RV) and L2(R2v). Note that the left-hand side of (3.1) is well defined by (2.7). From
(3.1) we further get, using Fubini's theorem and formula (2.11), for imz > 0,

J J eίzt(Sφt(ξ\ CSφt(ξ))dtdP(ξ) = ] eίzt(eίuφ ® ^<g> 1, (S (x) S (x) 1)C ® 1)
o ~ o

C(g)l). (3.2)



264 C.-A. Fillet

Now we define

L' = L0 + (l-zU"/2K(£,x)(l-zy-^ (3.3)

This is a closed operator on D(L') = D(L\ since by our smoothness hypothesis (2.2)
L — LO is bounded. A standard computation shows

as long as zep(L)np(L'), which is surely the case for large im(z). With the last
identity, (3.2) becomes

J eizt(Sψt, CSψt)dtdP(ξ) = i((L-z)-\8ιίj ®S$®\\C® 1). (3.4)

By the estimate (2.7) and a simple approximation argument, formula (3.4) extend to
all CeL2(R2v) and zep(L')n {im z > /?'}. In order to let z JO from the upper half plane
in (3.4) we need the two following results. The first one is elementary, the second
being our main analytical estimate establishing, loosely speaking, (local) bounded-
ness of the kinetic energy (recall that formally L = (p2 + l)"/2(/c2 + 1)"/2 x
L(p2 + lΓ"/2(/c2 + 1)~"/2).

Lemma 3.1. Let f(t) be a positive measurable function such that the integral

exists for big positive ε. Then there is an ε0 such that this integral converges for ε > ε0,
diverges for ε<ε0, and is an analytic function g(ε) on the half plane {Reε>ε0}. This
function, which may have an analytic continuation across the line Re ε = ε0,must have a
singularity at ε = ε0.

The proof of this lemma being very easy we omit it. Note however the analogy with a
well known theorem about analytic functions having positive Taylor coefficients at a
point (see [10]).

Theorem 5. {im z > 0} c ρ(L) and (L — z)~l extend to a continuous function from
to

for any δ > 1/2.
Assuming C to be positive and such that

Q = (l+x2)"2C(l+x2)"2 (3.5)

is also Hubert Schmidt, we may combine these two results to obtain from (3.4),

^

(3.6)

(Remember ^e^(Rv) so
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The last identity further gives for φeC$ (Uv)

f I (ψt , φ(x)φt) I dtdP(ξ) ^ J If OA, , I φ(x) I φt)dtdP(ξ)

δ®i) (3.7)
with

c = s-1 |^WIS"1.
Since from definition (3.5)

with bounded first and last factors, we obtain from standard trace ideals estimates
(see [8] or [11])

and thus with Theorem 5, (3.7) becomes

J J IOA,, φ(x)φt)\dtdP(ξ) £ (M0 1| ιA II2,,) I I 0 ||L|a

for some constant M0 and norm \\ \\ntδ. Thus the linear map

Jt\ L\b(W} -> Ll(U +xΞ) (3.8)

defined by

(3.9)

with fixed ι^et9
ί'([Rv), is bounded, with norm smaller than M0 1| ψ \\2

tδ. On the other
hand (3.9) clearly defines a bounded linear map

^r:L00(Rv)-^L00(IR+ x Ξ) (3.10)

with norm smaller than ||ι/Ί|2. Interpolating between (3.8) and (3.10) gives

^6«(Lif/p(Rv),L^R+xS)) (3.11)

for 1 ̂  p ̂  oo (see [12] for example), the norm in L\p

δlp being defined by

Applying this result to the special case φ(x) = (l -h x2)~α we obtain finally,
optimizing over δ:

Theorem3. Let p ̂  2 and ap>v/2+\, then for any φ

OO

J 1 1 ( 1 +χ2)-α/2(7(ξ|r,0)ιA|Γ ί / f < o o P-a.s..

Remark. We proved Theorem 3 for f >0, but clearly an analogous result holds for
ί < 0, which we will use without further comments.
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4. Asymptotic Completeness

Let y o c <f(Uv) be a denumerable dense set in L2([RV), and choose y and p such that

(4.1)

Then from Theorem 3 we can find a set Ξ0 of full P measure such that

J | |(l+xT< 1-y ) s / 2tf(£|t,0)/| |pΛ<ooV£eϊ0andV/e,$V (4.2)
— oo "*

To get sufficient control on the free evolution we will also need the

Lemma 4.1. There are two bounded self adjoint operators P+ , P_ on L2([RV) such that

P + + P _ = / , | | P ± | | = 1,

s-limPτ<Γl'Hoί = 0 (we set H0 = -Δ\
f-»±αo

φ(x)e+'HotP± are compact ift>0 and φ bounded and vanishing at infinity.
Furthermore ifv^l and σ>2 there is a constant C such that

| | (l+ χ2 )-σ/2^T/// 0ίp± | |^C(H-0~ 1 fθΓ ί > 0.

P- (respecti velyP+) have to be interpreted as projections on the incoming
(respectively outgoing) scattering states (see [2]).

A similar result has already been used by Jafaev in [5], however since our norm
estimate is not contained in [5] the lemma is proved in the appendix.

From now on we consider a fixed path ξeΞ0, and drop any reference to it.
Assume

(O). (4.3)

There is some fe^0 with || φ—f\\< ε, and by (4.2) a sequence {tn} such that

tn-+ + <x>and\\F(\x\<n)U(tn9Q)f\\-+Q as n-^oo. (4.4)

We set f n = U ( t n 9 Q ) f , then

2=\\fn\\2=(fn,(P++P-)fn)

We now estimate the four terms in the right-hand side of the last identity as n -> oo .

(i) (fn,Ω-(tn)P + fn) = (fn,U(tn^)Ω-(Q)eiH^P + fn} by (2.8)

The first term vanishes by assumption (4.3), and the second is bounded by ε | | / |
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thus

\(fn,Ω-(QP+fn)\^ε\\f\\

(ii) (/„, Ω +(OP_/Π) = (/„, U(tn, 0)Ω +(OyH°'"P_/n)

= (f,Ω+(ΰ)eiH°t«P_fn)

since by Lemma 4.1 s-limP_e~ίίίo'" = 0.

= -Him (/„, U(τ, tn)*(l+X

2Γsl2W(τ)e-'Ho(τ-'"}P+fn)dτ
ί-»00

= -i lim

which can be estimated by

J ||(1 +x2Γ ( 1-
tn

/oo

^ II WΊloo 11/11 ί

oo \ l / 9

f \\(l+x2Γys/2e-iHoτP+\\qdτ ,
o /

with g 1 = 1 — p 1 by Holders inequality. The second integral is finite by Lemma
4.1 since q > 1 and ys>2 by (4.1). The first one vanishes as n-»oo by (4.2). Thus

( f n , ( l - Ω ~ ( t n ) ) P + f n ) = o(i).

(iv)(/π,(l-ί2+(g)P_/M) = (/π)(l-ί2+(g)P_F(|x|<n)/J

+ (fn(l-Ω+(tn))P-F(\x\>n)fn).

The first term being bounded by 2| |/| | | |F(|x| <n) U ( t n 9 0 ) f \ \ = o ( l ) by (4.4), the
second term can be handled in the same way as in (iii) to yield the bound

o
ί l l ( i + χ2)-(1-y)s/2t/(τ,θ)/Γ

-co

/oo \ l / β

• f 11(1 +x2Γγs/2eίHoτP-F(\x\>n)\\qdτ .
\ o /

The first integral is finite by (4.2). The integrand of the second is dominated by

\\(l+x2Γys/2eiHoτP-\\q,
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which is integrable by Lemma 4.1. Now by the same (1 + x2)~γs/2eiHoτP_ is
compact, and since F(\x\>n) strongly vanishes as rc-> oo, the integrand vanishes
pointwise as n -> oo . Application of the dominated convergence theorem gives

Collecting our four estimates (i)-(iv),

H / l l 2 H I / J 2 ^ β | | / | | + o ( l ) a sn->oo,

and thus

\\φ || ^11/11 + || φ-f\\ ^2ε.

Since ε was arbitrary we conclude </> = 0 and Ran Ω ~(0) = L2([RV). This holds for any
£eS0, therefore

P[Ranί2 -(ξ\Q) = L2(RV)] - 1.

The same analysis clearly applies to Ω+(ξ\0). We have proven

Theorem 4. The wave operators ί2±(^|0) are unitary with probability one.

5. Resolvent Estimate

5.7. Resolvent Formulae. We set

They are bounded operators on L2((R2v x E). Also

F! = (1 - Δxγ'2(\ + x2Γs/4(l - Δx

F2 = (1 - 4//2(l + j;2)-s/4(l - Δy

G! =(1 - 4J"/2(1 + x2)
G 2 =-(l-4// 2 (l+

all are bounded, and

Ej = FjGj=GjFj (j-1,2). (5.1)

Finally let

Λ0(z) = (L0-z)-1,

Λ/z) - (L0 + £7 - z)- 1 = (Lj - zΓ 1 (/ = 1,2),
Λ(z) = (L0 + £ 1 +£ 2 -zΓ 1 =(L / -zΓ 1 .

Since by (5.1) \\Ej\\ ^ \\Fj\\ \\Gj\\, we have

(z | imz > || Fί || || G, \\ + I I F2 1| || G2 1| } c pfrJnpiLJnp^npM,

and on this set a simple computation shows

K/z) - K0(z) - Λ0(z)Gχi + Q^)ΓlFjR0(z) (j = 1,2), (5.2)

l -βίz))-^! +Q2(z))-1F2Λ1(z), (5.3)
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where we have defined the Birman-Schwinger kernels as:

QJ{z) = FjR0(z)Gj 0=1,2), (5.4)

6(2) = (1 + e2(*)r1fI2*o(*)Gi(l + <21(z)Γ1F1K0G2. (5.5)

Formulae (5.2) and (5.3) will allow us to control the resolvent R(z) as z becomes real
from the upper half plane.

5.2. The Birman-Schwinger Kernels β/z). Clearly we only need to consider Qι(z\ the
case of Q2(z) being completely analogous. We use the fibration

L2((RV x R v x E) = L2(U\ dvk; L2([RV, dvx) ® L2(£, dμ)\

which reduces βι(z) according to

Lemma 5.1. q(z) is a compact valued analytic function on the open upper half plane,
continuous on the closed upper half plane and

lim || q(z) \\ = 0.

Proof. Recall S = (1 - Δ)n/2 and let T = (1+ x2)s/4, then

The last factor is bounded by (2.2). The two operators ST~1S~1T and
are also easily shown to be bounded, thus it suffices to consider

T~ί( — Δ — ϊA — z)~1T~l = @{T~l( — Δ — iλn — z)~1T~1}. (5.7)
n

Analyticity in the open upper half plane is clear; to go further we need the

Lemma 5.2. Let /, 0eZ/(IRv) (2 ̂  p ̂  oo) and 0eL2(Rv), then

\\f(x)eiΔtg(x)φ\\^(2π\t\Γv/p\\f\\P\\9\\P\\Φ\\
for im t g 0.

This result is well known, at least for real ί, but its proof by interpolation easily
extends to im t ̂  0, see for example [9]. Now from the representation

Lemma 5.2 implies via dominated convergence continuity of each summand in (5.7)
in the closed upper half plane. Continuity of the sum follows from the estimate

(5.8)

as Λ/ -» oo. Compactness follows from the same argument, since each summand in
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(5.7) is compact for imz > 0. From (5.8) and

lim
R->oo

I = 0 Vε>0,

we easily see that

lim \\F(\x\<R)(-Δ-zΓ1F(\x\<R)\\=0 V K > 0
z~* oo
imz^O

suffices to prove the last statement of the lemma. But

F(\x\<R)(-Δ-zΓ1F(\x\<R)=i]eίztF(\x\<R)eiΔtF(\x\<R)dt
o

= -i j eίz(ί-π/z)F(|x| < R)eMiF(|x| < R)dt.
o

Using analyticity of the free evolution in {im t < 0} we may deform the integration
contour in the last integral, obtaining

1= eiztF(\x\<R)eίΔtF(\x\<R)dt

-]eiztF(\x\<R){eiΔt-eiΔ(t + π/z

The first integral is bounded in norm by π/2|z|. By the dominated convergence
theorem the second will also vanish as z->oo if F(\x\<R)eiΔtF(\x\<R) is norm
continuous in C\{0}. But

\\F(\x\<R)(eiΔt-eiΔs)F(\x\<R)f\\2

= i
\x\<R

eί((x-y)2/4t)

Λ v / 2{ (4π/f)"2 (4πis)v/2 f(y)dvy dvx

* I ί
.\y\<R

ei((x-y)2l4 t) ei((χ-y)2!4 s)

(4πit)v/2 (4πis)v/2

^ Const sup
κ«m
v/2 l l / l l 2 ,

and thus

lim \\F(\x\<R)(eίΔ'-eiΔs)F(\x\<R)\\=0,

which achieves the proof. Π
Next we claim that (1 +q(z))~1 exists for all z in the closed upper half plane.

Assume for z0 this fails to be true; then there is a ^eL2([Rv x E) such that

= lim q(z0 + iε
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Using [S~1

9(-Δ -iA-zQ-i£)~l~\ = 0 in formula (5.6) and multiplying the last
identify with S"1 it becomes

V + Sr "V = 0- (5 9)
βio

We now take the imaginary part of the inner product of (5.9) with WS~lφ to obtain

ε|0 n

If im z0 > 0 this clearly implies T" * WS~ 1 ψ = 0 and by (5.9) ψ = 0. If im z0 = 0 we
only have (T~ 1 WS~ V)« = 0 for n > 0, but then

lψ (5.10)

is independent of ξ (i.e. φn = 0 for n > 0), and 06Lls/2(!Rv)? since by (5.9)

T-1φ=-S-1φeL2(Rv). (5.11)

Using the distributional inverse to (5.10),

we obtain, multiplying (5.11) by WT~l = VT

z0φ(x). (5.12)

Since this distributional Schrόdinger equation has to hold for μ — a.a. ξeE, (2.3)'
clearly implies

Further 0eLls/2 c=L,2

oc and by (5.11),

φ

We are now in position to apply the

Lemma 5.3. Assume KeL°°([Rv) and let 0eH,2

oc(Rv) satisfy

then if φ vanishes on some non-empty open set, it vanishes everywhere.
This is a special case of Theorem XIII.63 in [13]. Thus (5.12)-(5.14) imply φ = 0

and (5.1 1)^ = 0; the claim is proved. Now, since sup ||(1 +q(z))~1 \\ <oo by the last
imz^O

statement of Lemma 5.1, (1 + g1(z))~1 also exists for all z in the closed upper half
plane and

sup +ei
imz^O imz^

Further

\\F(k2>E)(\-(l+Qι(z)Tl)f\\2=
k2>E



272 C.-A. Fillet

and thus applying once again the last statement of Lemma 5.1,

lim \ \ F ( k 2 > E ) ( l - ( l + Q1(z)Γ1)\\=V,
£->oo

uniformly on compact subsets of the closed upper half plane. Since clearly

F(k2<E)(l+Q1(z)Γl

is norm continuous on the same set, we obtain norm continuity of (1 4- Qι(z))~ 1. On
the open upper half plane we have

Z ' Z Z Z

from which

follows in the uniform topology. We just proved the

Proposition 5.4. (1 + β/z))~ 1 are bounded continuous functions from the closed upper
half plane to the bounded operators, analytic in the open upper half plane.

5.3. The Birman-Schwinger Kernel Q(z). Recall

The first and third factors are controled by Proposition 5.4, for the second and
fourth we need the

Lemma 5.5. Let φεC$(W\ then the operator

φ(x)RQ(z)φ(y)

is compact for im z > 0.

Proof. As in the proof of Lemma 5.1 we have

φ(x)R0(z)φ(y) = ®φ(x)(p2 -k2- iλn - z}~lφ(y\
n

and it will suffice to prove compactness of each summand. This is done in two steps:

(i) φ(x)(p2 -k2- zΓlF(p2 < E) φ(y) is compact for im z > 0.

We may write

φ(x)(p2-k2-zΓlF(p2<E)φ(y)

= (φ(x)F(p2 < E)) F(p2 < E ) ( k 2 + 1Γ
\p-k-z )

= ( C ί ® I ) B ( p , k ) ( I ® C 2 ) , (5.16)
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where Cί and C2 are compact while B(p, /c)eL°°(ίR2v). Assume for a while Cl , C2 to be
rank one

Cj = (fj9 )gj. (7 = 1,2).

Then (5.16) will be Hubert-Schmidt since its kernel

clearly is square integrable. The result now follows by approximating C± and C2 by
finite rank operators.

(ii) lim || φ(x)(p2 -k2- zΓ1F(p2 > E)φ(y) \\ = 0.
£-»oo

The proof of this statement is a simple modification of the proof of Lemma 3.8 in
[14], we omit it. Π

Now, consider for example

2 = - (1 - Δxf\\ + x2Γs/4(l - ΔXΓ"12

•R0(z)(l - Δyf\\ + y2Γsl4W(ξ,y)(l -ΔyΓ
n/2

with obvious notation. The first, third and forth factors are bounded, and choosing
ΦE€Q(UV) to be one near x = 0 we clearly have

ι fΛ (yT~lRQ(z)T~l = lim T~lφ( — \R0(z)φ{ —
κ->oo \RJ \R

in the norm. Thus application of Lemma 5.5 gives compactness of F1R0(z)G29 the
same of course being true for F2R0(z)G1. From (5.15) we obtain compactness and
analyticity of Q(z) in the open upper half plane. To see what happens as z becomes
real, we note that combining (5.2) with (5.15),

The critical term on the right-hand side of this identity can be controlled in exactly
the same way as we do in Lemma 5.1,

F2(R1(Z) - RQ(Z))G2 = (SyTy 1S~1Ty)T~ ^ (R Q(z) ~ R^Ty *

and we need only to consider

(5.18)

Lemma 5.2 and dominated convergence theorem together imply continuity of (5.18)
in the closed upper half plane.

Summarizing. Q(z) is an analytic function on the open upper half plane, continuous
on its closure with values in the compact operators.
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As in subsection 5.2 we now claim (1 — Q(z))"1 to exist for all z in the closed
upper half plane. Thus let us assume ^eL2([R2v x E) such that

Multiplying with (1 + β2(
zo)) we obtain by (5.17),

F2Rι(zQ)G2φ 4- ψ = lim.F2^ι(zo + iε)G2ψ + ψ = Q9
εJO

or more explicitly and after multiplication by S~1,

lim T- ̂ (zo + iε)T;1 W(ζ,y)S~ V = S~ V (5.19)
40

Taking the imaginary part of the inner product of (5.19) with W(ξ,y)S~ 1ψ, we arrive
at

lim £(λΛ + im z0 + ε) || (tf ̂  + iε)T~' M^(ί, y)Sy" V). I I 2 = 0.
fiiO n

If imz0 > 0 this implies R^z^Ty1 W(ξ,y)S~ίφ = 0 and thus ψ = 0. If imz0 = 0 we
have only that

φ = R&o + /0)Γ;x W({, 3;)S; V (5.20)

is independent of ξ. We now may write (5.19) as

Γ-10 = S3ΓV» (5.21)

from which we conclude

(Rv) (5.22)

(which is a shorthand for/(>;)(/>eL2([Rv)®#"([Rv) V/6C^([RV).) Multiplying (5.21) by
TylW(ξ,y)*nd using

(p2 - k2 - ίA + F(ξ,x) - zQ)φ = T-1 W(ξ,y)S- V,

which is the distributional inverse of (5.20), we easily obtain

(-Δx+ V(ξ,x) + Δy- V(ξ,y))φ(x9y) = z0φ(x9y). (5.23)

From this and (5.22) we further obtain 0e//2(Rv)®//"o;
2(IRv). As in subsection 5.2

we conclude from (5.23) and (2.3)

0Γn'x0 = 0. (5.24)

We are ready to apply

Lemma5.6. Assume FeL°°([Rv) and let φeH2(Uv)®H2

oc(Uv) satisfy (-Ax +
V(x))φ(x9y) — ( — Ay+V(y))φ(x,y) = zφ(x,y\ then if for some non-empty open set

φ vanishes everywhere.
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Proof. H = — Δx + V(x) is self adjoint on #2([RV), and there is a measure space (M , v)
such that for some function / on M

L2(ίRv)~L2(M,dv),

H acting on L2(M) by multiplication with/. (This is the spectral theorem, see [15].)
Thus

L2(RV) <g> H,2

OC(IRV) ~ L2(M) (x) H?0 C

φ(x,y}^(j) (m,y)
and

( - Δy + F(jO)#(m, 30 = (f(m)

<?rMx<P = °

Application of Lemma 5.3 gives the result. Π
From (5.22)-(5.24) we get φ = Q, and from (5.21) ψ = 0 proving the claim.

Proposition 5.7. (1 + Q(z))~1 is an analytic function from the open upper half plane to
the bounded operators, continuous on the closed upper half plane.

5.4 The Resolvent R(z). Proposition 5.4 and 5.7 together with formulae (5.2) (5.3)
clearly imply analyticity of R(z) in the open upper half plane, i.e.

{imz>0}c:p(L').

For δ > 1

^^

has, by Lemma 5.2, a continuous extension to {im z ̂  0). In the same way, the same
property holds for

(1 + y2Γδ/2Rί(z)G2 and F2R1(z)(l + y2Γδ/2

Thus by formula (5.3)

(l+3;2)^/2^(z)(l+3;2)-δ/2 (5.25)

is continuous on {im z ̂  0} for δ > 1. Clearly the same is true if we replace y by x in
(5.25). Interpolating between the two cases we obtain our

Theorem 5. The resolvent R(z) = (L — z}~ 1 is analytic in the open upper half plane,
and extend to a continuous function from its closure to

rf&( T 2/O)2v\ /Γx T 2( ΓΛ τ 2 /Ό>2v\ /o\ r 2 / r Λ \
y&(Liβ(H, )(X) L, (£J, L/_^lHί )(g) L, \EJ))

for any δ >j.

6. Confined Systems

In this section we consider the random time dependence of the potential as a
perturbation, the unperturbed potential satisfying:
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(6.1)

(6.2)

lim U(x)= + 00. (6.3)
|x|-κ»

Since the argument of this section is very close to [1], we will be very sketchy. The
unperturbed Hamiltonian

H0 = -Δ + U(x\ (6.4)

well defined as form sum, is a selfadjoint positive operator with compact resolvent
(see for example [9] and [13]). We perturb it in the usual way with a potential V(ξ, x)
which we assume continuous in the first, and two times continuously differentiable
in the second argument, with bounded derivatives. We also assume the non-triviality
condition (2.3), and the usual hypotheses on the process ξ(-) (see [1]). Then the
general results of [1] may be applied to the quantum evolution generated by

H(t) = HQ+V(ξ(t),x). (6.5)

The only problem is to verify the spectral condition (£). This may be done as in the
appendix of [1], provided we can extend the unique continuation theorem used
there to the operators

H(ξ) = H0+V(ξ,x) (ξeE).

The proof of such a result is an easy modification of that given in [13] once we note,
as a simple consequence of (6.1)-(6.3):

Thus under our assumptions

with probability one for any compact C and any state /. Applying this to the spectral
projection

C = F(H0<E),

which is compact for any finite energy £, since H0 has compact resolvent, we obtain
the desired result:

Any state / has, under the time evolution (7(ί, s) generated

by (6.4)-(6.5), an unbounded //0-energy (with probability one).

For similar but stronger results on the perturbed harmonic oscillator see [17].

Appendix. The Asymptotic Projectors P±; Proof of Lemma 4.1.

Here we start with the momentum representation
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and thus look at x as a differential operator

_^_._d_κ~ιw
All Sobolev spaces over Uv in this appendix have to be understood in this setting, and
we will drop any mention of the independent variable ~p. The formula

(A.,)

clearly defines a partial isometry

J:Jf->Jf = L2(R, dλ) ® L2(SV ~\dω) (A.2)

whose range Jf + = L2(U + ,dλ)®L2(Sv~1,dω) is nothing but the space of spectral
representation for the free Hamiltonian p2, thus

J+J = I,

JJ+=F(λ>Q). (A.3)

Let us also define

S = , A (A.4)

on Jf. Then λ and S are canonically conjugated operators and in particular the free
evolution e~ip2t acts as a shift on S:

SJe ~ ip2t = Se~iλtJ = e- ίλt(S + t) J. (A.5)

This strongly suggests to set

The first immediate consequences are:

P+ + P_ - J + {F(S > 0) 4- F(S

| |P ± | | g l ,

and a short computation using (A. 3) gives

P* = P± +'

Also very easy is:

by (A.5)

as ί-> ± oo,
i.e.

s-limP±e~ip2t = 0.
f^±CO
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The norm estimate of Lemma 4.1 requires some more work, but the idea is very
simple.

We claim for v ̂  3 and σ > 2:

Je@(Hσ(Rv\ H^R) (x) L2(SV~ *)). (A.6)

From this let us prove our norm estimate; for simplicity we only consider the case
ί-> + oo:

\\P.e-ip2\\ + x2Γσ'2f\\ = \\J+F(S<Q)Je-ip2t(l+x2Γσ/2f\\

^ \\F(S<tye~iλtJ(l+x2Γσ/2f\\

^\\F(S<-t)J(l+x2Γσ/2f\\

^\\F(S<-t)S-1SJ(l+x2Γσ/2f\\

^\\F(S<-t)S-l\\\\SJ(l+x2Γ°l2f\\

| 11/11,

where ||| J||| is the norm corresponding to (A.6), and we are done. Let us now prove
the claim in three simple steps:

Step I.

Let /eC^([Rv), then a simple computation shows

(idλJf)(λ, ω) - (JTf)(λ, ω) for λ > 0, (A.7)

where T is the formal time operator

But dp = p xe&(H'(Rv), Hσ~l(U*)) and a simple estimate gives p~re3#
(HS(UV\ L2(UV)) if r < Min(v, 5). Thus with our assumptions v ̂  3 and σ > 2 we obtain

and the first step is achieved by (A.7) and a density argument.

Step 2.

By a well known characterisation oίH^R + ) (see for example [ 1 6] ) it suffices to show

λ-1(Jf)(λ,ω)£L2(R+ xSv~l) for feHσ(Uv).

But

λ~ίJf=Jp-2f,

and by the same estimate as in step 1 p~2e^(/fσ,L2), which prove step 2.

Step 3. Use the following standard fact in Sobolev technology (see also [16]), i being
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the imbedding of L2(!R+) in L2(R):

from which the claim clearly follows.
Finally let us prove the compactness statement of Lemma 4.1. We consider only

the case t > 0, i.e.

P_e~ip2tφ(x) = P_e~ip2tF(\x\ < R)φ(x) + P-e~ip2tF(\x\ > R)φ(x).

Since the second term in the right-hand side vanishes in norm as R -> oo by our
assumptions on φ, we need only to show the first term to be compact for all /? > 0,
this can be further written as

P.e~ip2t(l + x2)- 1/2{(1 + x2)1/2F(|x| < R)φ(x)}9

and we need only to consider the case φ(x) = (1 + x2)~1 / 2. To get a further
decomposition assume a function χeC°°(IR) to be given with the properties:

(i) O ^ χ ^ l

We then set χE(λ) = χ(λ/E) for any E > 0 and note by (iii)

I l K E l l o o ^ E - 1 . (A.8)

Then
2"1 '2*2)

and the second term in the right-hand side being clearly compact, we only need to
prove the vanishing in norm of the first term as E -> oo . To do that we first look at

II 1 Si JχE(P

2)(\ + χ2)- 1/2/ 11 = 11 SχE(λ) J(\ + χ2Γ 1/2/ 1|

+x2Γ1 / 2/|| H- ||χ

and use (A.7):

i.e.

χE(λ)F(λ > 0)SJ = χE(λ)SJ = χE(λ)JT = JχE(p2)T

from which

(l +χT 1 / 2/H ̂
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where we have used the properties (i)-(iii) and in particular (A.8). Then we obtain:

II P /?~'P2ί<v in^\i\ _ι_ v-2"\~ 1/2 )| <* ]) cvc ̂  ΓV\,o~iλί T., / r ,2Λ/ι i ^2^— 1/2 nII r — C XE\P )\* ' -̂  / II = II -* w ^ ̂ /^ **XE\P )\* > x ) II

^||JF(S<-t)^£(p2)(l+x2)-1/2ll

1^ , , t^,* ~>^ _ 1 /-» II ^ ^χv/i±oι, Λ |—|
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