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Abstract. For the non-compact abelian lattice Higgs model in Landau gauge
Kennedy and King (Princeton preprint, 1985) showed that the two point
function {@(x)@(y)> does not decay in the Higgs phase. We generalize their
methods to show that for the same range of parameters there are states
parametrized by an angle 0 e [0,27) such that {@(x)>¢,.4au=€"<P(x)>! 2%
and <¢(x))7 zagau > 0.

1. Introduction

In[1] Kennedy and King conjectured that the translation invariant pure phases of
the lattice abelian Higgs model in three or more dimensions are parametrized by
an angle 6 e[0,2n) such that

<¢(x)>Landau =c ei0

with ¢ >0 in the Higgs region. Since in their paper they use boundary conditions
which do not break the global gauge symmetry, they only could show that the two-
point function doesn’t decay. Using “Dirichlet” boundary conditions as explained
below we generalize their methods to prove the following

Theorem 2. In d=3, for any A>0 there are states parametrized by an angle
0€[0,2r), such that

<¢(x)>?.andau = <¢(x)>€.a=n0dau eiG s

where {$(x)»?> 0., >0 is is uniformly bounded away from zero provided e <e, and
—m?*>R(A) in the notation of Theorem (2.3) of [1].

Remark 1. This provides a local (in Landau gauge) order parameter for the phase
transition established in [1].

Remark 2. We believe that our construction in fact yields {(#(x)>={¢) to be
translation invariant, but in this comment we only prove it for the fixed length
model.
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2. The Boundary Conditions

d
We define the model on a d-dimensional rectangular lattice A= ) A", which we
r=0

take to be an open subcomplex of Z“. Starting from the set of sites A° this is defined
recursively by the requirement [2] that an r-cell (i.e. bond for r =1, plaquette for
r=2, etc.) belongs to A" if and only if at least one (r — 1)-cell in its boundary lies in
A"~ (in [3] this is called “0*-closed”). Visualizing A as a box with boundary 6.4
consisting of (d— 1)-dimensional rectangles, this means that all the sites, links,
plaquettes etc. contained in 041 do not belong to A, whereas they do, if 4 is closed as
in [1].

With this difference in mind we write the electromagnetic part of the action as
in [1] . .

S4 (A)= 3 (dA,dA) .+ 7 (d*A,d*A) 4o,

where A is the real valued gauge field defined on A'. (dA4)(p) is computed on
plaquettes in the vicinity of 9/ as usual by putting A(h) =0 for b ¢ A*. Note that an
according specification is not needed for (d*A4) (x), because by definition all the
bonds emerging from x € A° already belong to A. In fact although d* A would also
take on spurious values on sites one unit outside of A°, these are not to be taken
into account in order to have a proper gauge fixing function [4].

An important advantage of this choice of boundary conditions is, that now d*d
evaluated on O-forms is nothing but the Laplacian 4:/%(A%)—¢%(A°) with
0-Dirichlet boundary conditions on 04°, which is clearly invertible. More generally
we note as a standard fact [2, 5], that on an open subcomplex A of Z? the
Laplacian A =d*d+dd* is invertible on r-forms for all 0<r=<d — 1. In particular

D, Ae S#Dwith D A= T[] dA(b)is a well defined Gaussian without zero modes

and hence integrable. "%’
Finally we define the Higgs part of the action using the same notation asin [1]

SHAP= 5 5 IDHOP T VWD,

where the phase of the Higgs field ¢(x) is constrained to be zero outside of A°. This
will correspond to 6 =0 in Theorem 2. The general case is obtained by applying a
global gauge transformation ¢'(x)=e“¢(x), 4'(b)= A(b).

3. The Order Parameter
Inspired by Eq. (2.5/6) of [1] we now define
G(X) — ¢(X) oAy T(X) ei(e,g)*ie(A,h) ,

where A is given by
h=da 1g
and g=4,. As a crucial property like in [1] we note that ||h]|2 < |hl|3=(g9,4 ')

=(4"Y),, is uniformly bounded in x and | 4| for d = 3. G(x) is gauge invariant since
d*h=g and reduces to ¢(x) in Landau gauge since (4, h)=(d*4, 4™ 'g).
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Let us first focus on the fixed length model, i.e. the limit A— o0 in

V(g)=A(gI* —a*)?

Theorem 1.
(i) For d=3 and for any 0 <y <1, there are constants e(y), a(y) such that for
e<e(y) and a>a(y)

(G(x)y2y-a

uniform in the volume |A|.
(i) There is a constant 6 >0 such that for a<0o and for all e

(G(x)>=0
in the thermodynamic limit A 7 Z°.

Proof. First we note that in [1] the transformation of Balaban et al. [7] was
implicitly used. This transformation is based on the identity
y =

1-forms v:A2>Z s:AO-Z

nAl-Z dv=0
which also holds with our boundary conditions, with the minor simplification that
now the O-forms s are not constrained to be zero at a fixed point x, € A°, since
ds=0 already implies s=0. Moreover Lemma (3.2) of [1] can be proven
analogously, once we observe that in an open complex a maximal tree of 4! has to
be constructed in such a way that it touches d4° at only one point (which then is
the base for this tree). From then one we can literally use the proof of Theorem
(2.11) of [1], since only the uniform boundedness of ||a||, respectively ||kl is used
and all correlation inequalities also apply for G(x). In particular {G(x))>
= (X)) xy.moaer Which also proves ii). [J

Let furthermore G : = | 1ir‘n {G{x, y)> the order parameter of King, Ken-
x—y|—>

nedy [1], then we also have the following generalization of their theorem (2.5).

Corollary. In d =3 there are constants e, and p, such that for e <e,, ae > u, and all x
i) G =GP,

i G 600 = 23 +0 (1),

Ix—yl*~!

where {-;-> denotes truncated expectation.

Proof.

i) This follows from Lemma (4.2) and Proposition (4.3) of [ 1], since also with
our boundary conditions for any g of compact support d 4,4, *g converges in /2 to
its infinite volume value in d = 3. Hence

G0 =(Gx))? = a2e?t ),

where F(h) is given by the translation invariant polymer expansion (4.1) of [1] and
ho = dA B 150.
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ii) Follows from the fact, that in the thermodynamic limit {G(x,y))
={G(x)G(y)>. O

Finally we note, that the correlation inequality of [1], Appendix A, which
relates expectations in the fixed length and variable length models, verbatim
applies for {G(x)). Hence

<G(X) >var. length —>_— <G(x)>fixed length

for any A, provided —m? is sufficiently large. This proves Theorem 2.
In conclusion we would like to mention that with the above boundary
conditions the non-compact analogue of the factorization formula of [6] can be

used to show! )
<¢(X)>a = <¢(x)>Landau e_a/z(g,A g) .

Since (g, 4~ %g)=(4"2),, diverges as A 7Z* in d<4, this proves absence of
spontaneous symmetry breaking in d £4 for all «>0 in agreement with Theorem
(2.4) of [17.
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1
1 Here (-, denotes expectation corresponding to the gauge fixing term Z_(d*A’ d*A) and
o

<’>LandauE <'>a=0





