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Abstract. For the non-compact abelian lattice Higgs model in Landau gauge
Kennedy and King (Princeton preprint, 1985) showed that the two point
function <^(x)$Cy)> does not decay in the Higgs phase. We generalize their
methods to show that for the same range of parameters there are states
parametrized by an angle 0e[0,2π) such that <^(x)>Landau = βw<^W>LΪndau

1. Introduction

In [1] Kennedy and King conjectured that the translation invariant pure phases of
the lattice abelian Higgs model in three or more dimensions are parametrized by
an angle θ e [0, 2π) such that

with c> 0 in the Higgs region. Since in their paper they use boundary conditions
which do not break the global gauge symmetry, they only could show that the two-
point function doesn't decay. Using "Dirichlet" boundary conditions as explained
below we generalize their methods to prove the following

Theorem 2. In d^3, for any λ>Q there are states parametrized by an angle
θ e [0, 2π), such that

where <^(x)>LΓndau>^ is is uniformly bounded away from zero provided e<e0 and
— m2>R(λ) in the notation of Theorem (2.3) of [1].

Remark 1. This provides a local (in Landau gauge) order parameter for the phase
transition established in [1].

Remark 2. We believe that our construction in fact yields <^(x)> = <^> to be
translation invariant, but in this comment we only prove it for the fixed length
model.
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2. The Boundary Conditions
d

We define the model on a ^-dimensional rectangular lattice A = \J Λr, which we
r = 0

take to be an open subcomplex of Zd. Starting from the set of sites Λ° this is defined
recursively by the requirement [2] that an r-cell (i.e. bond for r= 1, plaquette for
r = 2, etc.) belongs to Ar if and only if at least one (r — l)-cell in its boundary lies in
Λr~1 (in [3] this is called "δ*-closed"). Visualizing Λ as a box with boundary dΛ
consisting of (d-l)-dimensional rectangles, this means that all the sites, links,
plaquettes etc. contained in dΛ do not belong to Λ, whereas they do, if Λ is closed as
in [1].

With this difference in mind we write the electromagnetic part of the action as
in[l]

Sίm(A) = \ (dA, dA)ΛΪ + 1 (d* A, d*A)AO,

where A is the real valued gauge field defined on Λ1. (dA)(p) is computed on
plaquettes in the vicinity oΐdΛ as usual by putting A(b) = OfoτbφΛ1. Note that an
according specification is not needed for (d*A) (x), because by definition all the
bonds emerging from x e A° already belong to Λ1. In fact although d*A would also
take on spurious values on sites one unit outside of Λ°9 these are not to be taken
into account in order to have a proper gauge fixing function [4].

An important advantage of this choice of boundary conditions is, that now d*d
evaluated on 0-forms is nothing but the Laplacian A:S2(A°}-*£2(A0) with
0-Dirichlet boundary conditions on dΛQ, which is clearly invertible. More generally
we note as a standard fact [2, 5], that on an open subcomplex A of Έd the
Laplacian A = d*d + dd* is invertible on r-forms for all 0 ̂  r g d — 1. In particular

DΛA e ~ Sβ™(A} with DΛA = fl dA(b) is a well defined Gaussian without zero modes
and hence integrable.

Finally we define the Higgs part of the action using the same notation as in [1]

S^(A,φ)=^Σ\Dφ(b)\2 + Σ V(\φ(x)\),
^ f c e Λ 1 xeΛ°udΛ°

where the phase of the Higgs field ^(x) is constrained to be zero outside of Λ°. This
will correspond to θ = 0 in Theorem 2. The general case is obtained by applying a
global gauge transformation φ'(x) = eiθφ(x), A'(b) = A(b).

3. The Order Parameter

Inspired by Eq. (2.5/6) of [1] we now define

G(x) - ^(x) e-
ie(A h} = r(x) βi<«.β

where ft is given by

and g = δx. As a crucial property like in [1] we note that ||ft||^^ p||| = (gf, zl lg)
= (A~ 1)JCX is uniformly bounded in x and \Λ\ for d ̂  3. G(x) is gauge invariant since
d*h = g and reduces to ^(x) in Landau gauge since (A,h) = (d*A,A~ig).
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Let us first focus on the fixed length model, i.e. the limit λ-+co in

Theorem 1.
(i) For d^.3 and for any 0 < y < 1 , there are constants e(γ), a(γ) such that for

e < e(y) and a > α(y)

uniform in the volume \Λ\.
(ii) There is a constant 0 > 0 such that for a<δ and for all e

in the thermodynamic limit Λ /* TLά.

Proof. First we note that in [1] the transformation of Balaban et al. [7] was
implicitly used. This transformation is based on the identity

Σ = Σ Σ
l-forms v:Λ2 ^Z s:ΛG-+Z

n Λ^^ΊL dv = 0

which also holds with our boundary conditions, with the minor simplification that
now the 0-forms s are not constrained to be zero at a fixed point x0 e/L°, since
ds = Q already implies s = 0. Moreover Lemma (3.2) of [1] can be proven
analogously, once we observe that in an open complex a maximal tree of A1 has to
be constructed in such a way that it touches dΛ° at only one point (which then is
the base for this tree). From then one we can literally use the proof of Theorem
(2.1i) of [1], since only the uniform boundedness of | |ft | |2 respectively \\h\\ ̂  is used
and all correlation inequalities also apply for G(x). In particular <G(x)>
^ <^(*)>jrr-modei which also proves ii). D

Let furthermore G^ : — lim <G(x, y)> the order parameter of King, Ken-
|x-y|-*oo

nedy [1], then we also have the following generalization of their theorem (2.5).

Corollary. Ind^3 there are constants eQ and μQ such that for e < e0, ae > μ0 and all x

ii)

where <• •> denotes truncated expectation.

Proof.
i) This follows from Lemma (4.2) and Proposition (4.3) of [1], since also with

our boundary conditions for any g of compact support dΛA^ vg converges in f2 to
its infinite volume value in d^3. Hence

where F(h) is given by the translation invariant polymer expansion (4. 1) of [1] and
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ii) Follows from the fact, that in the thermodynamic limit <G(x,y)>

Π

Finally we note, that the correlation inequality of [1], Appendix A, which

relates expectations in the fixed length and variable length models, verbatim

applies for <G(x)>. Hence

< G(x) >var . length ̂  < G(x) >f ixed length

for any λ, provided — m2 is sufficiently large. This proves Theorem 2.

In conclusion we would like to mention that with the above boundary

conditions the non-compact analogue of the factorization formula of [6] can be

used to show 1

Since (g, A ~ 2g) = (A ~ 2)xx diverges as Λ/*TLd in d^4, this proves absence of

spontaneous symmetry breaking in ά ̂  4 for all α > 0 in agreement with Theorem

(2.4) of [1].
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1 Here < >α denotes expectation corresponding to the gauge fixing term —(d*A, d*A) and




