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Abstract. We consider a system of N hard disks in U2 in the Boltzmann-Grad
limit (i.e. N-» oo, d \ 0, ΛΓ d->Λ~ * >0, where d is the diameter of the disks). If λ is
sufficiently small and if the joint distribution densities factorize at time zero, we
prove that the time-evolved one-particle distribution converges for all times to
the solution of the Boltzmann equation with the same initial datum.

1. Introduction

It is generally believed that in certain limit situations the dynamics of a gas of
particles can be described by the Boltzmann equation. One of the basic problems in
the foundations of kinetic theory is to prove the validity of this statement in a
rigorous way, assuming, as a starting point, the laws of classical mechanics. The
difficulty and appeal of this problem stem from the necessity that one has to relate
two evolutions with very different natures: Newtonian dynamics, which are
deterministic and reversible, and Boltzmann dynamics, which have a stochastic
character and are irreversible.

A first result in this direction was obtained by Lanford [1] who deduced, in a
rigorous way, the validity of the Boltzmann equation for short times (on the order of
magnitude of a fraction of the mean free time).

In this paper we consider a two-dimensional system of hard disks and prove, by
following the general strategy proposed in [1], the validity of the Boltzmann
equation for all times in the case of a gas allowed to expand into free space and for
large enough mean free paths (in comparison with the initial datum). In doing this
we use the idea developed in [2] for solving the Cauchy problem for the Boltzmann
equation in the corresponding three-dimensional situation-namely, that free flow
has good contracting properties on functions rapidly decreasing at infinity.

We discuss the limitations of our result. The method applies to cases in which the
density decays at infinity, so thermodynamical situations elude our analysis.
Furthermore, we are not able to treat more realistic three-dimensional systems. This
is probably a technical difficulty. Finally, we assume that the gas be rarefied in the
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sense that the mean free path has to be large enough. Although our estimates are not
optimal, this constraint could be really essential, also from a physical point of view.
In any case: In order to answer the validity question for the Boltzmann equation, one
first has to solve the associated Cauchy problem, and a positive answer for this
problem, globally-in-time, is not yet known in the general case.

2. Formulation of the Problem and Main Results

We consider the time evolution of N identical disks in IR2, interacting by means of
elastic collisions. We denote by φd

tX = (xd

1(t),...,xd

N(t),vd

1(t),...,vd

N(t)) the positions
and velocities of the particles at time ί, where X = (x, , ... ,XN, i^ ,...,%) denotes the
phase point at time 0 and d is the diameter of the particles. The flow φd X is defined
almost everywhere with respect to the Liouville measure dX = dxί -dxNdv1'-dvN.

Let

μd(dX) = μd(X)dX (2.1)

be an absolutely continuous probability measure on the phase space of the system
and

l...dvN (2.2)

the joint distribution densities. We assume μd (and hence the fk) to be symmetric
with respect to the variables qi = (xi9 v^, because the particles are indistinguishable.

Let

μd(X)dX = μd(φd_tX)dX (2.3)

be the time evolved measure and let/j^ be the associated joint distribution densities.
Then

dsSd(t - s)Cd

ktk + 1f
d

k + lt89 (2.4),
o

where
/Jif = 0 if j>N, (2.5)

»*) =fd

k(Φd-t(*ι * ' Xk,»ι ' »*)), (2.6)

'(ϋj-ϋ* + ι)/^^ (2.7)
j=ι

and n denotes a unit vector in [R2.
The derivation of the hierarchy of Eqs. (2.4) can, e.g., be found in [3], but the

discussion there is largely formal. The hierarchy corresponds to the well-known
BBGKY-hierarchy, usually established for particles interacting via smooth poten-
tials, and is a consequence of the laws of classical mechanics. From a rigorous point
of view the meaning of Eqs. (2.4) ί is not completely clear, because the flow φd is only
almost everywhere defined. We face the problem of giving sense to the collision
operator Ckjk+l in Eq. (2.7) foτfk + 1 , which is only a.e. defined. However, we can give
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a meaning to the following series expansion associated with (2.4)!:

(2 4)2

In fact, we denote by Γk the /c-particle phase space and choose gk+1eLco(Γk + ί).
Consider the configurations XkeΓk and yk+le^k+l9 where J%+1: =
{Xk + iGrk+i\\Xi — xk + l\ = d for some i} denotes the set of all fc+1 -phase points
obtained from an Xk by adjoining a colliding particle, and study φ<Lt(Yk+l). If we
vary Yk + l over ^k + ί and ίe[0, Γ], 01f(yfc+1) spans a tube flow which is a set of
positive measure in Γk + : . Therefore #fc + ̂ φ! ,( Yk + x)) is defined almost everywhere in
^k+ι x [0,Γ]. Integrating with respect to Σdvk + i an n-(Vi-vk + 1)9 we obtain a

i

function, denoted by Cktk+lS
d(t)gk+i , which is defined a.e. in Γk x [0, T]. The same

argument shows that ̂ '(-ί̂ q^S^ - t2) -Sd(tn)fd

k+n is defined for almost all
tn < ίn_ ! < f π _ 2 < ••• < f x < ί and almost all xk. Thus the right-hand side of (2.4)2

makes sense and "defines," for all ί, a function Sd( — t)fktt which is a.e. defined in Γk.
From now on, Sd( — t)fktt will always be interpreted as the right-hand side of (2.4)2 .
The equivalence between the Sd(-ί)/u defined by (2.4)2 and the joint distribution
densities given by (2.3) will be established in the appendix.

Besides Eqs. (2.4) we also consider the so-called Boltzmann hierarchy:

s)Cktk+1fk + l9,, (2.8)
o

where

S(t)fk(xί xk,vί vk)=fk(xί-vίt xk -vkt9υί . vk) (2.9)

describes free flow and

ί

-fk + ι(Xι'-xk

χpvι-'vj -vkVk + ι)}' (2.10)

Here, v'j9 vk + ί denote the post-collisional velocities belonging to the incoming
velocities υ^ vk + 1 and the collision parameter n. λ is a positive constant proportional
to the mean free path between collisions.

If /f(x, v) is a solution of the Boltzmann equation for hard disks, then the
functions

k
f k t t ( X ι — X k > v ι ' ~ V k ) = TlfάxpVj) (2 Π)

satisfy the hierarchy (2.8). This explains the name of the hierarchy.
The similarity between Eqs. (2.4) and (2.8) becomes more transparent by



192 R. Illner and M. Pulvirenti

rewriting the collision operator from Eqs. (2.7) in the equivalent form

+l,t(xl '"xk>Vl '"vk)
k

= Σ (N-k]d$dn J

(2.12)

(see [1] for details). In spite of the similarity, the hierarchies are very different. The
first (finite) hierarchy corresponds to the time evolution of a reversible Hamiltonian
system. The second one has a stochastic nature and displays irreversibility—we
know that the //-theorem holds rigorously for short times. Nevertheless, Eqs. (2.12)
are the formal limit as d->0, N^>co, N-d^λ'1 (this is known as the Boltzmann-
Grad limit) of Eqs. (2.7), and therefore, in this limit situation, a particle gas is believed
to behave according to (2.8).

We now formulate our result. Consider a sequence of statistical states (μd)
associated with hard disk systems with d > 0 and N such that N -> oo, d -> 0 and
λ'1 = N-d fixed. We assume that the joint distribution densities fd at time zero
satisfy

i) if ([R2 x U%d= {X\\xi-xk\>d for iφk, i, k= 1,... J, rf^O}, then the/J are
continuous on ([R2 x U2y^d. Furthermore, there exists an infinite sequence
{fj}j9 continuous on ([R2 x (R2)^0, such that

J™/ί=Λ (2 13)

uniformly on compact subsets of ([R2 x [R2)^0.
ii) the estimates

sup \fd

j(x1'-xpvί'. vj)\expβ0( Σ (*2 + vf)}^constzj

0 (2.14)
x

v\'"vj ^'=1 '

hold for some β0^2 exp(λ~*) and z0>0.

Theorem2.1. Assume i), ii) and let zQ-λ~l be sufficiently small Then, for allt>0 and

^fU^'''^^'''^=fj,t(Xi'''Xj^i'''Vj)a.^ (2.15)
<f->0

where fjΛ solves uniquely the Boltzmann hierarchy.
If the initial state factorizes, i.e. if

j

then this factorization is preserved in time foτfjft, and/u is a unique solution of the
Cauchy problem for the Boltzmann equation.

Proof. Following [1] we write (2.4)2,

/? = Sd(t)fd + £ f A! J A2 '"I' Aπ5
d(ί-1JC*- - -^(g/d, (2.17)

M l O 0 0
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where /? = {/t,K°=ι> Sd(t)fd = {Sd(t)fd}^^ Cdf= {(Cdf)k}?=ί = {C^ + 1/ fe+1}Γ=ι
(we recall that we are using the convention/^ = 0 for t ̂  0 and k > N, thus the series
appearing on the right of (2.17) is only a finite sum). Analogously we write a similar
(formal) expansion for the Boltzmann hierarchy, with initial datum given by the
limit (2. 13):

ft = S(t)f+ Σ ldti]dt2...
tnSίdtnS(t-t1)C S(tJf9 (2.18)

with S(ί)/= {S(ί)ΛK°°=ι and Cf= {(C/)k}k°°=ι = {Ck,k+ιΛ+ιK°=ι In [1] it is shown
that under the hypotheses of Theorem 2 each term of the series (2.17) converges a.e.
to the corresponding term of the perturbation series (2.18). Therefore, to prove (2.15)
it is enough to show convergence of the Boltzmann hierarchy series and to bound the
series (2. 1 7) by a convergent series of nonnegative terms not depending on d.

To approach the last problem, we rewrite the series under consideration in a
slightly different way:

(t1r
1 Ω<(tJVi(tJΩ'(ti-1f', (2-19)

where
Ωd(t) = Sd(-t)S(t) (2.20)

and
Vd(t) = S(-t)C*S(t). (2.21)

For convenience, we assume that the/J are defined on all of (IR2 x lR2y, but are zero
on sets which lead to the overlapping of spheres. Moreover, we define Ωd(t)~ 1 to be
the identity operator whenever φt(X) is not in the domain of definition ofφd-t. This is
reasonable because in this case Ωd(i)~l is not defined by

The proof of Theorem 2.1 is based on the key Proposition 2.1 below which gives
estimates on the operators Ωd(t)Vά(t)Ωd(t)~ l . We now introduce the spaces needed
for the formulation of this result.

For β > 0, let

XL..XJ ί= 1
i. ..Vj

vΐ), (2.22)

and for z > 0 we define a norm on the space of all sequences of measurable functions

(2.23)
j

We denote by XβJ and Xz

β the Banach spaces induced by the norms (2.22) and (2.23).
Then we have

Proposition 2.1. Lei τ>0 be arbitrary but fixed and let z<z', (\+d) /?'</?,
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d < l/χ/2τ2, andgeXz

β. Then there exists a positive constant C0 > 0 (not depending on
τ, d, /?, /?', z, z') such that for almost all ίe[0,τ],

(2.24)

(t)V'(t)Ωd(trlg\\ϊ

1

lnZ-
Z V z

' ^ C "J ~ 1 1 ' "' z==^o^Λ 1 j ,

1
I I 0 I I ; ,

where
>~3/2,β-1). (2.25)

For the proof see the next section.
By Proposition 2.1, we have for suitable sequences, z = z n > z n _ t > ••• >z0,

β = βn<βn_1 < ... </?0, such that /?Ξ>1 and (1 +d)βj< β j _ ί 9 and for ί7 <τ

arbitrary but fixed, and d < l/^/2τ2, that

7 = 1 In
7-1 Z7-l

To estimate this, we choose the Zj and βj such that

and j?,._ ! - jS/l-f d) = 1/n (and hence j?0 = 1/w + (1 + d)/w + - + (1 + d)nβn). We
conclude that /70 ̂  2 (1 + d)nj? ^ 2(1 + λ~lln)nβ ^ 2β-er \ because w ^ ΛΓ = /L'1/^
(Note that here the dimension enters in a crucial way: In three dimensions the
Boltzmann-Grad limit is N-d2 = λ~ *, which only leads to the (insufficient) estimate

(1 +έ/) Λ ^(l +^/λ~l/n)n.) Let β0: = 2β-eλ~\ Inserting all this in the above ex-
pression, it follows that there is a constant AQ > 0 such that,

Therefore, if/d

i i /I, i i oo

r Π
j=l

, we obtain after reordering and integration from zero to infinity

!̂ ^

= i i sd( - o/i, i i oo ^ z* i i 5d( - t)fd

jtt

^ ̂  Σ f 7n ^ o \ o l n. (2.26)
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If z0 - λ ~1 is sufficiently small, we see that the series (2.19) is estimated by a convergent
series not depending on d.

For the Boltzmann hierarchy, let V(t) = S(- t)CS(t). Then, following the proof of
Proposition 3.2 in Sect. 3, one obtains an estimate corresponding to (2.24):

/IIS,

where β > β' ̂  1, z' > z > 0. Here, C can be chosen independently of z, z', /?, /?', and
the estimate holds for all ί>0. Using this result, we can mimick the above
convergence proof and obtain convergence for the Boltzmann hierarchy. The limit
(2.15) follows by the analysis of the term by term convergence, as in [1]. Equation
(2.16) follows by elementary but lengthy algebraic manipulations.

Remarks

1. The limit ft is a unique solution of the Boltzmann hierarchy in the sense that
(2.18) makes sense. Equation (2.18) implies that/ r solves

ft = S(t)f+\S(t-s)Cfs. (2.27)

In the factorization case,/M is then a mild solution of the Boltzmann equation
(see, e.g., [2]).

2. With the techniques of this paper, the series (2.18) can be shown to converge also
in the three dimensional case. The difficulty in proving the Boltzmann-Grad limit
is related to an estimate of Ωd(t) (see Proposition 3.1 below) which diverges in
time in 3 dimensions. We believe that different topologies are needed to handle
this problem.

3. As pointed out by Spohn [4], solutions of the Boltzmann hierarchy can be
interpreted as statistical solutions of the Boltzmann equation, i.e. they describe
the statistical evolution of individual solutions of the equation.

4. In our approach, as in [2], it is essential to work in all R2 (or (R3) in order to use
the contractive character of free flow on a special class of functions. Compact
domains require other ideas.

5. The result is not as strong as it may appear at first sight. Although time does not
appear on the right-hand side of (2.26), the convergence is uniform only for t < τ,

because we have assumed d ̂  l/^/^τ2.
6. As pointed out in [1], the gap between the topologies at time zero (2.13) and at

time ί, (2.15) cannot be completely removed because of the irreversibility of the
limit equation (see [5] for a discussion).

3. Technical Details

In this section we prove Proposition 2.1. We need two other propositions to do so.
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Proposition 3.1. For d^ l/^/^f2, the following inequalities hold:

(3.1)

\\S(t)Sd(-t)f\\βJ^\\f\\βJ (3.2)

Proof. First we establish two inequalities. Using the shorthand notation

we have

I(φ'X) + T(φd

tX) ^ I(φtX) + T(φtX\ (3.3)

I(φ'X) + T(φ'X) £ I(φtX) + (1 + ̂ /2t2d2)T(φtX) + ̂ 2. (3.4)

To verify (3.3) and (3.4), choose a phase point X arbitrary but fixed. Then, for t > 0,
denote by {ίj?= i , 0 ̂  ίx < ί2 < ίfc ̂  ί the instants at which binary collisions take
place (we exclude measure zero situations leading to multiple or simultaneous

binary collisions). Let )>!, y'ι •••)>*,)>&, M I , MI - - - M ^ M i and Pι>Pι" Pfc>Pi t>e ̂
positions and the incoming and outgoing velocities respectively of the pairs of
particles colliding at the times tί9...9tk. Finally, we use the notations {*?(£), v f (t) }j

i= ί ,
{Xi(t)9 vί(t)}j

i= ! for the positions and velocities of φd

tX and φtX respectively, and put

Then, by energy conservation

(3.5)
ί = l

Conservation of momentum implies

= yk(pk + pi) + (/* - Λ)P*
)'fc)(Pi-wi)» (3 6)

therefore

I(φ*X) = I((φ*XΓ) + (ί - ίfc) Σ *?(ffc)t>?(f*Γv T i / \ \ r t f c // v ft/ ^̂  t \ K/ ί v K,/
1=1

+ (ί - tk)
2 T(X) + (ί - ίfc) (yί - yJίpί - iii)

= ί(Φr-rk-X.1^)") + (ί-ίk)(y*-y*)(Pί-«i) (3.7)

By iterating this procedure of elimination of collisions we obtain

i(Φd

tx) = i(Φtx) + Σ ^1+1 ~~ ^(y'i — yi)(p'i — wi), (3.8)

where tk+l:=t. Because the last term on the right of (3.8) is positive, we obtain (3.3).
On the other hand, the same term is estimated by

: (ti + 1 - tjd^TΪX) ^ ̂ 2(1 + t2T(X)d2\ (3.9)
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and this proves (3.4). The statement of the Proposition now follows from the

following chain of estimates, where we use that ^/2t2d < 1:

|| Sd(t)S( - t)f \\βj = ess sup e f(φtφ<_tχ)

^ ess sup e2«'(

(3.10)

|| S(t)S"( - t)f II, j =

^ ess sup

, (3.11)

Proposition 3.2. For 1 > d ̂  0, β > β' > 0, z' > z > 0, there exists a positive constant
C0, not depending on β, βf, z, z', d and t such that

|| /1|J, for almost all ί, (3.12)

where l(β) is given by (2.25).

Proof. By definition

(3.13)

Then

exp β'

j

.eχpΓ-θ3-£')Σ(x2

L / = !

-e\pl-β(xk + nd + (vk-

(3.14)
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For r ̂  1, we have

I dvj+ ! I vk - vj+ ! I exp [ - β(xk + nd + (vk -vj

2] exp [ - βvj+ J

!»*!)•l + i 3

with

1= f \x\e-'2dx,

For t > 1, the same integral is bounded by

(here we have used that d< I).
Inserting (3.15) and (3.16) into (3.14) we obtain

xι...Xjk=

There is a constant C? > 0 such that

U^Ctfμ-^πly-j-p

-(β-β1) Σ (χ?+v?)
c\ + \vk\} e '" ||

-> Σ .

and it follows that

with some Cλ > 0. Therefore

It is a simple exercise to verify that

'β-βΊV

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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and this completes the proof of Proposition 3.2.
Proposition 2.1 follows trivially from Propositions 3.1 and 3.2.

Appendix

In this appendix we sketch a derivation of Eqs. (2.4) for hard sphere particle systems.
A more detailed version of this derivation will be published elsewhere. A more
intricate derivation was given in [6].

Our starting point is the flow φ? describing the dynamics of TV spheres of
diameter d > 0 in R v (v = 2, 3). We denote by

the phase space of the system. It has been proved in ref. [7] that the set of all orbits
φ*(X\ XeΓN, te R, which lead to either grazing or multiple collisions, has measure 0
in ΓN. We denote the set of all other (the "good") phase points by FN.

For fixed k < N, let

forsome ίe{l, . . . , fc}Je{fc+l,. . . ,ΛΓ}

be the set of all points in 7\ which display an outgoing (ingoing) collision between
the i-particle and the -particle. Furthermore, we put

k N

#•+<-> = y (J #•+<->, and ^ = ̂ +u^~. (A.2)
ι = l j=k+l

We fix the origin of the time axis and split fN into two disjoint sets:

fN = Γ«vr, (A.3)

where

Γ00 = {X = (X\ XN~k)\XkeΓk, XN~keΓN_k, φN_tX = (φk.tX\ φN_-kXN~k), t ̂  0}

(A.4)

is the set of all phase points for which the particles from the group 1, . . . ,/c never
interacted in the past with the rest of the particles, and

r=PN\Γ". (A.5)

For XeΓ, the following representation (known as special flow representation) is
natural. Let

+ }. (A.6)

The mapping ψ: Γ-> {(7, s)| Yε3? + , 0 ̂  s ̂  φ(Y)}> X ->( Y, s), is then one to one and
bimeasurable. For geLl(Γ), we have

φ(Y)

(Y,s)\ (A.7)
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where dσ+ denotes the following measure on J*+:

N

dσ+=dXk Σ dxk + ι'"dXj-1dxj+1"'dxNdvk + 1'"dvNdyj'nij'(vj-vi). (A.8)
j = k + 1

Here, dXk is the Lebesgue measure on Γk, and dy^ stands for the Lebesgue measure
on the sphere with radius a and center xh and nij = (xj — xi)/\Xj — xi\. The right-hand
side of (A. 8) defines also a (negative) measure on J^~, denoted by dσ~. For the proof
of the above statements, see e.g. [8].

The advantage of the special flow representation consists of the fact that

φ?(X)ϊ>(Y9s + t) if X^(Y9s) and s + t«p(Y). (A.9)

Moreover, there exists a map T: ^+ -> ̂ + (the "displacement function" for the
Poincare mapping associated with the section J^+), which is dσ + -preserving and for
which

if φ(Y) ^ s + t ̂  <ρ(TY) and τ = s + t-φ(Y). The flow φ*, restricted to Γ, gives rise
to a strongly continuous group of unitary operators whose generator we denote by
3*. We denote its image on L2(ψ(Γ), dσ+dt) by D. For a sufficiently smooth function
v = v(Y,s), we have

(Dv)(Y9s) = ?-v(Y9s). (A. l l )
OS

The domain @(D) can be completely characterized:

Lemma A. <3)(D) consists of all functions of the type

where

and

The proof of Lemma A will be given at the end of the appendix.
We now consider a probability density μ0eL2(ΓN) which is differentiate along

the trajectories, i.e. with μt(X) = μQ(φN_tX), we have

^ (A. 14)

, ,
φ(Y) (A. lJ j

Ό0(Y)+ } h(Y,s)ds=v0(TY)

Then the restriction of μ0 to Γ belongs to 3)(<&). For a bounded function
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which depends only on the first k particles, we have

d d v(γ)
τ(ukμtdX = - J dσ + (Y) J dsuk(ψ-\Y,s))μt(ψ-\Y,s))
dtr dt+ o

= - ί dσ+(Y)
r* °

+ j dσ+(Y){uk(φ-1(Y,φ(Y))μ,(φ-ί(Y,φ(Y))

(A.15)

since ukμt\r e@(Jϊ) and the integration by parts is possible by Lemma A.
With F = Mfc μ f, we have by Liouville's theorem,

J dσ+(Y)F(Y,φ(Y))= - J dσ~(Y)F(Y^\ (A. 16)
JΓ + jF~

and so the last integral in the right-hand side of (A. 15) reduces to

N

J dXku(Xk) Σ dxk + 1 'dXj^1dxj+1'" dxΉdyjnij(υj - υ^
j = k+l

1'"XN,v1" vN). (A. 17)

We notice that by the continuity property of μ0 along the trajectories, μt is dσ+ a.e.
defined in 3? + . Therefore,

fΐ+ί(xl9 . . ,xk, xk H- nd, t; l5 . . . ,t?k+ J

= ίdXN~k+ίμJ(xί.. xk,xk + nd9vί...υk+ίιX
N-k+ί) (A. 18)

is a.e. defined. (Eqn. A. 17) can be written in the form

Finally

= - j dX(&kuJ(X)μ£X) + right-hand side of (A. 15) (A.20)

where j£?fc is the generator associated with the flow φk. The series expansion (2.4)2

satisfies the same differential equation for all sufficiently smooth uk. Thus the joint
distributions /* defined by μt must coincide a.e. with the corresponding expressions
given by the series expansion.

Proof of Lemma A. It is easy to verify that D restricted to the functions of type (A. 12)
and satisfying (A. 13) (let us denote this set by ^0) is antisymmetric. Moreover, this
domain is invariant for the flow φ?. It remains to show that if we^(D*), then
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For all

φ(Y) φ(Y)

J dσ+ J dtw(Y9t)(Dv)(Y9t)=- J dσ+ ] dt(D*w)(Y9t)υ(Y9t)

f dί(D*w)(y,ί)t;(y,0)- f dσ+ J
0 ^ + 0

<?m φ(

)- J dσ+ J ώ(Dι?)(r,s) f
,35-+ 0 S

0

φ(Y)

(A.21)

*σ>
The above identity is valid for all v such that ι?(y,0) = 0. Therefore w(y, f) + J ds

t
(D*w)(Y,s)eL2(ψ(Γ\dσ + dt) is only dependent on y, i.e. there is a function
w06L2(J2Γ + ,rfσ+/φ) such that

φm
w(y,ί) = w0(y,φ(y))- J ds(/)*w)(y,s). (A.22)

ί

Inserting this expression in (A.21), we are led to the identity

j dσ+(y)w(y, φ(Y))[v(Y9 φ(Y)) - v(Y,0)]
&+

= J rfσ+(y)t;(y,o)[w(y,o)-w(y,φ(y))], (A.23)
F+

which is equivalent to

f dσ+(y)[w(τ-1y,φ(r-1y))-w(y,o)χy,θ) = o. (A.24)
&+

Since t;( ,0) is arbitrary in L2(^+,dσ+/φ), the proof is complete.
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