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Abstract. For si any subset of ̂ (J f ) (the bounded operators on a Hubert space)
containing the unit, and σ and p restrictions of states on J^J f) to si, ent^(σ|p)—
the entropy of σ relative to p given the information in si—is defined and given
an axiomatic characterisation. It is compared with ent^(σ|p)—the relative
entropy introduced by Umegaki and generalised by various authors—which is
defined only for si an algebra. It is proved that ent and ent s agree on pairs of
normal states on an injective von Neumann algebra. It is also proved that ent
always has all the most important properties known for ent5: monotonicity,
concavity, w* upper semicontinuity, etc.

1. Introduction

Given states σ and p on a von Neumann algebra si9 the entropy of σ relative to p,
written ent^(σ|p), is a measure of how easy it is to distinguish the state p from the
state σ. As such it has, since first introduced by Umegaki [1], found application in
quantum statistical mechanics [2,3 (Sect. 6.2.3, pp 269-289), 4], quantum
information theory [1,5], the foundations of quantum mechanics [6], and the
theory of von Neumann algebras [7,8]. I shall give a brief sketch below of how I see
the role of relative entropy in the foundations of quantum theory, as this is my own
motivation for studying the subject. If my view of these matters is correct then the
relative entropy is of fundamental importance to physics.

As a mathematical object the relative entropy is fascinating. It has been given
three distinct but equivalent definitions: that of Araki [9,10] who uses Tomita-
Takesaki theory, that of Pusz and Woronowicz [11] who use their "functional
calculus for sesquilinear forms" [12], and that of Uhlmann [13] who uses
interpolation theory. The entropy defined by Araki and Uhlmann will be denoted by
ent^(σ | p) throughout this paper. For the equivalence of their definitions see [8]. The
entropy of Pusz and Woronowicz will be denoted by ent^(σ |p). Its equivalence to
ent^(σjp) will be proved in Sect. 4 of this paper.

The purpose of this paper is to give yet another definition. This new definition
has several advantages. It is given by means of a set of axioms and is conceptually
and mathematically simpler than the previous definitions. It gives a characterisation
of the relative entropy which allows for a heuristic interpretation. This is significant,
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since there has been some controversy [14] over the "naturalness" of relative
entropy as a tool for quantum statistical inference. This will be discussed further in
Sect. 3. The most important advantage of the new definition however is that it allows
a useful and substantial generalisation. Given states σ and p on an algebra $ and
some subset si a J* we shall define ent^(σ | Jp |^)—"the entropy of σ relative to p
given the information in siΓ The generalisation, of course, is that si need no longer
be an algebra. Although I conjecture that

enUσ|p) = en£(<τ|p) (1.1)

whenever the latter is defined, I can only prove this for the case when si is an
injective von Neumann algebra and σ and p are normal. This equivalence theorem is
proved in Sect. 8. However, because all the most useful properties of ent s also hold
for ent (see Sect. 6) and because the axioms (Sect. 2) are natural, if a counterexample
to (1.1) should emerge I would take this as a failing of ent5 rather than of ent.

Most of the material in the remaining sections provides technical prelimina-
ries. Sections 3 discusses alternatives to the axioms, Sect. 4 proves results
about ent5. Sect. 5 about concave functions, and Sect. 7 about injective von
Neumann algebras.

Caveat. In order to have the interpretatively valuable property that increasing
probability means increasing entropy, the convention of Bratteli and Robinson
[3 (Sect. 6.2.3)] who define ent^(σ|p) so that ent^(σ|p) ^ 0 has beenfollowed here. We
also, of course, take ent^(σ |p)^0. The convention ent^(σ |p)^0 is frequently

followed elsewhere, and some writers exchange the arguments σ and p. Thus if

σ = Σsj\φj} (φjl p = X riIΨiyiΨil a r e the eigenfunction expansions of density
j i

matrices σ and pona Hubert space #f, with &(Jf) the algebra of all bounded operators
on Jf, then our definition will yield

entm^σ\p) = Σ(-Sjlogsj + Sjlogri)KΦj\Ψi>\2. (1.2)

Turning now to my intended application of the work of this paper, one way of
stating "the" fundamental problem of the foundations of quantum mechanics is that
although it appears that the state of the world can mainly be described by
Heisenberg (i.e. time independent) states p on &{#?)—for some j f—those states
seem to change as the result of measurement. This is just the statement that time
evolution at a measurement is not governed by the unitary group e~itH (where H is
the Hamiltonian). Now the set of possible states {σ/.jeJ} which can describe the
world after the measurement are circumscribed by requirements of compatibility
with the measurement device (a macroscopic pointer must point in a definite
direction, a cat must be either alive or dead). These compatibility requirements can
be defined by the values of the σs on some subset J / of the algebra &(Jί?). In the
examples mentioned, J will then be the set of pointer positions, or the set {alive,
dead}.

It is my belief that a complete and consistent interpretation of quantum theory
can be given based on the equation
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Prob{result of measurement is σ7} exp(ent^(σj|p))

Prob{result of measurement is σk} exp(ent(σ |p)) '

where p is the state describing the world before the measurement. Within the next
few years I intend to publish work, already long in progress, substantiating this
belief. Of course, the real difficulties lie in the construction of the sets si (which leads
to a theory of consciousness) and of the sets {σ/.jeJ} (which leads to a many worlds
theory), and in the interpretation of the formula (1.3) (for example, in general,

Σexpίent^σylp)) is not equal to one (!)). The present paper merely establishes some
j

of the mathematical background to this work and can, of course, be read entirely
independently of it. Indeed, I trust that the results will also prove useful for other
applications of the relative entropy.

As already mentioned, one purpose of this paper is to extend the definition of
ent^(σ|p) to the case when stf is not necessarily an algebra. This, of course, is very
useful for measurement theoretic applications, since the result of a measurement is
usually only to give values to a few operators and this may well not be sufficient to
assign a unique state to some subalgebra. In order to avoid repetition in this context,
we assume henceforth the following convention.

Notational Convention. The notation ent^(σ|p) includes the statement that there is a
Hilbert space Jti? with srf a 0&(3tif\ and \esrf, and that there exist states σ' and p' on
0&{3tf) with σ = σ'\J, and p = p'\^.

This convention requires that σ(l) = p(l) = 1. This is the case of relevance for the
applications. It would make no difference to any of the results of this paper, but
would lengthen some statements, if we assumed that ent was defined on general
positive linear functionals σ and p by requiring the following relation to hold for all
λ > 0, μ > 0:

(1.4)

2. An Axiomatic Characterisation of the Relative Entropy

Equation (1.3) is compatible with a heuristic interpretation of ent^(σ|p) which states
that exp(ent^(σ|p)) is the probability, per unit trial of the information in s/9 of being
able to mistake the state of the world for σ despite the fact that it is actually p. In other
words, exp(iVent^(σ|p)) is (or is, in some sense, asymptotic as JV->oo to) the
probability that N tests on the state p of the information in J / give results
compatible with the state being σ. For the special case when stf is an abelian algebra
a heuristic interpretation of this type is discussed by Bratteli and Robinson
[3, p. 425etseq.]. In particular, they prove that in N independent repetitions of a
trial, which has M possible outcomes with probabilities r x,. . . ,rM, the event that, for
each j , the/ Λ outcome occurs with frequency sj9 has probability whose logarithm is
asymptotic to

(2.1)

(cf. Eq. (1.2)).
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The following set of axioms for relative entropy can be constructed based on this
heuristic interpretation. It is also, of course, based on the standard probabilistic
interpretation of the states of quantum theory. The reader who finds the arguments
for these axioms long-winded is encouraged to consider first the simple definition,
presented at the beginning of Sect. 6, which they give rise to.

First consider the situation where one can make measurements on some set of
operators s/9 and one wishes to distinguish between states σ and p which, as required
above, have extensions σ' and p' on some J*( Jf) n> $4. The existence of properties
that one does not measure only affects one's belief about whether the state restricted
to stf is σ or not by the requirement that any possible state must take some value on
the operators corresponding to those properties. This yields:

Axiom I. εntjσ\ρ) = s\xp{entmjf)(σ'\p'):σ'\^ = σ>P'L = p}

j

Now suppose that σ — £ 57 σ7 , where σ and each of the σ7 are normal states on

08(3tf\ 0 ^ Sjf ^ 1, and the σ, have disjoint supports. In this case σ can be viewed as a
mixture of the independent states σ} with probabilities s-y Thus, as iV->oo,
exp(N entmjf)(σ\p)) should be asymptotic to the probability that N trials of a
random variable X with values in {1,2,3,...} and distribution Prob{X=;} =
cxp(entmjf)(σ j\p)) has a result with frequencies assigned according to the
distribution Sj (i.e. X = j in Sj N of the trials). The event X =j is the event of making
the mistake that the state of the world is σ, although it is actually p. Using Eq. (2.1)
this yields:

j

Axiom II. Ifσ = £ sp^ where {σ,.}, σ, and p are normal states on ${3tf) and where

the σj have disjoint supports, then

j

entΛ ( j n(σ|p)= X (-s^ogs^ + s. e n t ^ σ ^ p ) ) .
i=i

The restriction of this axiom to normal states on J^(^f) is because it is only in this
case that it is clearly justifiable to apply the argument above and assume that σ is
physically a mixture.

Next consider the case when σ is a pure normal state σ = |φ>< φ| on J^(^f), and
when p also normal, has the eigenfunction decomposition p = YJri\ψi){φi\.

i

Assuming invariance under unitary maps, ent#( j r)(σ|p) can depend only on
{ri,\(Φ\Ψi)\2}' It is natural to require that entΛ ( j r )( |^ i><^ i | jp) = logr/, since this
follows from (2.1) and the assumption that ent^w({^ ί><^ ί | |p) = ent^(|ψ t ><^ ί ||p),
where s/ is the algebra generated by the projections \ψj)(ψj\. We now give a value
to Gntmjn(\φy(φ\\p) by assuming that it is as easy to mistake p for \φ}(φ\ during
each of JV trials as it would be to mistake, for each ί, p for \φi)(φi\ in a pre-
determined portion | < 0 | ^ £ > | 2 of the trials. This assumption is to be distinguished
carefully from the arguments for Axiom II. In the present axiom we compute a
probability for a pure state by making an analogy, while in Axiom II we consider a
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mixed state σ as if it actually behaved like each of its components for some of the
time. Thus we would, for example, say that the mixed density matrix

\Ψi}(Ψi\ behaves as if it were actually mistaken for I ^ X ^ I in a random portion
K ^ ) I2 of trials.

Since we are only trying to give a heuristic argument for our axiom, we can assume
that, for some n, (φ\φi} = 0 for i>n and that K ^ l ^ ) ! 2 Λf is always an integer.
Then the interpretation of exp(iV(ent^(jn(σ|p)) as a probability plus the assumption
(spelt out for clarity) that it is as easy to mistake p for | φ)(φ | during each of N trials
as it would be to mistake p for | φ 1 > < φ 1 | during the first |<φ|<Ai)l2 N of N trials, to
mistake p for | φ2 > < Φi I during the next | < φ | φ2 > I2 N of N trials, and so on up to the
final \{φ\φn}\2 N trials when we mistake p for \φn}(φn\, yields

i = 1

Σ i

and produces:

Axiom III. For σ = \φ}(φ\a pure normal state on $(3tf\ and for p a normal state on

Axioms II and III suffice to define ent^( jr)(σ|p) for all normal states σ and p on
in agreement with formula (1.2). However as example 6.6 will show, it is

necessary to consider entΛ(<Jf)(σ|p) for σ and p non-normal in order to have a
definition of ent^(σ|ρ), which is w* upper semicontinuous for general sets «a/, even if
attention is restricted to functionals σ and p which have normal extensions on ̂ ( J f).
In order also to avoid the objection that non-normal states are unphysical we must
give an axiom which makes manifest that they arise in the present theory merely as a
mathematical tool. The following axiom seems to be the only natural way of doing
this.

Axiom IV. For any (σ, p, &#) (subject of course to the notational convention of
Sect. 1) there exists a net ((σf

ai p
f

a))aej of pairs of normal states on &(J4?) converging w*
to (σ\ p') (i.e. such that &Jβ) -• σ\B) and p'Jβ) -> ρ\B)for all Be@{3tf)\ and such that
setting (σα,pα) = {σ'a\^,p'Λ\J, we have (σ ' |^ ,p 'U = (σ,p), and

αe/

= liment>τjpα).
αe/

3. Remarks on the Axioms

It is of course not obvious that the axioms do constitute a definition. In this
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preliminary section we will assume that they do and make some less technical
comments.

There has been a quite separate definition of something also called "relative
entropy" by Benoist, Gudder, Marchand, and Wyss [15,14]. Their relative entropy
is not equivalent to that studied here. For the problem of statistical inference they
study a process that in our notation reads as follows. Given a state p, which
constitutes the a priori information, on an algebra J* with a subalgebra si and a
state σ defined on si constituting the result of a measurement, define an inferred
state σ on J 1 as that state which attains

They claim that their relative entropy is natural because the state σ resulting from
the inference is close to p in some natural sense. In particular the Uhlmann transition
probability from σ' to p is maximised at σ, and σ can be defined by the Sakai operator
relating σ to p whenever there exists λ such that σ ̂  λp \^. I disagree with their claim
of naturalness, and base my disagreement on the opposing claim that closeness of σ
to p in this context should be defined rather by maximisation of a relative entropy
obeying precisely the axioms of Sect. 2. Indeed, a prime reason for presenting those
axioms is to make this point. Of course, like ent5, the B.G.M.W. relative entropy can
only deal with measurements of all the operators in an algebra.

Turn now to considering an alternative to Axiom III. I have not given an axiom
specifically defining ent^(σ|p) for an abelian algebra, since this definition follows
from those I have presented (see Sect. 6). However it is interesting to give the
argument which would derive such an axiom, and then to consider the resulting
definition. For the remainder of this section attention will be confined to normal
states. Suppose then that σ and p are such states defined on the abelian algebra 2£

CO

generated by the mutually orthogonal projections (P n )* = 1 with £ Pn — l
n= 1

Property V.ent>|p) = - £ σ(Pn)\og^[

The argument for this property is that as N^co N ent^(σ\p) should be
asymptotic to the logarithm of the probability that N trials of a random variable X
with values in {1,2,3,...} and distribution Prob{X = n} = p(Pn) has a result
determined by the distribution σ(Pn) (i.e. X = n in σ(Pn)N of the trials). The result
then follows from Eq. (2.1).

Given the simplicity of this argument, it is of interest to attempt to derive Axiom
III from Property V. I shall show very briefly that this attempt is unsuccessful as this
casts further light on the axioms and lays to rest a natural conjecture.

The following definitions might seem natural:

N

are mutually orthogonal projections in ̂ ( J f) with
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e<( jr)(<τ I p) = inf j - t σiA«

are positive operators in J^J f) with Y Aπ = 1 >.

n=l J

Clearly e n t ^ / σ | p) ^ e n t ^ σ | p).

We shall prove in the final section (Proposition 8.7) that

ent^(JΠ(σ | p) ^ e n t ^ σ | p). (3.1)

Unfortunately it is not true in general that

e n W / σ I P) = e n t W σ I P)> (3 2)
or even that

entapr/σ | p) = e n t ^ / σ | p). (3.3)

Both fail for the case ^f = C2 and

! ! ) d {I ϊσ = u *;and p=\o i
The proof that (3.2) fails is a straightforward numerical computation. The proof that
(3.3) fails is a more complicated argument which because of its negative import it
seems fruitless to expound in detail here. Briefly, after establishing some preliminary
restrictions on the form of sequences (An)ζ= t over which one need minimise (w.l.o.g.
one can take each An of the form An = anQn for an real and positive and Qn a

N

projection), one shows that for each N9 — £ σ ( ^ J l°g(σ(^U/p(^n)) has a strict local

minimum at (An)%= x, where λγ = Px, A2 = P2, λn = 0 n > 2, and where (PJ2= ί is the
pair of projections attaining the infimum defining ent^(Jf)(σ|p). It is then straightfor-
ward to use the local minimum for 2N to derive a global minimum for N. This shows,
in particular, that for this pair of σ and p,

enta

mjn(σ | p) = e n t ^ / σ | p). (3.4)

Whether this is true in general I do not know.
The particular case is especially critical since using the unitary map U =

., which gives UσU* = l 1 χ I and UpU* = pf it is possible to
0 — 1 / \—2 2/

derive the standard value of entΛ ( j r )(σ|p) just from unitary invariance, Axiom II, and
the assumption that

,,'λ °
entail I Λ . j

i U 1 — Λ i
Since (3.5) is satisfied by entfl and entb as well as by ent and ent5, it follows that neither
entfl nor ent* satisfy Axiom II. Thus neither entfl nor entft provides a suitable
alternative to ent.
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4. Results on ents

In order to verify that ent possesses the various properties which we will consider
below (Sect. 6), it is necessary to rely heavily on earlier results and methods developed
for ent s. Indeed we need to extend some of these results, and this will be done in this
section. Thus it must be allowed that the simplicity claimed for ent is a simplicity
only of definition and not, in general, of usage.

First we define entp w r and by tightening a formal argument of Pusz and
Woronowicz [11,12] show that it is w* (i.e. σ(si*, si)) upper semicontinuous.

Definition 4.1. Let si be a von Neumann algebra acting on a Hubert space J«f, and
let σ and p be states on si. Define the P.-W. representation of (si, Jf, σ, p) to be a
tetrad (Jf, k, S, R) such that Jf is a Hubert space, k is a linear map of si onto a dense
subset of JΓ, and S and R are commuting positive bounded operators on jf such
that for all Aί9 A2esi,

x\ k(A2)) = p(A*A2) + σ{A2A\\

(k(Aι\Sk(A2)) = σ(A2A*).

Define ent^VIP) = (kW>9(S, R) fc(l)), where g(s, r) = -s log s/r.
Pusz and Woronowicz [11,12] prove that this is a definition and that (with the

current sign convention) ent^f)(σ\p) is given by formula (1.2) for σ and p normal.
If dE(s, r) is the joint spectral measure of S and R on 3f then, by the monotone

convergence theorem and Fubini's theorem,

ent7(σ|p) = \l- slog^ - (r - 5) V/c(l), dE(s,

dt(k(lldE(s,r)k(l))
t

Let Θε

δ be the set of pairs (A(t), B(ή) such that A: [5, ε] -• ^ and B: [5, ε] -> j ^ are
piecewise constant functions with A(ή + B(t)=l for all ίe[<S,ε]. Using (/c(l),
(R - S)k(l)) = p(l) - σ(l) = 0, it is mere algebra to show that, for (A(t\B{t))eΘε

δ,

(R - S)k(B(t))) + -Wί)) , Sk(A(t))))dt - il

Since k(si) is dense in J f and ί H^ (Λ - S)ί/c(l)/iS(l -1) + # ί is continuous on [<5, ε],
for any ζ > 0 there exists (A(t)9B(t))eΘε

δ such that
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(R-S)tk(ί)
<ζ for all ίe[<5,ε]. (4.3)

From the definitions, for (A(t), B(t))eΘδ,

(k(B(t)), (R - S)k(B(t)))+-(k(A(ή), Sk(A(t))))dt

Let Γ\ = I (X, Y): for some (A(t), B(ή)sΘe

δ,

X = \J}-A(t)A{t)*-B{t)B(t)*\dt, Ύ = \B(t)*B(t)dt\.

Then, using the estimate (4.3) to show that the second term in Eq. (4.2), which is
always negative, can be made arbitrarily close to zero,

Jik^w^kk{χ))dt=inf < σ w + * y ) : ( x ' y ) e r ^
and the following lemma has been proved:

Lemma4.4. e n t £ V | p ) = inf{σ(X) + p(Y)\ (X, Y)e (J ΓJ}. D
0<<5<e<l0<<5<e<l

Having exhibited ent^(σ |p) as an infimum of real-valued, w* continuous, linear
functions, the following is an immediate consequence:

Proposition 4.5. ent^(σ |p) is jointly concave and w* upper semicontinuous.

D
We now give a straightforward proof that ent^(σ |p) = ent^(σ|p).
With the notation of Pusz and Woronowicz, as introduced above, Uhlmann's

definition of ent s reads

x \ 0

x\0

where

/(x, s, r) = (r - s).

For 5^0, r ^ 0, and 1 ̂  x > 0, we have /(x, 5, r) ^ 0, and f(x, 5, r) decreases
monotonically to /(0,s,r)= — slogs/r — (r — s), so by the monotone convergence
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theorem,

(4.6)

We will refer to both as ent5 hereafter.

5. A Lemma on Concave Functions

The purpose of this section is to prove a lemma which we will use in the next section
to give our definition of ent^(Jf}(σ | p) for σ or p non-normal. This lemma may be well
known, but I do not know of any reference for it.

Suppose given a w* upper semicontinuous concave function G(σ, p) on pairs of
normal states on @l(3tf) and consider the extension H of G to pairs of arbitrary states
on J (Jf) defined by

H(σ, p) = sup{lim sup G(σα, pα):((σα,pα))αe/ is a net with
αe/

σα and pα normal states on J*pf) and σ α ^σ,p α ^p}.

Lemma 5.1.
1) H is w* upper semicontinuous and concave, and H(σ, p) = G(σ, p) for σ and p
normal.
2) H{σ,p) = F{σ,p\ where

F(σ, p) = inf {F(σ, p): F is w* upper semicontinuous and concave,

and F(σ,p) = G(σ,p) for σ and p normal}.

Proof. Suppose 1) is true. Then F exists and from the definition of w* upper

semicontinuity (see Property c, Sect. 6) H(σ, p) g F(σ, p), so 2) is true. It is thus

sufficient to prove 1).

i) Let {(σβ,pβ))βeJ be a net such that σβ^σ, pβ^p, and, for some δ>0,
H(σβ, pβ) > H(σ, p) + δ for all βeJ. Let Jί be an open w* neighbourhood of (σ, p) in
the space of pairs of states. There exists β(J^)eJ such that (σβ(jr)i pβ{jr))eJ^. Since Jί
is an open w* neighbourhood of (pβ{jrγ pβ{Jί), there exist normal σ^ and p^ with

and

i<5 > //(σ, p) -

This is a contradiction, since if K is the net of open w* neighbourhoods of (σ, p)

ordered by inclusion then
Thus // is w* upper semicontinuous.

ii) It is easy to observe that

//(σ,p) = sup{limG(σα,pα):((σα,pα))αe/ is a net with σα and pα
αe/

normal, σα->σ,pα->p, and lim G(σα,pα) exists}.
αe/

Let (σ,p) = (A1cr1 -h λ2σ
2,λιp

1 +λ2p
2) with A1?A2 ^ 0 and λί-\- λ2

 = 1. Choose and

fix ε > 0 . By the remark above, there exist nets {{σι

β,p
ι

β))βεj-+{σι,pι) and
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( K P?)W^(^2,P2) satisfying \\mG{σlpι

β)^H{σ\pι)-z and limG(<τ2,p2)^
βeJ yeK

H(σ2, p2) - ε. Define I = J xK with (β'9 y') > {β, y)oβ' > β and γ' > γ, and set

σ(β,y) = σh P(β.v) = Pβ> σ(β,y) = σy> PΪβ.v) = Py T h e n ((σα>Pα)L/ ->(σV) for i = 1, 2,

and hence ((^σ* +
Using the concavity of G, we obtain

H(σ, p) ^ lim sup G ( V *
α e /

^ lim sup (λj Gίσ.1, pα

x) + λ2G(σ2, pα

2))
α e /

1, p1) + ^2if(σ2, p2) - 2ε.

Since ε is arbitrary, this proves that // is concave.
This argument was provided by the referee for whose assistance I am very

grateful. It is much clearer than the argument I initially produced,
iii) H(σ, p) = G(σ, p) for σ and p normal, since G is w* upper semicontinuous. •

6. Definition and Properties of the Relative Entropy

Proposition 4.5, the fact that ent s ( = entp f Γ) satisfies Eq. 1.2, and Lemma 5.1 have
shown that the following constitutes a definition of ent^(σ|p):

Definition.

6.1. ent^ ( j r )(σ|p) = X ( -

for σ = Σsj \φj}(φj\ and p = Yjri \φι}{φi\ normal states on
j i

6.2. ent,£(JΠ(σ|p) = inf{F(σ,p): F is w* upper semicontinuous,
concave, and given by (6.1) for σ and p normal}.

6.3. ent^(σ|p) = sup{en^ ) (σΊp / ) : σΊ^ = σ and p'\^ = p).

In this section the various properties of the relative entropy thus defined will be
verified. It is clear that if the axioms are consistent then this is the unique relative
entropy that they define. They are consistent since Axioms I and III obviously hold
for ent as defined above, and Axioms II and IV will be shown to hold below. It
should be noted that even were ent^(σ|p) = ent^(σ|p) whenever the latter is defined,
most of the results of this section would still be extensions of known results, since ent
is a generalisation of ent s.

a) Monotonicity. Ifs/X c Λ/ 2, then e n t ^ ^ σ l ^ J p l ^ ^ e n t ^ σ l p ) .

Proof. Immediate from Definition 6.3. •

b) Concavity. For 0 ^ λ1, λ2 ^ 1 and λί+λ2 = l.

entjλ1σι+λ2σ2\λιpι + λ2p2)^λ1 ent^(σ1|
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Proof By Proposition 4.5 and Lemma 5.1 this holds for entΛ(Jf}(σ | p). In general, let
σ = λίσί + λ2σ2,p = λ1pι + λ2p2 for λl9λ2 as given.

) = sup{ent^(jr)(σ'|/9'): σ ' and p' are states on

with σ'\^ = σ and p ' | ^ = p}

p2): σ'i, σ2, pΊ, p 2 are states

T21Pi): σΊ> σ Ί > P'liPi a r e states

o n &{jήf) w i t h o\\jrf — θi9 0 Γ

2 I J ^ = σ

2 > P i \ # / = P1 > PΊI^ = P 2}

Lemma 6.4 For any (σ, p, j / ) ίftere exist σ', p' on ̂ (J f) such that σ' \^ = σ, p' |^ = p
αnd suc/i ί/iαί ent^(σ|p) = entΛ ( j r )(σ'|p r)

Proo/ Let (σα, pα)α6/ be a net of states on ̂ (^f) such that σα |^ = σ, p α | ^ = p for all
cue I and such that ent^ (^ }(σα |pα)^ent^(σ|p). Such a net certainly exists. After

passing to a subnet, we may assume that ((σα,pα))αe/-> (σ',p'). Of course, σ'|^ = σ,

By Proposition 4.5 and Lemma 5.1 ent Λ ( j n is w* upper semicontinuous, so

ent^(σ | p) ̂  e n t ^ ^ σ ' | p') ^ lim sup ent^(jr)((τα | pα) = ent^(σ | p).
αe/

c) H>* Upper Semicontinuity. For any net ((σα, p α )) α 6 / defined on srf with σa(A) -> σ(A)

and pa(A)^p(A)for all Aestf,

)^limsupent^(σα|pα).

Proo/. As just noted this holds for ent^(jr)(σ | p). For the general case suppose that for

some net ((σα,pα))α e /^(σ,p) we have

ent^(cr I p) < lim sup ent>τ α | pα). (6.5)
αe/

Defining ((<τα,pα))αe/ on Λ(jf) by Lemma 6.4 (i.e. σα |^ = σα, ρ'α|j/ = pα, e n t ^ σ ' J p ^
= ent^(σα |pj) there exists, by w* compactness, a w* convergent subnet ((σf

β,p
f

β))βej of
((σα,pα))αe/ chosen so as still to satisfy Inequality 6.5. Suppose that (σ'β,p'β)->(σ\p').
Then σ'|^ = σ, p ' | ^ = p, so

entmjr)(σf | p') ̂  lim sup ent^(jr)(σ^ | p'β) = lim sup ent ̂ (σβ \ pβ) > ent Jσ \ p).
βeJ βeJ

This contradicts Definition 6.3. Π

Example 6.6. Let {φn: n ̂  1} be an orthonormal basis for a Hubert space Jf, and let
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B = \Φi><φ1\ - Σ IΦnXΦnl and J = {A,B, 1}.

Then
1) σ' is a state on tf such that σ'(Λ) = σ\B) = 1 if and only if σ' = \φ1 )(φi .

2) p' is a normal state on Jf such that p'(,4) = 1, p\B) = 0 if and only if

3) p'n(A) = 1 - l/2n, p'n(B) = 0 is satisfied both by

p'n =—l*Ai)^iAil + ( i — 11^2)^^21 H — I ^ ^ ^ M — \ Φ Λ . y < \ Φ 4
4n \ 2nJ 4n n

and by

Now

• in ^ • i n α t ί4n\

entmjJσ \ p) = - 00, e n t V ) ( σ | pn) = - log — ,

V ' J
and

ent^ m (σ' | p'ή) = — log 2.

This shows that w* upper semicontinuity does not hold if Axiom I is replaced by

ent^(σ|p) = sup{ent^(^)(σ'|p/): σ' and p' are normal states on 0β(3tf)

with σ'\Jf = σ and p ' | ^ = p}. Π
The consequence of this example is most of the analytical details in this paper.

d) Axiom IV Holds

Proof. Given (σ,p,j/), define (σ',p') as in Lemma 6.4. A net ((σα,pα))αe/ of normal

states such that (σ'a, pά) -• (σ', p') satisfying lim entmjf)(σr

a\ p'a) = entmjf)(σ' \ p') exists by
αe/

Lemma 5.1. Then by w* upper semicontinuity and monotonicity,

ent Jσ \ p) ^ lim sup entjσa \ pα) ^ lim inf ent^(σα | pα)
«e^ αe/

^ lim inf e n t ^ σ ; | pα) = e n t ^ σ ' | p') = ent̂ (σ | p),
αe/

where

(ja = (j' I . a n d p α = p r | *. []]]

Lemma 6.7. ent^(σ|p)^ent^(σ|p) whenever the latter is defined.

Proof. By Proposition 4.5 and Definition 6.2, we always have

Now let σ and p be defined on a von Neumann algebra J / . Define σ' and p' as in
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Lemma 6.4. Then, using the monotonicity of ent s (which is immediate from Lemma
4.4, or see [ 11,13]) ent^(σ | p) = Qntmjf)(σ' | p') ^ en t | ( ̂ (σ ' | p') ^ ent^ (σ | p). Π

e) Property V of Sect. 3. Let σ and p be normal states defined on the abelian algebra &
GO

generated by the mutually orthogonal projections {Pn)™=1 with £ Pn=l. Then
n= 1

00

e n t > | p ) = - X σ(Pn) log{σ(Pn)/p(Pn)).
n= 1

Proof. It is easy to check directly from the definition of entpw" that ent^(σ|p) =
00

— £ σ(Pn)\og(σ(Pn)/p(Pn)) (or see [8]). Defining σ and p as density matrices on
w = l

^(Jf) by σ = Σσ(pn) Pn

 a n d P = ΣP(P*) Pn

 w e have σ|^ = σ, p |^ = p and e n t V ) ( σ | p ) =
n n

oo

- Σ σ(Pn)^og(σ(Pn)/p(Pn)) by Definition 6.1. The result now follows from
n= 1

Definition 6.3 and Lemma 6.7. •

Lemma 6.8. // σ and p are states on a von Neumann algebra s/, then

Proof. By Lemma 6.7 this is a consequence of the corresponding result for ent s. This
is proved for σ and p normal in [7] (Theorem 3.1), and can be extended to general σ
and p using Lemma 3.1 of [8]. Π

f) Non-Triviality. For arbitrary (σ,p, srf\ if σ Φ p, then ent^(σ\ρ)<0. More
specifically.

Proof. Let σ' and p' be states on ̂ (J f) with σ'\s/ = σ and p'\^ = p. Then, for Aesrf,

\σ{A)-p{A)\ = \σ'{A)- p\A)\^\\σ' - p'\\\\Al

so the result is a consequence of Definition 6.3 and Lemma 6.8. •

g) Axiom II Holds.

Proof. Let {σ,}, σ, and p be as in the axiom. Since the σj have disjoint supports, we

may write σ} = Σqjk \φjk><φjkl where the set {φjlc: j = 1,2,3,...,k=l,2,3,...}

forms an orthonormal basis of Jf. Then applying Definition 6.1,

ent^(JΠ(σ|p) = Σ Σ Σ ( - s A k logs# j f c + s^klogr t)\<φ j k\φi}\2

i j k

i j k

Σ SJ
 e n t

Using [10, Theorem 3.6], one can prove more generally that for all von
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Neumann algebras si and all states σ and ponsi with σ — £ s/r,., where the σ,- are

states on si with disjoint support, we have entf,(σ\p) = Σ( — Sjlog sj + s, ent^(σ7-1p)).

I do not know whether this equation holds in this generality for ent. In particular I
do not even know if it holds for non-normal states on ffiffl). The following example,
the details of which are left as an exercise for the very serious reader, shows that it
certainly does not generalise indefinitely:

Example 6.9. Let J f = C 4 and choose si so that σ1, σ2, and p are determined on si

by the following relations on the components of the corresponding density matrices

on C 4 :

Pll+P22=h

(also, of course, σ*(l) = σ2(l) = p(l) = 1 and all the other relations required for σ1, σ2,
and p to extend to states on C4). Define σ = \σι + \c2. Then I claim that

|p) = ent ! / (σ 2 |p)= - log2, while ent^(σ|p)= -

Thus

- i log i- i log i + ientj/(σ1|p) + ientil/(σ2|p) = 0^enUiσ 1+iσ 2 |p). D

h) Uhlmann's Inequality. Let λ'.stf\-> s/2 be such that there is a normal linear map λ'\
@{jeγ)->@{je2) (where si1a^(^ι) and stf2<^@{3tf?

2)) with λ'(B*) = λ'(B)*9

λ'(B)*λ'(B)^λ'(B*B)for all Bea(3Vί)9λ'\J,i =λ9 and λ(l)= 1. Then, for all σ and p on
,i

Proof Uhlmann proved [13, Prop. 18] that if siί9 stf2 are *-algebras and
λ:si1^s/2 w i th λ{A*) = λ(A)*9 λ(A)*λ(A)^λ(A*A) (Aesiά λ(\)=l t h e n

ent^^σoAlpo^^ent^σlp) . Unlike Uhlmann I need to assume that λ is normal,
and I do not know if property h holds if this assumption is dropped. However, the
results of Lindblad [6] are a special case of the present result.

Assuming the hypothesis, let ((σ'a9 p'a))aeI (->(σ',p')) be a net of pairs of normal
states on ^S(J^2) constructed as in Axiom IV applied to (σ9p,s/2). Then
((σi°Λ/,pi°Λ/))αe/ is a net of pairs of normal states on^jf^,

Now, using Uhlmann's result (for normal states on &(Jf) ent = ents),

'°λ') (property a)

[σ'a ° λ'\ p'a ° λ') (property c)

^ lim sup ent^( j r2)(σ; | p'a) = ent^2(σ | p). π
αe/
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There remains but one major property of ent5 that we have not discussed and
generalised in some form to ent. That property "Araki's property" is essentially
equivalent to the equivalence theorem to be proved in the remaining sections. It is
therefore deferred to the end of Sect. 8.

7. A Property Equivalent to Injectivity

This section is a brief technical interlude on the theory of von Neumann algebras.

Definition 7.1. A von Neumann algebra (jrf, J f) has Property 7.1 if there exists a net
(Όαe/ of normal completely positive finite rank maps λa: @}(3tf)-+srf such that λa(\)
= 1 and such that λΛ\^ tends to the identity map on s/ in the topology of simple w*
convergence. (I.e. ω(λa(A))-+ ω{A) for all COGJ/^, Aεjtf).

In the next section we shall see that for σ and p normal states on an algebra srf
with Property 7.1 we have ent^(σ|p) = ent^(<τ|p). In this section we shall prove that
injectivity is equivalent to Property 7.1. Although we will not actually need our maps
λa to have finite rank, the proof with this property omitted is not significantly
simpler. For an introduction to the theory of injective algebras see [16, §10.22-10.31,
pp 143-149].

Definition 7.2. A von Neumann algebra (jrf, ffl) is semidiscrete if there exists a net
(λa)aeI of normal completely positive finite rank maps Λ,α: J / -• J / such that λa(\) = 1
and such that λa tends to the identity map on si in the topology of simple w*
convergence.

This property was introduced by Effros and Lance [17]. For its equivalence with
injectivity see [17,18]. In fact, Effros and Lance showed that semidiscreteness of srf
is equivalent to various properties of tensor products of s#. In this section we will
show that Property 7.1 and these properties are equivalent by showing that we can
go through Effros and Lance's paper carefully and in detail making the necessary
extensions as we go, to show that they could have worked throughout with Property
7.1 instead of semidiscreteness. The first result however is not a direct translation of
their work:

Proposition 7.3. If τ: {srf 1,3tf?

ι)-*(srf2^2) I S a n isomorphism of von Neumann
algebras, then (J/19J#Ί) has Property 7.1 if and only if'(J/2, J f 2) has Property 7.1.

Proof. Suppose that (.s/2, j f 2) has Property 7.1 and that (λa: &{34?2) -> ̂ i)^ιis t h e

relevant net of maps. It is sufficient by the standard canonical form theorem for von
Neumann algebra isomorphisms (e.g. [19, theoreme 1.4.3, p. 55]) to treat the
following special cases:
i) τ is a spatial isomorphism: τ(A) = UA U* for U\2tfx-* #? 2 a surjective isometry. In
this case λ'a(B) = U* λa(UBU*) U ( £ e # ( j f J ) is a suitable net of maps on J ^ ) .
ii) There is a Hubert space JΓ such that v\st, J f ) - > ( ^ ® \ x ^ ® Jf) is the
amplification. In this case define

λ'a(B) = τ-1(λa(B®lJf)) for BeΛ(Jf).

iii) There is a projection e'est' with central support 1 such that τ: (s/9Jf)->
(sίe.,e'3(IP) is the canonical induction. In this case define λ'Jβ) = τ~ι{λjβe)) for all
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). The confirmation in each of these cases that the λ'a are suitable, is
easy. Π

Now we need to prove the following succession of results:

A) If(s/β,Jfβ) has Property 7.1 for each βeJ, then so does (®siβ, ® J^β).
βeJ βeJ

B) If for all normal states p on s/9 (πp(sί),3^p) has Property 7.1, then so does (si,Jί?).
(Here πp is the G.N.S. representation of si corresponding to p).
C) // (siί,Jίff

ι) and ( ^ 2 , J f 2 ) have Property 7.1, then so does

D) If (si, Jί?) has Property 7.1 and eesiis a projection, then (esie, eJtf) has Property
7.1.
E) If (si, 3^) has Property 7.1, then so does the commutant (sf',Jtf).

These results all correspond to parts of results in Sect. 3 of [17], and in each case
an almost identical proof works, except that the proof of E needs Proposition 7.3.

It follows from B and E that to prove that (si, 3tf) has Property 7.1, it is sufficient
to show that for each normal state p on si, (πp(s/)', J^p) has Property 7.1. It is for such
algebras that, using the theory of tensor products, we actually construct the maps λa.

Thus, let (si, Jf) be an injective von Neumann algebra, and let p be a normal
state on si. We now must assume the notation of [17, Sects. 1 and 2]. In particular,
for von Neumann algebras si and J*, Effros and Lance define sets Γ = min(si ® 31),
bm(si ® 31) of positive linear functional on si ® J*, and corresponding C* algebra
tensor products si ®Γ31. SΓ(si ® &) is the set of restrictions to si ® 31 of states on
si®Γ&. θp: πp(si)f -• si+ is defined by θp(C)(A) = (Ωp, πp(A)CΩp) for Ceπp(si)f and
Aesi, and there is a corresponding positive linear functional σ on si ®πp(si)'
defined by σ(A ®C) = θp(C)(A).

σebm(si®πp(si)') and so, since si is semidiscrete, σeSmin(si®πp(si)f ([17,
Theorem 4.1]). Thus σ has a unique extension to a state σ on si®mϊnπp(si)'. Since
this is a subalgebra of si ®min^(J^p), σ has an extension to a state σ on

® m i n ^pf p ) . Set σ' = ί ^ e S f f l l n ( r f 0 « ( J f p ) ) .
Now we follow the proof of (ϋ)=>(i) of Theorem 4.1 of [17]. Since

Smin(si ® ®(#p)) = min(j^ ® ^(J^p))n b i n ^ ® ^(Jfp)f\ there exists a net
(σ'XsI c m i n ( ^ ® &(&p)) n b i n ( ^ ® &(Jfp)), such that Tσ; -• TΛ. in the topology of
simple w* convergence, where Tσ> (respectively Tσ>): &(Jfp)-+si* are the maps
defined by T^(B)(A) = σ'a(A®B) (respectively Tσ{B)(A) = σ'(A®B)) for Be^(Jfp)
and Aesi.

However, σ' need not belong to bm(si® $(3tfp)\ so we cannot apply
[17, Lemmata 4.2-4.4] directly. Instead, let σα = σά|j/(g>π^iί/y, and let A =co{TσweI}
considered as a set of maps from πp(si)' to si^.

A has the same closure (Λ) in the topologies of simple weak and simple norm
convergence, and θpeλ.

Now [17, Lemmata 4.2-4.4] can be applied and show that there exists a net
(ωβ)βej c Λ such that Tω -> θp (simple norm convergence), and such that Tω (1) = p.
Moreover, each ωβ has the form

ωβ(A®C)=Σpi(σai(tiAti®C)+fί(tiAti)τi(Q) for Aesi and
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where PiE[0,1] with £ Pι = 1> t(esi with 0 ^ ίf ^ 1,/Lesi^> + , and τ, is a normal
i = l

state on πp(si)f.
Let τj be any extension of τf to a normal state on J*(Jfp). Define

ω ^ ® B ) = X p K . ί M ί i β ^ + Z - M ί ί ) ^ ) )
i = 1

for Aesi and Be&(Jί?p). Clearly co'β\J,®nw = o)β and ω'βem\n(sf ® 0S(tf p)) n
bin(s/® &(&„)).

Thus Tωi(l) = p, so that the map λβ = θp~
1Tω>β from #( j f p ) -• πp{si)' is well

defined. λβ is also completely positive, has finite rank, and ^ ( 1 ) = 1 ([17,
Lemma 1.5]).

Now for Be@(jep) and Aί9 A2esi,

(πp(Ax)Ωβ9 λβ(B)πp(A2)Ωp) = Tω,β{B){A*A2) = ω'β{A*A2®B)

from which it follows that λβ is normal, and for Ceπp(s/)\

from which it follows that λβ tends to the identity map on np(si)' in the topology of
simple w* convergence.

This completes the proof that πp{srf)' has Property 7.1 from which it follows, as
discussed, that each injective algebra has Property 7.1, and finally, since Property 7.1
clearly implies semidiscreteness, it follows that injectivity and Property 7.1 are
equivalent.

8. The Equivalence Theorem

There are three distinct parts to this section. Throughout it si will denote a von
Neumann algebra. In the first part we will show that ent^(σ|p) is representation
invariant, in the second that ent and ent s always agree on abelian algebras, and in
the third, by using the results of Sect. 7, that ent and ent s agree on normal states on
injective algebras.

8A. First we derive some consequences of Uhlmann's inequality—Property h of
Sect. 6. In each case a more direct proof can be given by applying Axiom IV and
making an appropriate explicit bound.
8.1. Let e e ^ p f ) be a projection. For β e ^ p f ) , write Be = eB\meJf)e^{e^) and
write sie = {Ae:Aesi}. Define λ{. si^sie by λί(A) = Ae and extend to λ\\ &(2tf)
-+&(e3tf) by λ\{B) = Be. Uhlmann's inequality applies (λ\ is completely positive), so
entj/(σ°λί \p°λί)^. ent^ (σ|p) for all σ and p on sie. Note that, in general, s/e need
not be an algebra.
8.2. Now suppose eesi. Let τ be a normal state on &(e2tf\ Define λ2\sie^si
by λ2{A) = eAe + (I - e)τ(A), and extend to λf

2: #(έ?Jf) -• «(Jf) by λ'2(B) =
eBe + (1 — e)τ(B). Again Uhlmann's inequality applies, so that

ent^(σ°λ2\p°λ2)^Qnt^(σ\p) for all σ and p on si.
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8.3. Since λί°λ2 is the identity map on j ^ e , combining 8.1 and 8.2 gives
Qntjf(σ°λί\p°λ1) = entSf(σ\p) for all σ and p on jrfe.
8.4. Let JΓ be a Hubert space, and λ4: srf -• ^ ® 1 x be the amplification defined by

r . Extend to λ'4: &(tf)-> Λ(jf <g> Jf) by A4(5) = J3<g) l x . Again

4 )^ent^ ( g ) l j r (σ |p) for all states σ and p on stf®\χ-.
8.5. The final case of a spatial isomorphism between von Neumann algebras is
totally trivial.

An immediate corollary of 8.1 applied to the case eestf\ 8.4,8.5, and the standard
decomposition theorem ([19, theoreme 1.4.3p55]) is:

Theorem8.6. Let τ: (s/ί,Jίfi)-^(j^29Jίf?

2) be a mapping between von Neumann
algebras and σ and p be states on stf'2. Jfτ is a normal homomorphism of srf γ onto sέ'2,
then

ent^ (σ°τ|p°τ) ^ ent^, (σ\p), and so if τ is an isomorphism

e n t ^ ί σ o φ o τ ) = ent^2(σ|p). •

As a consequence of 8.3, we prove inequality 3.1:

Proposition 8.7. Let σ and p be states on J*(J f) and (An)*= ί (with N finite) be positive
N

operators on &(Jf) with £ Λn=l. Then

Proof First let 2£ be an abelian algebra generated by N orthogonal projections
(Pn)n=ι σ\& and ρ\^ are normal, so by monotonicity and property e of Sect. 6,

ent^(σ |p) ^ - £ σ ( P J l o g ^ . (8.8)
1 PV)

Now let (>iχ = 1 be operators as in the hypothesis. Then by a theorem of Naimark
(see [20, Theorem 9.3.2, p. 142]) there exists a Hubert space Jf containing J f as a
subspace, with e: jΓ-^Jf the orthogonal projection, and mutually orthogonal
projections

( P X = 1 such that An = ePn\mejr). (8.9)

By 8.3 applied to this projection ee^pΓ), entmjr)(σ°λ1\p°λ1) = entmjf)(σ\p). But 8.9
gives σ°λi(Pn) = σ(An\ p°λί{Pn) = p(An), so applying 8.8 to σ°λl9 ρ°λλ gives the
result. •

8B.

Theorem 8.10. Let ^ be an abelian von Neumann algebra, and let σ and p be states on
2t. Then ent^(σ | p) = ent|,(σ |/?).

Proof Let A be the directed set of sets {Pi,... ,PN} where, N is finite, the (PX= ί are
N

mutually orthogonal projections in if with £ Pn= 1, and the ordering is by

refinement.
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For t = {P x,... ,PN} EΛ , define σ̂  as the normal state on ̂ (J>f) which has density

matrix £ σ(Pπ) Pn. Define p^ similarly.

Let 2££ be the subalgebra of 2£ generated by ί. Define σ̂  = de\%e and p{ = p ^ | ^ .

Clearly σ̂  = σ\Se and p^ = p\Sr By property β of Sect. 6 and monotonicity,

^ = e n t ^ σ , | p,) ^ ent^σ | p). (8.11)

Let {{σ'^p'£)\eL be a w* convergent subnet of ((σ^,p^))/e/l converging to (σ',p')
j = (σ,p), so

ent^(σ | p) ^ e n t ^ σ ' | p') ^ lim sup e n t ^ σ ^ | p^). (8.12)

Since σ̂  and p'f are normal, and 8.11 and 8.12 also hold for ent s (the same
arguments apply), we have

ent^(σ | p) = lim sup ent v ) ( σ ; | p'e) = lim sup ent
/eL

= ent|(σ|p). D

8C.

Theorem 8.13. If(stf,&(Jίf)) is an injective von Neumann algebra then,for all normal
states σ and p on srf,

Proof. From Sect. 7 (j/,^(Jf)) has Property 7.1. Let (λa)aeI be the relevant net of
maps. Define σ'a = σ°λa and p^ = p°/lα. These are normal states on ^(Jf) . Let
((σ'β, p'β))βej be a w* convergent subnet converging to (σ\ p'). By hypothesis, σ'\^ = σ
and p'U = p.

Using Uhlmann's original inequality for ent s ([13, Prop. 18]), which is quoted in
Sect. 6,

^ ent^(σ | p) (Lemma 6.7)

σ'lp') (Property a)

^ lim sup ent^(jr)(σ^ | p'β) (Property c)
βeJ

= lim sup ent|(^}(σ^ | p^) (Definition 6.1).

The result follows. D
A property, which is an immediate consequence of this result, is particularly

important, since the applications of relative entropy to statistical mechanics rely
heavily on it, (cf. [21]):

ί) Araki's Property. Let (^α)α e/ be a monotone increasing net of injective von

Neumann algebras with s/ = ((J srfj'. Let σ and p be normal states on srf, and let
ael
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K,Pα) = (σUα,pLα). Then

ent>τ I p) = lim ent^ (σΛ | pα).
αe/

Proof. This is a consequence of monotonicity, [10, Theorem 3.9], and the fact that
the hypothesis implies that si is injective (see [16, Prop. 10.25,p. 144]).

9. Postscript

Since this paper was first submitted, I have received a preprint [22] from Narnhofer
and Thirring in which they have, independently, suggested an extension of ent^ to
linear subspaces of si. It seems desirable, for completeness, to comment briefly on
their work. Adopting the notational conventions of this paper, their definition runs
as follows:

Let si be a U.H.F. von Neumann algebra, let σ and p be faithful normal states on
si9 and let Si be a linear subspace of si with 1 eόl. Let (jf σ, πσ, ξ(σ)) be the G.N.S.
representation of σ and let ξ(p) be the cyclic separating vector representative of p in
the natural positive cone of Jίfσ. Let Δ^(p9σ) = Λξ{phξiσ) be the relative modular
operator. (See [3, p. 278] and [23, Chap. 2.5] for these definitions.) Let P^\ jfσ->
πσ(SS)ξ(σ) be the orthogonal projection. Then Narnhofer and Thirring's relative
entropy is defined by

Narnhofer and Thirring show that this possesses the usual properties of
concavity, monotonicity, and semicontinuity. In doing so, they provide new and
elegant proofs of these results for ent^. They also show that e n t ^ ( σ | p ) = ent^(σ|p)
= ent|(σ|^|p|^) in the special case that SI is a subalgebra of si. However, the
following example, which is the simplest I could construct, shows that for general
subspaces Λ, e n t ^ ( σ | p ) is not equal to ent^(σ|^|p|^). Thus e n t ^ does not satisfy
the axioms of Sect. 2. The example also shows that e n t ^ ( σ | p ) does not depend
solely on σ\Λ and p\Λ. This is a property which ent^(σ\Λ\p\J) does possess, and which
I believe is fundamental for a satisfactory definition of the relative entropy on the
subspace Si.

Example. Let si = C 3 considered as an abelian algebra. Let σ = (1/3,1/3,1/3)

(i.e. σ((α 1 ?α 2,α 3)) = 1/3 (a, + α2 + α3)) and let Pl = (1/2,1/4,1/4), p 2 = (2/5,2/5,1/5).

Let Si be the linear subspace of si spanned by 1 = (1,1,1) and B = (1,2,4). Note that

Pi U = PiL> s i n c e Piί 1) = PiW = 1 and px{B) = p2(B) = 2.

Then, after a long calculation, I claim that, e n t ^ ( σ | p x ) = - 0 . 0 3 6 1 5 ,

e n t £ > | p 2 ) = -0.04173, while e n t ^ W P i U ) = e n y * W p 2 l * ) = -0.02657.
Roughly speakin&ent^σlp!) and e n t ^ ( σ | p 2 ) differ because P^Δ^(phσ)P^J

= 1, 2 depends on Pi(B2) and Pl(B2) = 11/2, p2(B2) = 26/5. •
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