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Abstract. The most general unconstrained superfield action for self-interacting
N = 2 matter hypermultiplets in analytic N = 2 superspace is argued to produce
a most general N — 2 hyper-Kahler σ-model after eliminating an infinite set of
auxiliary fields. This suggests a new possibility of classifying hyper-Kahler
metrics according to the N = 2 analytic superfield self-interactions and
provides an effective tool to compute these metrics explicitly. As the simplest
example the U(2)-invariant quartic self-coupling of a single g-hypermultiplet is
analyzed and is shown to yield the familiar Taub-NUT metric. To see the
geometric pattern directly in terms oϊN = 2 superfields we introduce a new on-
shell representation of ^-hypermultiplets in N — 2 harmonic superspace similar
to the τ-description of N = 2 gauge theories. For the U(2)-example this
formulation is checked to coincide with that by Sierra and Townsend.

1. Introduction

Supersymmetry severely restricts a form of matter self-couplings. The scalar fields
of any supersymmetric matter theory1 in four dimensions are described by
nonlinear σ-models, Kahlerian in the JV= 1 case [1], hyper-Kahlerian in the rigid
JV = 2 case [2] and quaternionic in the local one [3]. These remarkable geometric
properties are to be revealed most transparently within manifestly supersymmetric
formulations based on unconstrained off-shell superfields. Indeed, any admissible
superfield self-interactions should necessarily lead to the above-mentioned
σ-models.

There is an exhaustive description of the Kahler geometry of N = 1 matter in
superspace [1,4]. The bosonic manifold metric was shown to be related in a
simple way to the superfield Lagrangian. These results were successfully used in
phenomenological applications in JV=1 supersymmetric GUT's [5]. Now
attempts of utilization of JV = 2 supersymmetry getting started (see e.g. [6]). Until
the last year N — 2 matter Lagrangians have been constructed either at the

1 We mean the supermultiplets with the propagating spins 0,1/2
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component level [2,3,7] or in terms of N = 1 superfields [8] with at most one
manifest supersymmetry. In the latter case an off-shell formulation was achieved
for some hyper-Kahlerian σ-models, and some new hyper-Kahlerian metrics
were found. However, N = 0 and N = 1 formulations give no recipes how to write
down general N = 2 supersymmetric Lagrangians so as to automatically get
hyper-Kahlerian metrics for scalar fields. Therefore it is highly desirable to have a
complete N = 2 superspace description both having in mind future phenomen-
ological applications and purely mathematical reasons. Indeed, manifest N = 2
supersymmetry opens a way to explicitly construct hyper-Kahlerian metrics
(even for the simplest, 4-dimensional manifolds metrics are not known in a
number of important cases, including the famous K3-manifold).

In [9] we have developed a manifestly N = 2 supersymmetric off-shell
description of self-interacting N = 2 matter2 (q and co-hypermultiplets) in har-
monic superspace in terms of unconstrained analytic N = 2 superfields. Thus,
listing all the possible hypermultiplet self-couplings we may, in principle, list all
possible hyper-Kahlerian metrics and find their explicit form.

In the present paper we do the first steps in this direction and compute the
metric for the simplest U(2) invariant quartic self-interaction of a g-hypermultiplet.
The problem of finding the metric amounts to eliminating an infinite number of
auxiliary fields. In the case under consideration we obtain the known hyper-
Kahlerian Taub-NUT metric. Details of computation are given in Sects. 2, 3. To
make closer contact with the hyper-Kahler geometry we pass in Sect. 4 to another
equivalent representation of self-interacting g-hypermultiplet which reveals
unexpected analogies with the τ-description of N = 2 Yang-Mills theory [9,10].
For the U(2)-example we recover in this way the on-shell constrained N = 2
superfield formulation of supersymmetric hyper-Kahlerian σ-models given by
Sierra and Townsend [11] within which the hyper-Kahler properties are manifest
(Sect. 5). Section 6 contains a discussion of the most general self-coupling of
hypermultiplets based on the dimensionality and analyticity considerations. We
conjecture that action is an analytic superspace integral of arbitrary analytic
Lagrange density. Finally, the appendix treats a general harmonic conservation
law which may be of use in future calculations of bosonic metrics for more
complicated hypermultiplet self-couplings.

In the present section we compute the bosonic metric associated with the U(2)-
invariant self-coupling of a single ^-hypermultiplet. The harmonic superspace
action and the corresponding equations of motion are [9]:

++q++λ(q+q+)q+=0 D++q+ λ(q+q +D++q++λ(q+q+)q+=0, D++q+ -λ(q+q + )t = 0 . (2.2)

2 As well as N = 2 Yang-Mills and supergravity theories
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Here3 q + is a complex unconstrained N = 2 superfield defined on the analytic JV = 2
superspace {zA, w*} = {xa

A, 0α

+, &£, u*}, q + = q + (zA, u), "is the analyticity preserv-
ing conjugation ((q + f= —q+), and D+ + is the harmonic derivative in the analytic
basis:

D+ + =δ+ + -2ίθ + σaθ+da, a + +

 Ξ ^ . (2.3)

Besides the standard SU(2) invariance realized in JV = 2 superspace [9], this model
has U(l) invariance,

q + ' = et*q+9 q+' = e-tψ ^ (2.4)

leading to the conserved Noether current j + +

9

D++j+ + =0, r + =iq + q+. (2.5)

This U(l) invariance will substantially simplify the computation of metric.
Since we are interested in the pure bosonic part of the action, we may omit the

fermions in the θ+,θ+ expansion of q + ,

+ Θ + Θ + N~ (xA, u) + θ + θ + θ + θ + p(- 3\χA9 u). (2.6)

Substituting this into (2.2), one gets the equations of motion in (xA9u) space:

d++F++λ(F+F+)F+=0, (2.7a)

d++Λ; -2daF
++λF+F + A; +λ(F+)2A; = 0 , (2.7b)

d++M~ +λ(F+)2N~ +2λF+F+M~ - 0 , (2.7c)

F+N-=0, (2.7d)

-λA~aA;F+ +2λF+M~N~ +2λF+(M~M~ +N~N~) = 0. (2.7e)

All these equations except (2.7e) are kinematical and serve to eliminate an infinite
tail of auxiliary fields appearing in harmonic expansion with respect to uf. The last
equation contains dynamics and hence will not be used in what follows.

Now we integrate in (2.1) over θ+,θ+ using Eqs. (2.6), (2.7a-d). Contributions
proportional to M~, JV~, and P ( ~ 3 ) drop out, and the bosonic action reduces to

sB=i ί d4x du(i; daF+ - A ; daP+), (2.8)

where F+(x, u) and A~(x, u) obey Eqs. (2.7a, b). The latter are easily solved due to
U(l) invariance (2.4). Indeed the conservation law (2.5) implies d++(F + F+) = 0.
Whence

F + (x, u)F+(x, u) = CW(x)u?ut,

This suggests the following change of variables

F + (x, u) = / + (x, u)eλφ, φ(x, u)= - &iJ\x)u?uJ = - φ(x9 u), (2.10)

3 For the notation and details concerning harmonic superspace, see [9,10]
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which reduces (2.7a) to the linear equation

d++f+(x,u) = 0 =>f + (χ,u)=fi(x)u+ . (2.11)

Taking into account that

F+F+ =f+f* => Ciij)(x)= -/ ( ί(x)/ j )(x), (2.12)

where fi = sijfp fj^{fj)-> we obtain the general solution of (2.7a) in the form

F+(x,u)=f\x)ut -e^=f\x)ut ^xp(λf\x)fk\x)ulu;). (2.13)

Thus, all the components in the uf -expansion of F+(x, u) are expressed in terms of
f\x) which is the physical bosonic field.

The remaining Eq. (2.7b) is simplified by the substitution A~(x9 u)
= B~(x,u)eλφ. Equation (2.7b) implies that harmonic expansion of B~ contains
only linear {~u~) and trilinear (~u~u~u+) terms. Finally,

A; = eλ* J2A/V da(fψ\~ uj) + 2dafur

(2 1 4 )

Let us emphasize once more that this simple form of the solution is due to U(2)
invariance of the action (2.1). More general self-couplings lead to much more
complicated equations (see Sect. 4).

To find the action in terms of f\x), we integrate (2.8) over w* using (2.13),
(2.14), the reduction identities [9]

+ + + - - + + - , m

U i U U ί '' UjnUki Ukm) = U(i Uji ' Ukm)

) = «(7<

and the uf integration rules [9]

f(- iymlnl Hi im+n)

\ ( ι v Ul'" ik+ι)

otherwise
u-nu+) (u-) -\(m+n+ιv ik+ι) n=k'

As a result, we arrive at the following bosonic action

SB= -ίίd4x(gijdaf
idψ + ̂ dJidJj + 2hi

jδafWd, (2-15)

where

λ(2 + λff) λ(2 + λff)
9ii 2(l+λff)JiJj' 9 2(\+λff)JJ '

(z.loj
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It is remarkable that the extremely simple monomial JV = 2 superfield interaction
(2.1) entails a complicated nonpolynomial Lagrangian for the physical bosons.
Note the manifest U(2)-invariance of (2.15), (2.16), which reflects the U(2)-
invariance of the original action.

It is not so easy to see that the metric (2.16) is hyper-Kahlerian, especially, because
it is not manifestly Kahlerian in coordinates f\ J[. By simple (though lengthy)
calculations one can verify that it is Ricci-flat. However, it is the necessary
condition, not the sufficient one. One should also pick up three linearly
independent covariantly constant complex structures and this is less trivial. In
Sect. 5 we shall visualize these geometric properties of metric (2.6) by passing to the
new, τ-representation of Eqs. (2.2). Here we prefer to proceed in a different way.
Namely, we demonstrate that (2.15) is reduced by a change of variables to the well-
known Taub-NUT metric, which belongs to the class of four-dimensional
Euclidean gravitational instantons and is known to be hyper-Kahler.

To this end, let us first introduce "spherical" coordinates in the .R4-space

{fji}-
n

fι=ρcos--exp-(ψ + φ),

θ i (3Λ)

/ 2 = ρsin-exp-(φ-φ), ff=ρ2.

Then

= 2(l+λρ2)dρ2+^ρ2(l+λρ2)(dθ2

We assume that (3.2) has no singularities in ρ, so λ > 0. Then one makes a change of
variables

ρ2 = 2(r-m)m, r^m=—7=9 (3.3)
2]/λ

recasting ds2 in the form

ds2 = 2 \\ — dr2 + I (r2 - m2) (dθ2 + sin2 θdφ2)
(4r — m 4

+ m2 ^ (dip + cos θdφ)2}, (3.4)
r + m J

which, up to a numerical coefficient, is the standard Taub-NUT metric (see, e.g.
[12]).
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We have seen above that the hyper-Kahler geometry in the N = 2 analytic
superspace description arises only upon eliminating an infinite tower of auxiliary
fields, i.e. with partially putting the theory on-shell4. One may inquire how to
expose the hyper-Kahler properties directly in terms oϊN = 2 superfields. Clearly,
it should essentially involve the use of superfield equations of motion. Here we
derive another on-shell superfield representation of self-interacting g-hypermulti-
plets in which the geometry is expected to reveal itself more transparently and
which bears an interesting analogy with the τ-description of N = 2 gauge theory
[9,10].

For simplicity we restrict our study to a single q + self-interacting in a
manifestly SU(2)-invariant manner (the general case will be treated elsewhere). The
action is

i ( 4 - 1 )

γ(qΎ(t)2 + λ2(q+)ψ-Ut)Ψ+λ3(q + y + UqΎ- (4.2)

Note that the kinetic term in (4.1) is invariant under some extra SU(2) group
[containing the U(l)-subgroup (2.4)] which is an analogue of the known Pauli-
Gursey group. With respect to this group q+ and q + form an isodoublet. If

q+ = (q\-ξ+), (q^) = i: = -εabq
+b, (4.3)

then the kinetic term can be written in the form

&q+D++q+-q+D++t)=k+aD++<i: • (4-4)

Though self-couplings in (4.1) break this SU(2) symmetry, the SU(2)-notation is
useful in that it allows one to write the equations of motion in a compact 2 x 2
matrix form 5

+ + + + b +fM=0, (4.5)

(4 5a)
Let us also recall the analyticity conditions

The quantity F + + , being a real analytic superfield in the adjoint represent-
ation of SU(2), can be regarded as a composite N = 2 Yang-Mills prepotential [9].
Correspondingly, Eq. (4.5) is similar to the equation for the "bridge" between λ-
and τ-representations of N = 2 gauge theory [9], Eq. (IV.lόb)). This suggests the

4 This has to be compared with the N = l case where the Kahler properties are manifest already
at the level of off-shell ./V = l superfield action. Elimination of auxiliary fields there does not
influence the form of the bosonic Lagrangian

5 Besides this, extra SU(2) group effectively reduces also the number of independent coupling
constants in (4.2) from 5 to 2
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following substitution for q+:

q+=eίvq+, (4.7)

(D+ + + i F + + y = 0, or V+ + = -ieivD + +e-iv. (4.8)

In terms of q +, Eqs. (4.5), (4.6) reduce to

D++4+ = 0 => q+a = qia(z)ut, (4.9)

@mt = iK«) + i^M" = °' ( 4 1 0 )
A^= - / e - - I > a V = 4(a,(zK+ (4.11)

Thus, we arrive at the on-shell description of the self-interacting hypermultiplet in
terms of the ordinary N = 2 superfield q\z) constrained by the "covariantized"
analyticity conditions (4.10). It directly generalizes the standard N = 2 superfield
formulation of a free hypermultiplet [9] and is related to the original analytic
superspace description given by Eqs. (4.5), (4.6) like the τ-representation of IV = 2
Yang-Mills is related to the λ one [9]. In the q+-language, analyticity is purely
kinematic while the dynamics is concentrated in Eq. (4.5) which can be interpreted
as the condition of "covariant" uf -independence of q +. On the contrary, in the
q + -language, the notion of uf -independence is kinematic. The theory is put on-
shell by the constrains (4.10) stating that q+ is "covariantly" analytic.

Let us emphasize that Eq. (4.8) in different descriptions comes out as a
definition of different objects. In the A-description it defines the bridge eίv while in
the τ-description it defines the "prepotential" V++. The expression of eίv in forms
of V+ + can be obtained iteratively, by a general recipe given by us for the N = 2
gauge theory [10]. This solution is nonlocal in harmonics and is independent of a
specific form of V+ +.

Note that again in a close analogy with the N = 2 Yang-Mills theory [13, 9] we
may define the τ-representation of q + -hypermultiplet in more abstract terms,
namely, by adding to Eq. (4.10) the constraints

Equations (4.10), with any A*iά) composed of q+ and satisfying (4.12), are reduced
after the redefinitions (4.7), (4.8) to the manifestly analytic Eqs. (4.5), (4.6),
However, for (4.5) to be derivable from an action, V++ and, respectively, eiv and
Aφ} have to obey certain integrability conditions whose implications are not clear
to us at the moment.

These considerations can be easily extended to the case of n hypermultiplets.
Superfield q + a (4.3) then acquires additional indices and so do V++ and Aφ)9

which become 2n x 2n matrices.
In the next section the usefulness of the τ-representation will be illustrated by

the O?+)2θf+)2-example.

In the τ-description of q+ proposed above the basic geometric object is the
composite spinor connection A*i&)(q) restricted by the constraints (4.12), (4.10). On
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the other hand, Sierra and Townsend [11] have given a different on-shell
superfield formulation of g+-hypermultiplet, also in terms of the ordinary
constrained N = 2 superfields. For one hypermultiplet their constraint is as follows

[11]:
E%a(q)D%$%z) = 0, qjb = εie sbcq^

( i j = l , 2 ; α , f c = l ,2), (5.1)

where the real superfields qjb are assumed to parametrize a four-dimensional real
Riemann space, Efb(q) is the corresponding inverse vielbein with the world indices
jb and the tangent space indices ίa. In terms of Eιfb the hyper-Kahlerian geometry of
self-interacting hypermultiplet manifests itself most clearly [11]. So it would be
desirable to put our constraints (4.9)—(4.11) in the form (5.1). For the time being, we
do not know whether it is always possible [the σ-models associated with the
constraint (5.1) seem to require the SU(2) automorphism group to be unbroken
while Eqs. (4.9)—(4.11) do not imply such a restriction]. Our aim here is to explicitly
demonstrate that for the U(2)-case treated above this equivalence really takes
place.

The relevant V++ is diagonal

0 -V<
and there arises an analogy with the Abelian N = 2 gauge theory. Such a
simplification allows us to obtain the bridge and spinor connections in a closed
form

v= (q + t +q~t) «* =«W t =

(5.4)

Note that

ql(z)\e=o =fι(x) •> iv\θ = o = λφ(x, u),

where /* and φ are the same as in Eqs. (2.9), (2.10).
By means of some easy algebra the constraints (4.10) with A*{ά) (5.4) can be

reduced to
Eϊb

aD:{φ
k%z) = 0, E+a = Eia

b(z)ut, (5.5)

F kl EkΛ \ 1 ) 1 I .
k b = I irii iri2 I - \ 7 / 2 \ 2 Γ ^ '

Taking off the zweibeins uf from the right-hand side of (5.5) we may cast the latter
equation just into the form (5.1). To achieve a complete agreement with [11], one
should also take into account a freedom of rescaling (5.5) by a scalar function of q.
It turns out that the hyper-Kahler properties become manifest in terms of the
vielbeins

£ S = (det£)- ^ 6 • E& = + 2 E&. (5.7)
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One may explicitly check that the two-forms:

W = E%E%εacdq*W (5.8)

are closed, constitute a SU(2)-triplet, and are covariantly constant with respect to
the connection constructed by the metric

Qib, ka — ^ίb^kaεjlεcd W 9)

These properties are just characteristic of a hyper-Kahler manifold. The purely
bosonic metric defined as the θ-independent part of (5.9) exactly coincides with
(2.16),

1 ( 2 + V )

2(1+V)
(5.10)

Thus, there exists a possibility to expose the structure of metrics associated
with the g-self-couplings also in the τ-representation by passing to the constraints
of the form (5.1). One may derive a general formula relating the vielbein Efb to the
bridge eiυ. However, to restore eiv by V+ + is in general not easier than to compute
the metric in the ^-representation. Perhaps, it would be more fruitful to deal at
once with the N = 2 Yang-Mills-like constraints (4.10), without transforming them
to the form (5.1) or (and it would be most desirable) to learn how to reveal the
geometric structures directly in the /l-representation which provides the natural
framework for handling hypermultiplets.

In any case, there remains an actual and interesting task of computing the
metrics for other self-couplings of q and ω-hypermultiplets by applying the
straightforward method of Sect. 2. In particular, it is an intriguing question which
self-coupling corresponds to the more familiar hyper-Kahler metric, that of
Equchi and Hanson [14]. It appeared in the early investigations on supersym-
metric hyper-Kahler σ-models and, like the Taub-NUT metric, exhibits U(2)-
invariance (see Note added in proof).

Finally, we discuss the most general self-interactions of hypermultiplets. The
dimensionality and analyticity arguments seem to completely determine their
form. Indeed let us start with the case JV = 0. The standard N = 0 σ-model action is

S=~\d^xgij(f)daf
idψ, (6.1)

K

where K is a coupling constant (dimension mass"1), f are dimensionless and are
considered as coordinates of some manifold. To pass from / ' to the physical scalar
field one has to rescale it as fι = κf^hys. The metric &//) is dimensionless and does
not explicitly depend on K.
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Correspondingly in the JV = 1 case matter is described by dimensionless chiral
superfields φι {φ\x, θ) = fι + θxp1 + ...) which again play the role of coordinates of
some (Kahler) manifold. The most general N = 1 σ-model action is

S=\\d4xd4ΘK(φ,φ). (6.2)
K

The dimensional parameter K enters again via the factor κ~2 and the structure of
Lagrange density is controlled by dimension of measure d4xd4θ.

As we know JV = 2 matter is represented by JV = 2 analytic superfields q + (zA, u)
and ω(zA, u). Their 0-expansion again begins with geometric fields fι(x), soq + and
ω are dimensionless as well. Under the natural assumption that the most general
JV = 2 σ-model is formulated via q+ or ω superfields, the only possible superspace
action which results (after elimination of auxiliary fields) in (6.1) is

S=\$dzA~
4)du^ + 4Xq + ,ω,u±,D++q + ,D++ω,...), (6.3)

where <5?(+4) is dimensionless function of q + , ω, harmonics w± and analyticity
preserving derivatives D++q + , D + + ω , etc. Note that j£?( + 4 ) cannot contain
harmonic nonlocalitics6, because for analyticity such terms would inevitably
include spinor derivatives (D+)4. The latter is forbidden by the above dimension-
ality arguments.

Thus, we conjecture that any hyper-Kahlerian σ-model is supersymmetrized to
some S£( + 4 ) (6.3). This provides a technique to explicitly compute hyper-Kahlerian
metrics by choosing a Lagrangian and eliminating auxiliary bosonic fields7.

Concluding the paper we wish to emphasize the importance of establishing a
classification of the hyper-Kahler metrics according to JV = 2 superfield Lagrange
densities. The simplest case considered above is an example.

Appendix

We derive here a general conservation law for self-interacting g-hypermultiplets
which may be useful in practical calculations.

We start with the most general g-hypermultiplet action containing no more
than one harmonic derivative.

The relevant equations of motion are

(A.2)

6 E.g. like those occurring in the N = 2 Yang-Mills action [10]
7 Recently Rosly and Schwarz [15] have suggested a geometric action for hyper-Kahler
supersymmetric σ-models in the analytic N = 2 superspace starting with the Sierra-Townsend
approach [11], where hyper-Kahler metrics are assumed to be given in advance



Hyper-Kahler Metrics and Harmonic Superspace 525

Let us compute

* di? ( 4 )

int
τ \ p ) dq+a d{D++q + a) dq+a

I + + r α ) d(D++q+a)

Using once more Eqs. (A.2), we observe that the quantity

( )
int D
+q + a)

d(D++q

obeys the conservation-like identity,

which becomes exact if ^[^ contains no explicit u~-dependence.

u m = Q ^ D

OU

Equation (A.6) implies that in coordinates of the central basis,

Γ (+4) = Γ ( ϋ M ( φ + u + M + t t + # (A.7)

In the case when ^ (

n t 4 ) does not contain derivatives, T ( + 4 ) coincides with ^/nt 4 ).
This conservation law is especially simple for U(2)-invariant coupling (2.1):

D++ί(q+t)V = 0 => Z)++(« + 4+) = 0. (A.8)

An interesting point about the conservation law (A.6) is that it can be related by
the standard Noether procedure to the invariance of action (A.I) with respect to
the following transformations

δuf =c~~uf , δu f

+=0,
_ _ (A 9)

δ™2ί--θ + m θ + 5 0 + ^ + O V

provided c"~ is a double U(l) charged constant independent of w
( D + + c ~ " = 0 , c~~Φ0). Such a constant looks rather unusual. However, one may
recall the familiar isospin transformations. Here, e.g. in the transformation of
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proton via neutron δp(+) = ίa(+)n(0\ parameter α ( + ) also has an electric charge + 1 .
We prefer to postpone a discussion of the exact meaning of transformations (A.9),
(A. 10) to the future.

Acknowledgements. We are sincerely thankful to A. Perelomov, A. Rosly, A. Schwarz, and B.
Zupnik for useful discussions
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Note added in proof. Recently [15] we have found harmonic superspace actions corresponding
to a wide class of hyper-Kahler metrics including multi-Eguchi-Hanson and Calabi ones. In
particular, the familiar Eguchi-Hanson metric [14] is described by the following
ω-hypermultiplet action

with ξιj being constants.




