The Spectrum of a Schrödinger Operator in $L_{p}\left(\mathbb{R}^{v}\right)$ is \boldsymbol{p}-Independent

Rainer Hempel and Jürgen Voigt
Mathematisches Institut der Universität München, Theresienstr. 39, D-8000 München 2, Federal Republic of Germany

Abstract

Let $H_{p}=-\frac{1}{2} \Delta+V$ denote a Schrödinger operator, acting in $L_{p}\left(\mathbb{R}^{v}\right)$, $1 \leqq p \leqq \infty$. We show that $\sigma\left(H_{p}\right)=\sigma\left(H_{2}\right)$ for all $p \in[1, \infty]$, for rather general potentials V.

Introduction. In [12, 13], B. Simon conjectured that $\sigma\left(H_{p}\right)$ is p-independent, where $H_{p}=-\frac{1}{2} \Delta+V$ is a general Schrödinger operator in $L_{p}\left(\mathbb{R}^{v}\right)$. Partial results on this problem are contained in Simon [12], Sigal [10], Hempel, Voigt [5].

In the notations of Sect. 1, our main result reads as follows.
Theorem. Let $V=V_{+}-V_{-}, V_{ \pm} \geqq 0$, where V_{+}is admissible, and $V_{-} \in \hat{K}_{v}$ with $c_{\nu}\left(V_{-}\right)<1$. Then $\sigma\left(H_{p}\right)=\sigma\left(H_{2}\right)$ for $1 \leqq p \leqq \infty$.

In addition, if λ is an isolated eigenvalue of finite algebraic multiplicity k of H_{p}, for some $p \in[1, \infty]$, then the same is true for all $p \in[1, \infty]$.

The proof of this result is contained in Propositions 2.1, 3.1, and 2.2.
In Sect. 2 we prove the inclusion $\sigma\left(H_{2}\right) \subset \sigma\left(H_{p}\right)$, following ideas of Simon and Davies.

In Sect. 3 we show that the integral kernel of $\left(H_{2}-z\right)^{-n}$, for $n \in \mathbb{N}, n>v / 2$, defines an analytic $\mathscr{B}\left(L_{p}\left(\mathbb{R}^{v}\right)\right)$-valued function on $\rho\left(H_{2}\right)$, which coincides with $\left(H_{p}-z\right)^{-n}$ for z real and sufficiently negative. This implies $\sigma\left(H_{p}\right) \subset \sigma\left(H_{2}\right)$, by unique continuation.

A different situation, where an integral kernel determines operators with p dependent spectrum, can be found in Jörgens [6; IV, Aufg. 12.11 (b)]; note that the kernel in Jörgens' example is the resolvent kernel of the differential operator

$$
-\frac{d}{d x} x^{2} \frac{d}{d x} \text { on }(0, \infty), \quad \text { at } z=-2
$$

1. Schrödinger Operators in $L_{p}\left(\mathbb{P}^{v}\right)$

First we recall briefly several facts concerning the semigroup associated with the heat equation. For brevity, we shall write L_{p} instead of $L_{p}\left(\mathbb{R}^{v}\right)$, in the sequel
(analogously, $C_{c}^{\infty}:=C_{c}^{\infty}\left(\mathbb{R}^{\nu}\right)$, etc.). For $t \in \mathbb{C}, \operatorname{Re} t>0$, we define $k_{t} \in L_{1}$ by

$$
k_{t}(x):=(2 \pi t)^{-v / 2} \exp \left(-|x|^{2} / 2 t\right) .
$$

For $1 \leqq p \leqq \infty$ we define $U_{0, p}(t) \in \mathscr{B}\left(L_{p}\right)(t \in \mathbb{C}, \operatorname{Re} t>0)$ by

$$
U_{0, p}(t) f:=k_{t} * f\left(f \in L_{p}\right),
$$

and further $U_{0, p}(0)=I$. For $1 \leqq p<\infty, U_{0, p}(\cdot)$ is a holomorphic semigroup of angle $\pi / 2$; let $-H_{0, p}$ denote its generator. Further denote $H_{0, \infty}:=H_{0,1}{ }^{*}$.

Next we introduce the class of potentials V to be considered in this paper. Following Voigt [14], we define classes of potentials by

$$
\widehat{K}_{v}:=\left\{V \in L_{1, \text { loc }} ; \operatorname{ess}_{x \in \mathbb{R}^{v}} \int_{|x-y| \leqq 1}\left|g_{v}(x-y)\right||V(y)| d y<\infty\right\},
$$

where g_{v} is the usual fundamental solution of $\frac{1}{2} \Delta$. Note that this class is slightly larger than the class K_{v} in Aizenman, Simon [1], Simon [13]. For $V \in \hat{K}_{v}$ we define

$$
c_{v}(V):=\lim _{\alpha\rfloor 0}\left(\operatorname{ess} \sup _{x \in \mathbb{R}^{v}} \int_{|x-y| \leqq \alpha}\left|g_{v}(x-y)\right||V(y)| d y\right) .
$$

Obviously $\hat{K}_{v} \subset L_{1, \text { loc }, \text { unif }}$ for all $v \in \mathbb{N}, \widehat{K}_{1}=L_{1, \text { loc, unif }}$, and $c_{1}(V)=0$ for all $V \in \widehat{K}_{1}$.
A potential $V \geqq 0$ will be called admissible if $Q\left(H_{0,2}\right) \cap Q(V)$ is dense in L_{2}; cf. Voigt [14]. In particular, $V \geqq 0$ is admissible if $V \in L_{1, \text { loc }}(G)$, where $G=\xi \subset \mathcal{G}^{v}$ is such that $\mathbb{R}^{v} \backslash G$ is a (closed) set of Lebesgue measure zero.

Throughout this paper we shall assume

$$
\begin{align*}
& V=V_{+}-V_{-}, \quad V_{ \pm} \geqq 0, \\
& V_{-} \in \hat{K}_{v} \quad \text { with } c_{v}\left(V_{-}\right)<1, \quad V_{+} \text {admissible. } \tag{1.1}
\end{align*}
$$

In the following proposition we denote the truncation of V by

$$
V^{(n)}:=(\operatorname{sgn} V)(|V| \wedge n) \quad(n \in \mathbb{N})
$$

1.1. Proposition. Let V satisfy (1.1), and let $1 \leqq p<\infty$. Then, for $t \geqq 0$, the limit

$$
U_{p}(t):=s-\lim _{n \rightarrow \infty} \exp \left(-t\left(H_{0, p}+V^{(n)}\right)\right)
$$

exists, and $\left(U_{p}(t) ; t \geqq 0\right)$ is a C_{0}-semigroup on L_{p}. The Feynman-Kac formula

$$
U_{p}(t) f(x)=E_{x}\left\{\exp \left(-\int_{0}^{t} V(b(s)) d s\right) f(b(t))\right\}
$$

holds for all $f \in L_{p}$.
Here, E_{x} and $b(\cdot)$ are as in Simon [13]; cf. Reed, Simon [9], Simon [11]. The proof of this proposition can be found in Voigt [14; Proposition 5.8(a), Proposition 2.8, Remark 5.2(b), Proposition 3.2, Proposition 6.1(c)].

We denote the generator of $\left(U_{p}(t) ; t \geqq 0\right)$ by $-H_{p}$, for $1 \leqq p<\infty$, and we shall henceforth write $U_{p}(t)=\exp \left(-t H_{p}\right)$. Also, $H_{\infty}=H_{1}^{*}$. More detailed information about the operators H_{p}, in particular for $p=1, p=2$ can be found in Voigt [14].

Note that H_{2} is the form sum of $-\frac{1}{2} \Delta$ and V; cf. Voigt [14; Remark 6.2(c)]. (It follows from Devinatz [3; Lemma 4] that V_{-}is $H_{0,2}$-form small.)

2. $\sigma\left(H_{2}\right) \subset \sigma\left(H_{p}\right)$

In this section we show that interpolation, duality, and $p-q$-smoothing lead to the following result.
2.1. Proposition. Let V satisfy (1.1). Then $\rho\left(H_{p}\right) \subset \rho\left(H_{2}\right)$ for all $p \in[1, \infty]$, and

$$
\left(H_{p}-z\right)^{-1}\left|L_{p} \cap L_{2}=\left(H_{2}-z\right)^{-1}\right| L_{p} \cap L_{2} \quad\left(z \in \rho\left(H_{p}\right)\right)
$$

This result was stated in Simon $[12,13]$. The argument given there was based on interpolation between the resolvents $\left(H_{p}-z\right)^{-1}$ and $\left(H_{p^{\prime}}-z\right)^{-1}$, for $z \in \rho\left(H_{p}\right)=$ $\rho\left(H_{p^{\prime}}\right)$. It is not immediate, however, that these resolvents coincide on $L_{p} \cap L_{p^{\prime}}$, as can be seen from Jörgens' example mentioned in the introduction. This gap in Simon's argument was closed by E. B. Davies (private communication). Compare also Hempel, Voigt [5; Proposition 3.1].
Proof of Proposition 2.1. (i) (due to E. B. Davies) Let $1 \leqq p<q \leqq \infty, t>0$. Then $e^{-t H_{p}} \in \mathscr{B}\left(L_{p}, L_{q}\right)$; cf. Voigt [14; Proposition 6.3]. This implies

$$
\begin{equation*}
e^{-t H_{p}} H_{p} \subset H_{q} e^{-t H_{p}} \tag{2.1}
\end{equation*}
$$

Assume additionally $\lambda \in \rho\left(H_{p}\right) \cap \rho\left(H_{q}\right)$. Then (2.1) implies

$$
\left(H_{q}-\lambda\right)^{-1} e^{-t H_{p}}=e^{-t H_{p}}\left(H_{p}-\lambda\right)^{-1}
$$

For $t \rightarrow 0$ we obtain

$$
\begin{equation*}
\left(H_{p}-\lambda\right)^{-1}\left|L_{p} \cap L_{q}=\left(H_{q}-\lambda\right)^{-1}\right| L_{p} \cap L_{q} . \tag{2.2}
\end{equation*}
$$

(This holds also for $q=\infty$ because $e^{-t H_{p}} f$ is $\sigma\left(L_{\infty}, L_{1}\right)$-continuous for $f \in L_{p} \cap L_{\infty}$.)
(ii) Let $1 \leqq p \leqq 2,1 / p+1 / p^{\prime}=1$, and let $\lambda \in \rho\left(H_{p}\right)\left(=\rho\left(H_{p^{\prime}}\right)\right.$). Then $\left(H_{p^{\prime}}-\lambda\right)^{-1}$ $\left|L_{p} \cap L_{p^{\prime}}=\left(H_{p}-\lambda\right)^{-1}\right| L_{p} \cap L_{p^{\prime}}$, by (2.2). The Riesz-Thorin convexity theorem implies that $\left(H_{p}-\lambda\right)^{-1}$ is continuous as an operator R_{λ} on L_{2}.

For $f \in L_{2} \cap L_{p}$, (2.1) implies

$$
\left(H_{2}-\lambda\right) e^{-t H_{p}}\left(H_{p}-\lambda\right)^{-1} f=e^{-t H_{p}} f
$$

For $t \rightarrow 0$ we obtain $\left(H_{2}-\lambda\right)\left(H_{p}-\lambda\right)^{-1} f=f$. This implies $\left(H_{2}-\lambda\right) R_{\lambda}=I$, and hence $\lambda \in \rho\left(H_{2}\right)$.
2.2. Proposition. Let V satisfy (1.1), and let $1 \leqq p \leqq \infty$. Assume that λ is an isolated point of $\sigma\left(H_{p}\right)$. Then λ is an eigenvalue of H_{p} with finite algebraic multiplicity if and only if the same is true for H_{2}. In this case, λ is real and a pole of first order of the resolvents of H_{p} and H_{2}, and the multiplicities of λ as an eigenvalue of H_{p} and H_{2} coincide.

Proof. Without restriction $p<\infty$. (Duality for $p=\infty$.) Note first that the selfadjoint operator H_{2} can only have real eigenvalues which are poles of first order of the resolvent of H_{2}. Now the assertions follow from Proposition 2.1 and Auterhoff [2; Theorem 1.5]; see also Hempel, Voigt [5; Theorem 1.3].
3. $\sigma\left(H_{p}\right) \subset \sigma\left(H_{2}\right)$

In this section we shall derive properties of the integral kernel of $\left(H_{2}-z\right)^{-n}$, for $n \in \mathbb{N}$, $n>v / 2$, in order to show the following result.
3.1. Proposition. Let V satisfy (1.1). Then $\rho\left(H_{2}\right) \subset \rho\left(H_{p}\right)$, for all $p \in[1, \infty]$.

The proof relies on the following two auxiliary results which will be proved below.
3.2. Lemma. Let X be a Banach space, T a closed operator in $X, \rho(T) \neq \varnothing$. Then $\rho(T)$ is the domain of holomorphy of $(T-z)^{-n}$, for $n=1,2, \ldots$.
3.3. Proposition. Let V satisfy (1.1), and let $n \in \mathbb{N}, n>v / 2$.
(a) Then $\left(\mathrm{H}_{2}-z\right)^{-n}$ is an integral operator, for $z \in \rho\left(\mathrm{H}_{2}\right)$.
(b) Let $G^{(n)}(x, y ; z)$ denote the integral kernel of $\left(H_{2}-z\right)^{-n}$. Then, for any $K \subset \subset \rho\left(H_{2}\right)^{1}$ there exist constants $C, \eta>0$ such that

$$
\left|G^{(n)}(x, y ; z)\right| \leqq C e^{-\eta|x-y|} \quad\left(z \in K, x, y \in \mathbb{R}^{v}\right) .
$$

Proof of Proposition 3.1. By duality, it is sufficient to consider the case $1 \leqq p \leqq 2$. Fix $n \in \mathbb{N}, n>v / 2$, and let $G^{(n)}(x, y ; z)$ be as in Proposition 3.3.

First we show that $G^{(n)}(\cdot, \cdot ; z)$ defines an analytic $\mathscr{B}\left(L_{p}\right)$-valued function $G_{p}^{(n)}(z)$ on $\rho\left(H_{2}\right)$. To prove this, we remark that for any $\phi, \psi \in C_{c^{\prime}}^{\infty}$, the mapping

$$
\rho\left(H_{2}\right) \ni z \mapsto \iint G^{(n)}(x, y ; z) \phi(y) \Psi(x) d x d y
$$

is holomorphic. Furthermore, for any $K \subset \subset \rho\left(H_{2}\right)$, there exists a constant C^{\prime} such that

$$
\left\|G_{p}^{(n)}(z)\right\|_{\mathscr{P}\left(L_{p}\right)} \leqq C^{\prime} \quad(z \in K)
$$

by the estimates in Proposition 3.3(b) and Young's inequality (cf. Reed, Simon [9; p. 32]).

Next, the fact that $e^{-t H_{p}}$ coincides with $e^{-t H_{2}}$ on $L_{p} \cap L_{2}$ implies that $G_{p}^{(n)}(z)$ coincides with $\left(H_{p}-z\right)^{-n}$ for z real and sufficiently negative.

It follows by unique continuation that the domain of holomorphy of $\left(H_{p}-z\right)^{-n}$ contains $\rho\left(\mathrm{H}_{2}\right)$. Hence, $\rho\left(\mathrm{H}_{\mathrm{p}}\right) \supset \rho\left(\mathrm{H}_{2}\right)$, by Lemma 3.2 above.

Let us now prove the auxiliary results.
Proof of Lemma 3.2. Clearly, $(T-z)^{-n}$ is holomorphic on $\rho(T)$. Let $\operatorname{spr}(A)$ denote the spectral radius of an operator $A \in \mathscr{B}(X)$. From the well-known facts (cf. Kato [7; p. 27, p. 37])

$$
\begin{aligned}
& \operatorname{spr}\left((T-\zeta)^{-1}\right)=\inf _{n \in \mathbb{N}}\left\|(T-\zeta)^{-n}\right\|^{1 / n}, \\
& \operatorname{spr}\left((T-\zeta)^{-1}\right) \geqq \operatorname{dist}(\zeta, \sigma(T))^{-1} \quad(\zeta \in \rho(T)),
\end{aligned}
$$

it is clear that $\left\|(T-\zeta)^{-n}\right\| \geqq \operatorname{dist}(\zeta, \sigma(T))^{-n}(\zeta \in \rho(T))$.
For several reasons, we include a proof of Proposition 3.3 (instead of simply referring to Simon [13; Theorem B.7.1 (c^{\prime})]): The estimate given in [13; loc. cit.] is

[^0]not uniform for $z \in K \subset \subset \rho\left(H_{2}\right)$ (although one might be willing to believe that it must be true). Also, the proof of the (essential) Lemma B.7.11 in [13] is very sketchy, and it is our aim to give a complete proof of reasonable length. Finally, our proof will show that it is advantageous to consider $\left(H_{p}-z\right)^{-n}, n>v / 2, n \in \mathbb{N}$, instead of arguing with $\left(H_{p}-z\right)^{-1}$ directly (which would be possible, but involve more estimates, like [13; Theorem B.7.2 (1), (2), (4)]).

Since we shall have to consider $e^{-t H_{p}}$ as an operator from L_{p} to $L_{q}, q \geqq p$, we shall frequently drop the subscript p and simply write $H=-\frac{1}{2} \Delta+V$, in the sequel. The proof will involve several steps, following rather closely the outline given in [13; proof of Lemma B.7.11]. For the remainder of this section, the assumptions of Proposition 3.3 are always assumed to hold.
3.4. Lemma. Let $1 \leqq p \leqq q \leqq \infty, \varepsilon_{0}>0$. Then there exist constants $C=C\left(p, q, \varepsilon_{0}\right)$, $A=A\left(p, q, \varepsilon_{0}\right)$, such that for $\varepsilon \in \mathbb{R}^{v},|\varepsilon| \leqq \varepsilon_{0}, t>0$, we have

$$
\left\|e^{\varepsilon \cdot x} e^{t \Delta} e^{-\varepsilon \cdot x}\right\|_{p, q} \leqq C t^{-\gamma} e^{A t},
$$

where $\gamma:=(v / 2)\left(p^{-1}-q^{-1}\right)$.
Proof (compare Simon [13; Lemma B.6.1]). Let $\varepsilon \in \mathbb{R}^{\nu},|\varepsilon| \leqq \varepsilon_{0}$. Clearly,

$$
K_{\varepsilon}(x, y ; t):=(2 \pi t)^{-v / 2} e^{\varepsilon \cdot(x-y)} \exp \left(-\frac{|x-y|^{2}}{2 t}\right)
$$

is the kernel of $e^{\varepsilon \cdot x} e^{(t / 2)} e^{-\varepsilon \cdot x}$. By Young's inequality (cf. Reed, Simon [9; p. 32]), it is enough to estimate $\left\|K_{\varepsilon}(0, \cdot ; t)\right\|_{s}$, for $s:=\left(1+q^{-1}-p^{-1}\right)^{-1}$. Now,

$$
\left\|K_{\varepsilon}(0, \cdot ; t)\right\|_{s} \leqq c t^{-(v / 2)\left(1-s^{-1}\right)}\left[\int_{\mathbb{R}^{v}} e^{s \varepsilon_{0}} \sqrt{ } t|\eta|-(s / 2)|\eta|^{2} d \eta\right]^{1 / s},
$$

and the term in square brackets can be estimated by

$$
\int_{|\eta| \leqq 4 \varepsilon_{0} \sqrt{t}} e^{s \varepsilon_{0} \sqrt{t|\eta|} \mid} d \eta+\int_{|\eta|>4 \varepsilon_{0} \sqrt{t}} e^{-(s / 4 \mid)|\eta|^{2}} d \eta \leqq c^{\prime} t^{\nu / 2} e^{4 s \varepsilon_{0}^{2} t}+c^{\prime \prime}
$$

3.5. Proposition (compare [13; Eq. (B 11)]). For all $1 \leqq p \leqq q \leqq \infty$ there exist constants $C=C(p, q), A=A(p, q)$ such that for all $t>0$ we have

$$
\left\|e^{-t H}\right\|_{p, q} \leqq C t^{-\gamma} e^{A t}
$$

where $\gamma=(v / 2)\left(p^{-1}-q^{-1}\right)$.
Proof. This follows from Devinatz [3; Lemma 2] combined with duality and interpolation as described in Voigt [14; proof of Proposition 6.3]. Under the slightly stronger assumption $c_{v}(V)=0$ a simpler proof can be found in Simon [13; loc. cit.].
3.6. Lemma (compare [13; Lemma B.6.2(b)]). Let $1<c<c_{v}(V)^{-1}, 1 / c+1 / c^{\prime}=1$. Then, for any $\varepsilon \in \mathbb{R}^{v}$,

$$
\left\|e^{\varepsilon \cdot x} e^{-t H} e^{-\varepsilon \cdot x}\right\|_{p, q} \leqq\left\|e^{-t(-(1 / 2) \Delta+c \gamma)}\right\|_{p, q}^{1 / c}\left\|e^{c^{\prime} \varepsilon \cdot x} e^{(t / 2) \Delta} e^{-c^{\prime} \varepsilon \cdot x}\right\|_{p, q}^{1 / c^{\prime}} .
$$

Proof. Let $\varepsilon \in \mathbb{R}^{v}$ and write $w(x)=e^{\varepsilon \cdot x}$. Also, let $h \in C_{c}^{\infty}, g:=w^{-1} h$. Factorizing
$|g|=|h|^{1 / c} \cdot\left|w^{-c^{\prime}} h\right|^{1 / c^{\prime}}$, it follows by Hölder's inequality in function space that

$$
\left|\left(e^{-t H} g\right)(x)\right| \leqq\left[\left(e^{-t(-(1 / 2) \Delta+c V)}|h|\right)(x)\right]^{1 / c} \cdot\left[\left(e^{(t / 2) \Delta}\left|w^{-c^{\prime}} h\right|\right)(x)\right]^{1 / c^{\prime}} .
$$

Now, multiplying by $|w(x)|$, taking $q^{\text {th }}$ powers and integrating, we obtain

$$
\begin{aligned}
\int\left|w e^{-t H} w^{-1} h\right|^{q} d x & \leqq \int\left[e^{-t(-(1 / 2) \Delta+c V)}|h|\right]^{q / c}\left[w^{c^{\prime}} e^{(t / 2) \Delta} w^{-c^{\prime}}|h|\right]^{q / c^{\prime}} d x \\
& \leqq\left\{\int\left(e^{-t(-(1 / 2) \Delta+c V)}|h|\right)^{q} d x\right\}^{1 / c} \cdot\left\{\int\left(w^{c^{\prime}} e^{(t / 2) \Delta} w^{-c^{\prime}}|h|\right)^{q} d x\right\}^{1 / c^{\prime}},
\end{aligned}
$$

which implies

$$
\left\|w e^{-t H} w^{-1} h\right\|_{q} \leqq\left\|e^{-t(-(1 / 2) \Delta+c V)}\right\|_{p, q}^{1 / c}\|h\|_{p}^{1 / c}\left\|w^{c^{\prime}} e^{(t / 2) \Delta} w^{-c^{\prime}}\right\|_{p, q}^{1 / c^{\prime}}\|h\|_{p}^{1 / c^{\prime}} .
$$

3.7. Proposition (compare [13; Theorem B.6.3]). Let $1 \leqq p \leqq q \leqq \infty, \alpha>\gamma=$ $(v / 2)\left(p^{-1}-q^{-1}\right)$, and $\varepsilon_{0}>0$. Then, for z real and sufficiently negative, there exists a constant C such that

$$
\left\|e^{\varepsilon \cdot x}(H-z)^{-\alpha} e^{-\varepsilon \cdot x}\right\|_{p, q} \leqq C \quad\left(\varepsilon \in \mathbb{R}^{v},|\varepsilon| \leqq \varepsilon_{0}\right) .
$$

Proof. For $\phi \in C_{c}^{\infty}$, we have (with $w:=e^{\varepsilon \cdot x}$)

$$
(H-z)^{-\alpha}\left(w^{-1} \phi\right)=c_{\alpha} \int_{0}^{\infty} e^{t z} t^{\alpha-1} e^{-t H}\left(w^{-1} \phi\right) d t,
$$

and hence

$$
\begin{aligned}
\left\|w(H-z)^{-\alpha} w^{-1} \phi\right\|_{q} & \leqq c_{\alpha} \int_{0}^{\infty}\left\|w e^{-t H} w^{-1}\right\|_{p, q} e^{t z} t^{\alpha-1} d t \cdot\|\phi\|_{p} \\
& \leqq c_{\alpha} \int_{0}^{\infty}\left\|e^{-t(-(1 / 2) \Delta+c V)}\right\|_{p, q}^{1 / c}\left\|w^{c^{\prime}} e^{(t / 2)} w^{-c^{\prime}}\right\|_{p, q}^{1 / c^{\prime}} e^{t z} t^{\alpha-1} d t \cdot\|\phi\|_{p}
\end{aligned}
$$

(by Lemma 3.6)

$$
\leqq c_{\alpha} \int_{0}^{\infty}\left[C_{1} t^{-\gamma} e^{A_{1} t}\right]^{1 / c}\left[C_{2} t^{-\gamma} e^{A_{2} t}\right]^{1 / c^{\prime}} e^{t z} t^{\alpha-1} d t \cdot\|\phi\|_{p}
$$

(by Proposition 3.5 and Lemma 3.4)

$$
\leqq C_{3} \int_{0}^{\infty} t^{-\gamma+\alpha-1} e^{A t+t z} d t \cdot\|\phi\|_{p} \leqq C_{4} \cdot\|\phi\|_{p},
$$

provided $A+z<0$.
3.8. Proposition. For any $K \subset \subset \rho\left(H_{2}\right)$, there exist $\varepsilon_{0}=\varepsilon_{0}(K)>0$ and a constant $C=C\left(K, \varepsilon_{0}\right)$ such that $K \subset \rho\left(e^{\varepsilon \cdot x} H_{2} e^{-\varepsilon \cdot x}\right)$ for $|\varepsilon| \leqq \varepsilon_{0}$, and

$$
\left\|e^{\varepsilon \cdot x}\left(H_{2}-z\right)^{-1} e^{-\varepsilon \cdot x}\right\|=\left\|\left(e^{\varepsilon \cdot x} H_{2} e^{-\varepsilon \cdot x}-z\right)^{-1}\right\| \leqq C \quad\left(|\varepsilon| \leqq \varepsilon_{0}, z \in K\right) .
$$

Proof. As W_{2}^{1} contains the form domain of H_{2}, the operators ∂_{j} are $\left|H_{2}\right|^{1 / 2}$ bounded and hence H_{2}-bounded with relative bound zero $(j=1, \ldots, v)$. This implies

$$
e^{\varepsilon \cdot x} H_{2} e^{-\varepsilon \cdot x}=H_{2}+\varepsilon \cdot \nabla-\frac{1}{2} \varepsilon^{2},
$$

for all $\varepsilon \in \mathbb{R}^{v}$. Now the identity

$$
\left(H_{2}+\varepsilon \cdot \nabla-\frac{1}{2} \varepsilon^{2}-z\right)=\left(I+\left(\varepsilon \cdot \nabla-\frac{1}{2} \varepsilon^{2}\right)\left(H_{2}-z\right)^{-1}\right)\left(H_{2}-z\right)
$$

implies the desired conclusion.
We can now finally proceed to the proof of Proposition 3.3.
Proof of Proposition 3.3. Fix $n \in \mathbb{N}, n>v / 2$, and choose w real and so negative that, by Proposition 3.7,

$$
\begin{equation*}
\left\|e^{\varepsilon \cdot x}(H-w)^{-n / 2} e^{-\varepsilon \cdot x}\right\|_{1,2}+\left\|e^{\varepsilon \cdot x}(H-w)^{-n / 2} e^{-\varepsilon \cdot x}\right\|_{2, \infty} \leqq C \tag{3.1}
\end{equation*}
$$

for all $|\varepsilon| \leqq 1$, with some constant C.
Now let $K \subset \subset \rho\left(H_{2}\right)$ and $z \in K$. Taking $n^{t h}$ powers of the resolvent equation

$$
\left(H_{2}-z\right)^{-1}=\left(H_{2}-w\right)^{-1}+(z-w)\left(H_{2}-w\right)^{-1}\left(H_{2}-z\right)^{-1}
$$

we obtain

$$
\begin{equation*}
\left(H_{2}-z\right)^{-n}=\left(H_{2}-w\right)^{-n} \sum_{j=0}^{n}\binom{n}{j}(z-w)^{j}\left(H_{2}-z\right)^{-j} \tag{3.2}
\end{equation*}
$$

To prove Proposition 3.3, it is clearly enough to show that, for any $0 \leqq j \leqq n$, the operator

$$
\begin{equation*}
\left(H_{2}-w\right)^{-n}\left(H_{2}-z\right)^{-j}=\left(H_{2}-w\right)^{-n / 2}\left(H_{2}-z\right)^{-j}\left(H_{2}-w\right)^{-n / 2} \tag{3.3}
\end{equation*}
$$

is an integral operator with kernel $G_{n j}(x, y ; z)$ satisfying

$$
\begin{equation*}
\left|G_{n j}(x, y ; z)\right| \leqq C_{n j} e^{-\alpha_{n j}|x-y|} \quad\left(z \in K, x, y \in \mathbb{R}^{v}\right), \tag{3.4}
\end{equation*}
$$

with some positive constants $C_{n j}, \alpha_{n j}$.
So let $0 \leqq j \leqq n$. By Proposition 3.8, there exists $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
\left\|e^{\varepsilon \cdot x}\left(H_{2}-z\right)^{-j} e^{-\varepsilon \cdot x}\right\| \leqq C^{\prime} \quad\left(|\varepsilon| \leqq \varepsilon_{0}, z \in K\right) \tag{3.5}
\end{equation*}
$$

By (3.3) we have

$$
\begin{aligned}
e^{\varepsilon \cdot x}\left(H_{2}-w\right)^{-n}\left(H_{2}-z\right)^{-j} e^{-\varepsilon \cdot x}= & \left(e^{\varepsilon \cdot x}\left(H_{2}-w\right)^{-n / 2} e^{-\varepsilon \cdot x}\right)\left(e^{\varepsilon \cdot x}\left(H_{2}-z\right)^{-j} e^{-\varepsilon \cdot x}\right) \\
& \cdot\left(e^{\varepsilon \cdot x}\left(H_{2}-w\right)^{-n / 2} e^{-\varepsilon \cdot x}\right),
\end{aligned}
$$

and hence it follows from (3.1), (3.5), that

$$
\left\|e^{\varepsilon \cdot x}\left(H_{2}-w\right)^{-n}\left(H_{2}-z\right)^{-j} e^{-\varepsilon \cdot x}\right\|_{1, \infty} \leqq C^{\prime \prime} \quad\left(|\varepsilon| \leqq \varepsilon_{0}, z \in K\right) .
$$

Now it follows from a classical theorem of Dunford and Pettis ([4; Theorem 2.2.5, p. 348]; see also Simon [13; Cor. A.1.2]), that the operator $e^{\varepsilon \cdot x}\left(H_{2}-w\right)^{-n}$ $\left(H_{2}-z\right)^{-j} e^{-\varepsilon \cdot x}$ is an integral operator, and its kernel $G_{n j, \varepsilon}(x, y ; z)$ satisfies the estimate

$$
\begin{equation*}
\left\|G_{n j, \varepsilon}(\cdot, \cdot ; z)\right\|_{\infty} \leqq C^{\prime \prime \prime} \quad\left(|\varepsilon| \leqq \varepsilon_{0}, z \in K\right) \tag{3.6}
\end{equation*}
$$

In particular, the above statements apply to $\varepsilon=0$, and we see that $\left(H_{2}-w\right)^{-n} \times$ $\left(H_{2}-z\right)^{-j}$ is an integral operator with L_{∞}-kernel $G_{n i}(\cdot, \cdot ; z)$; clearly,

$$
e^{\varepsilon \cdot(x-y)} G_{n j}(x, y ; z)=G_{n j, \varepsilon}(x, y ; z) .
$$

Therefore (3.6) implies

$$
e^{\varepsilon_{0}|x-y|}\left|G_{n j}(x, y ; z)\right| \leqq C^{\prime \prime \prime} \quad(z \in K) .
$$

Acknowledgement. One of the authors (R. H.) would like to thank P. Deift (Courant Institute, New York) for several useful discussions.

References

1. Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Commun. Pure Appl. Math. 35, 209-273 (1982)
2. Auterhoff, J.: Interpolationseigenschaften des Spektrums linearer Operatoren auf L^{p}-Räumen. Math. Z. 184, 397-406 (1983)
3. Devinatz, A.: Schrödinger operators with singular potentials. J. Oper. Theory 4, 25-35 (1980)
4. Dunford, N., Pettis, B. J.: Linear operations on summable functions. Trans. Am. Math. Soc. 47, 323392 (1940)
5. Hempel, R., Voigt, J.: On the L_{p}-spectrum of Schrödinger operators. J. Math. Anal. Appl. (to appear)
6. Jörgens, K.: Lineare Integraloperatoren. Stuttgart: B. G. Teubner, 1970
7. Kato, T.: Perturbation theory for linear operators. Second edition. Berlin Heidelberg, New York: Springer 1976
8. Reed, M., Simon, B.: Methods of modern mathematical physics I: Functional analysis. Revised and enlarged edition. New York: Academic Press 1980
9. Reed, M., Simon, B.: Methods of modern mathematical physics II: Fourier analysis, self-adjointness. New York: Academic Press 1975
10. Sigal, I. M.: A generalized Weyl theorem and L^{p}-spectra of Schrödinger operators. Preprint
11. Simon, B.: Functional integration and quantum physics. New York: Academic Press 1979
12. Simon, B.: Brownian motion, L^{p} properties of Schrödinger operators and the localization of binding. J. Funct. Anal. 35, 215-225 (1980)
13. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. New Ser. 7, 447-526 (1982)
14. Voigt, J.: Absorption semigroups, their generators, and Schrödinger semigroups, J. Funct. Anal. (to appear)

Communicated by B. Simon
Received July 22, 1985; in revised form September 26, 1985

[^0]: ${ }^{1} K \subset \subset \rho\left(H_{2}\right)$ means: \bar{K} compact and $\bar{K}<\rho\left(H_{2}\right)$

