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Berezin Integration on General Fermionic Supermanifolds
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Abstract. Recent results on the global structure of supermanifolds are used to
define a notion of Berezin integration on any purely fermionic Rogers
supermanifold. This leads to an integration theory on a large class of
supermanifolds having both bosonic and fermionic coordinates. The existence
of global functions and forms on such supermanifolds is discussed, as is
some elementary cohomology of supermanifolds.

1. Introduction

The Berezin integral as employed in superspace field theories is a formal operation
with many of the properties of conventional integration. It is a linear map from
polynomials in the anticommuting θa coordinates to Grassmann numbers.
Although it is thought of as a definite integral over the entire range of these
coordinates, it has in fact no measure-theoretic interpretation. Thus, the corre-
sponding indefinite integral is not defined, nor are definite integrals over finite
regions [1-4].

Supermanifolds in the sense of A. Rogers [5] seem to be the most general objects
on which the usual manipulations with superfields make sense. However, there is no
general theory of integration on arbitrary Rogers supermanifolds. One might
suspect that this is connected with the situation described above, and that no such
integration theory will be forthcoming until the mathematical nature of the Berezin
integral is better understood.

In this paper I will show that a notion of Berezin integration can be defined on
any purely fermionic supermanifold (one having θ coordinates only). Unfortunately,
this is not achieved via a deeper understanding of Berezin integration in flat
superspace. Rather, it will be shown that an arbitrary fermionic supermanifold
possesses so much structure that the usual formal definition of integration in flat
superspace can be taken over. This result means that in principle action integrals for
field theories on topologically nontrivial supermanifolds can be written down. This
possibility is under investigation.
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The organization of the paper is as follows. In Sect. 2 I review the necessary
results on the structure of supermanifolds [6-8], leading up to the crucial fact that
any simply connected fermionic supermanifold immerses in flat superspace. Section
3 explores the implications of this fact for the algebras of global superfields and
superforms. A simply connected fermionic supermanifold admits precisely as many
global superforms as does flat superspace; it cannot be distinguished from flat
superspace by the properties of these algebras. Section 4 contains the definition of
the integral. The idea is to construct the universal covering space of a fermionic
supermanifold, lifting the algebra of superforms to this covering space. Since the
covering space is simply connected, it immerses in flat superspace, and the usual
definition of integration can be pulled back using the immersion. Section 5 contains
conclusions and implications for integration theory on general supermanifolds. An
Appendix contains some remarks on the G00 cohomology of supermanifolds and its
relation to de Rham cohomology.

2. The Structure of Fermionic Supermanifolds

A supermanifold is built over a Grassmann algebra in much the same way that a
complex manifold is built over the algebra of complex numbers. Thus, let vl9

v2, ",vL be generators of a Grassmann algebra BL, satisfying ViVj= —vp^ An
arbitrary even element of this algebra can be written

X = X0 + XijViVj + XijkiViVjVkVi + = XΓVn (2.1)

and an odd element appears as

θ = θiVi + eijkViVjVk + ΞΞ θΣvΣ, (2.2)

with the convention that only terms with subscripts in increasing order appear.
Flat superspace of dimension (m, ri), denoted B%'n, is simply Euclidean space of

dimension 2 L - I ( m + ri), with real coordinates denoted xμ

nθΣ. Here μ runs from 1 to
m, α runs from 1 to n, and Γ and Σ denote increasing sequences of indices as above.
Grassmann coordinates χμ, θa are built from the real coordinates as in Eqs. (2.1) and
(2.2). On flat superspace there is a special class of βL-valued functions called G00

functions, or superfields. They have polynomial dependence on the odd coordinates,

F(x, θ) =/0(x) +/α(x)0β +f*P(x)θaθ' + • • •. (2.3)

Furthermore, the coefficient functions in this expansion are required to have Taylor
expansions of the form,

fix) =/Uo) + δj(xo)s(xμ) + i5μdvf(χ0)sixμ)sixv) + , (2.4)

with s(x) = x — x0. Note that the expansion (2.3) terminates provided only that n is
finite, while (2.4) terminates if L is finite.

A supermanifold of dimension (m, ri) is a real manifold locally diffeomorphic to
Bΐ'n and having G00 transition functions. One can show that any supermanifold has
a foliation, called the soul foliation, by surfaces on which the "body coordinates" xg
in any chart are constant. It is critically important that each simply connected leaf of
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this foliation can be immersed in the flat Euclidean space Rd, d = 2L~ *(m + ή) — m

m
I now specialize to a supermanifold M of dimension (0, n) and explain the

construction of this immersion. The soul foliation has only a single leaf, which is all
of M. A G00 function on M is a polynomial in the θ coordinates, thus also a
polynomial in the real coordinates θ%. Now a polynomial is completely determined
by its values in any open set. This means that each transition function of M, initially
defined only in an open subset of B%'n, extends uniquely to a G00 coordinate
transformation on all of B?'". Now take a good covering of M by charts Uj and
choose an initial chart Uo (A good covering simply means that the intersection of
any two charts should be contractible to a point.) It is mapped into B°L'n in a G°°
manner by its coordinate map φ0: U0-*$tn. The idea is to extend this to a map of all of
M into BL'". Take a chart Uλ which overlaps Uo. There will be a coordinate map
φ1:Uί^> B°L'n and a G00 coordinate transformation g = φoφΐ* on the overlap region.
But g extends uniquely to a coordinate transformation on all of B°L'n. This means
that it is possible to change the coordinates in U1 to agree with those of Uo in the
overlap region, and thereby extend the coordinate map φ0 to map all of U o u U t into
β£'\ This extended map is not guaranteed to be one-to-one, although it is one-to-
one when restricted to either chart (some points in Ux but not in Uo may have been
assigned the same coordinates as points in Uo). Therefore it is an immersion, not an
embedding. This procedure can be continued until φ0 has been extended to all the
charts Uj. Nothing can go wrong unless there is a topologically nontrivial closed
loop in M. Going around such a curve while changing coordinates in the charts
encountered can lead to an inconsistency upon returning to the initial chart. Thus,
the result is that any simply connected supermanifold of dimension (0, n) can be
immersed in B°L'n by a G00 map. This immersion is unique once the coordinate map
φ0 of the initial chart is chosen. In other words, it is unique up to an overall G°°
coordinate transformation on β£>fl.

Obviously no such result holds if M is not simply connected. However, the
universal covering space of M can always be given a supermanifold structure and is
simply connected.

3. Superfields on Fermionic Supermanifolds

I now discuss some properties of the algebra of superfields on a fermionic
supermanifold M. Once again the basic fact is that superfields are polynomial
functions of the coordinates. They are therefore uniquely determined by their values
in an open set. This means that if a superfield is given locally, in a particular
coordinate chart, it has at most one global extension. In flat superspace, of course,
any local superfield has a global extension, but this need not be true when nontrivial
topology is present. In general, then, the algebra of global superfields on M will be
smaller than the corresponding algebra on β£'\ As an extreme example, it was
shown in ref. [6] that if Mis compact the only global superfields are constants. The
remarkable fact, however, is that if Mis simply connected it cannot be distinguished
from B°L'n by means of its algebra of superfields.

Let M be an arbitrary fermionic supermanifold and M its universal cover, which



434 J. M. Rabin

is also a supermanifold. Let F be a superfield on M, initially defined only locally
within some chart Uo. Via the coordinate map φ0 of Uo, F becomes a superfield
defined in a small region of B°L'n. But in B°L'n any local superfield has a global
extension. This global superfield can be pulled back to Musing the immersion which
extends φ 0 , giving a global superfield on M.

Thus, on M any local superfield has a global extension. This is true simply
because πx(M) = 0, and is independent of any other topology M may have. The same
argument holds for G00 differential forms and tensors on M, objects which are locally
polynomials in dθa and d/dθa with G00 functions as coefficients. All such local objects
have unique global extensions on M.

Even the G00 cohomology of M is the same as that of B°L'n. This simply means
that any G00 form obeying dω = 0 is exact: ω = dφ for some global G00 form φ. The
proof is simple: certainly ω — dφ locally, but then φ has a unique global extension.
Since ω and dφ agree locally and have unique global extensions, they are equal
globally and ω is exact. Some further basic properties of G00 cohomology, including
its relation to ordinary de Rham cohomology, can be found in the Appendix.

Thus, M is indistinguishable from B°L'n by the properties of its algebra of G00

functions and forms. Now M is the quotient space of M by the group of covering
transformations, which is also πx(M). A global G00 form of M gives rise to one on M
precisely when it is invariant under this group. The algebra of forms on M is
therefore typically smaller, and its cohomology may be nontrivial. However, the
relation between M and M is strong enough to define integration on M once it has
been defined on M.

4. Berezin Integration

First of all, one must decide what sorts of global objects can be integrated over a
fermionic supermanifold. Although the integrand of a Berezin integral is normally
written locally as f(θ)dnθ, the coordinate transformation law assigned to the
expression dnθ shows that it is not a product of coordinate differentials. This
transformation law, in fact, is appropriate to the tensor field written locally as

-ϊ--?- — (4 1)

and I will adopt the notation dnθ rather than d"θ for this object. The objects which
are integrated are therefore nth rank tensor fields which live in the n-ϊold product of
the tangent bundle rather than the cotangent bundle [2,9].

This creates a certain technical problem because of the fact that the object d/dθ"
is not even locally a vector field on a supermanifold whose Grassmann algebra BL is
finite dimensional [10,11]. This is because it does not obey the Leibniz rule for the
derivative of a product. To see this, consider

If the Leibniz rule were valid, this derivative would have to be v1v2'--vL, but this is
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impossible because the function being differentiated is identically zero! Thus, the
volume element (4.1) is not an element of the n-fold product of the tangent bundle
when L is finite.

The simplest response to this difficulty is to consider only supermanifolds
constructed over B^, which completely avoids the problem. Indeed, this is the case
of interest in physics, since it is always assumed that the Grassmann algebra contains
as many algebraically independent elements as may be needed, not merely L such
elements. All the arguments in this paper are valid in this infinite dimensional
context. Nevertheless, one would like to define integration for the finite dimensional
supermanifolds as well.

Although d/dθa is not a vector field when L is finite, the operator /(#)(<3/d#α) is a
vector field when f(θ) is nilpotent (has no real part). In particular the expression

whose Berezin integral in flat superspace is unity, is well-defined. The formal
integrands which are not well-defined all integrate to zero according to the usual
rules. This means that all the nonzero integrals of the usual formal approach can be
obtained from well-defined integrands. This has the amusing consequence that
although tensors can be integrated on finite-dimensional supermanifolds, functions
strictly speaking cannot, because the volume element alone is not well-defined.

Now I will define the Berezin integral over an arbitrary fermionic supermanifold
M. An nth rank tensor on M can be viewed as an nth rank tensor on M which is
invariant under covering transformations. Its integral is defined to be equal to the
corresponding integral on M. It remains to define integration on simply-connected
supermanifolds like M. A tensor ω on M is the pullback of a tensor ώ on #£'" via an
immersion. Simply define

ω = ώ, (4.2)

where the integral on the right is given by the usual Berezin integration rules. The
definition seems ambiguous because ώ depends on which of the many possible
immersions is used. However, different immersions differ only by overall G00

coordinate transformations of Bl9", and the Berezin integral is invariant under such
transformations. Therefore the definition (4.2) makes sense.

Although this discussion may seem abstract, the practical rule for Berezin
integration on arbitrary supermanifolds is extremely simple. To integrate a suitable
tensor field, write it out in the coordinates of any chart. Then simply compute the
integral by the same formal rules one would use in flat superspace. The point of the
abstract discussion above is simply to prove that the result is independent of the
choice of chart. The immersion one is implicitly using here is the one which extends
the coordinate map of the chosen chart.

One consequence of this definition underlines the fact that the Berezin integral is
not a measure-theoretic object, being completely insensitive to the "volume" of M.
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Namely, if N is an open subset of M, and ω is an integrable tensor field on M, then

5. Conclusions

I have shown that the extremely rigid structure of fermionic supermanifolds allows a
notion of Berezin integration to be defined. The central principle is that a G00

function is uniquely determined by its values in an open set. This implies that all
global objects are uniquely determined once given in a particular chart. The only
topological property which affects the global existence of locally defined objects is
the first homotopy group. This reduces the case of an arbitrary M to the simply-
connecting covering space M.

Of course, supermanifolds of physical interest have commuting as well as
anticommuting coordinates. Integration on purely bosonic supermanifolds (com-
muting coordinates only) is now well understood [3,4,12]. One integrates a
differential form of highest degree over an embedded body submanifold, namely a
submanifold which is transverse to the leaves of the foliation described in Sect. 2.
This integral is invariant under deformations of the body which leave its boundary
fixed. By combining this with the results of the present work one obtains a complete
integration theory on supermanifolds of the form B x F with B purely bosonic and F
purely fermionic. More generally the supermanifold need only have the structure
B x F locally, as will now be discussed.

The objects which can be integrated on a general supermanifold of dimension
(nun) are the "global integral forms" [13]. These are forms which appear as

F(x,Θ)dmχdnθ

in some set of charts which covers the supermanifold. Rogers has shown that the
transition functions relating charts in this set necessarily have the property that
dx'μ/dθa = 0: the even coordinates of one chart depend only on the even coordinates
of the other chart. This means that when global integral forms exist the
supermanifold has a foliation by surfaces of constant x, because when charts overlap
a surface of constant x will also be a surface of constant x'. Only the θ coordinates
vary along these surfaces, so this foliation might be termed the θ foliation, to be
distinguished from the soul foliation. Suppose now that the supermanifold is
actually a fiber bundle with the leaves of the θ foliation as fibers and a base space
parametrized by the x coordinates. The results of this paper suffice to provide an
integration theory over all such supermanifolds, first using Berezin integration to
integrate over the fibers and then integrating over the body.

What prevents the development of an integration theory for arbitrary super-
manifolds using the ideas of this paper? For general supermanifolds one knows that
each leaf of the θ foliation has a covering space which immerses in Bfc", so that an
integral over each leaf can be defined using the ideas presented here. One would
expect Berezin integration over the leaves to produce a form on the space of leaves
which could then be integrated over the even coordinates. In general, however, the
space of leaves of the θ foliation is not a smooth manifold, so this idea cannot be
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implemented. There is probably no sensible notion of integration over a supermani-
fold whose θ foliation is badly behaved.

Appendix

Here I discuss some basic properties of the G00 cohomology of a supermanifold,
including the connection with de Rham cohomology which establishes that G00

cohomology really does have topological significance. Supermanifolds having both
even and odd coordinates will be considered.

Given a supermanifold M one can consider several different complexes of
differentialiorms. First, since M is an ordinary real manifold, there is the usual de
Rham complex of real-valued differential forms. These locally appear as poly-
nomials in the coordinate differentials dxμ

Γ, dθa

Σ having smooth real-valued
functions as coefficients. The differential operator is

where zf runs over the real coordinates. The cohomology of this complex, namely
the algebra of closed forms modulo exact forms, will be denoted HDR(M). Second,
there is the complex of BL-valued differential forms, defined exactly as above except
with smooth coefficient functions valued in the Grassmann algebra BL. This defines
the cohomology HDR(M;BL). Finally, there is the complex of G00 differential forms
which actually reflects the supermanifold structure of M. These forms locally appear
as polynomials in dxμ and dθa having G00 coefficient functions. (When M is finite-
dimensional, dθa cannot be defined as being dual to d/dθa, since there is no such
tangent vector. Rather, dθΛ is defined as the cotangent vector which gives υβaβ when
evaluated on the tangent vector ViB/dθβ.) The differential operator here will be
written temporarily as D and is given by

D = dzA-^. (A.2)
dz

The cohomology is denoted HG(M).
The de Rham cohomology is known to have topological significance by virtue of

the theorems which relate it to homology theory, which directly detects the existence
of closed but nonbounding submanifolds. How are the other cohomology theories
related to that of de Rham?

The relation between HDR{M\ BL) and HDR{M) is quite simple. When a BL-valued
differential form is evaluated on a set of tangent vectors, the result is an element A of
BL which can be written

A = Ao + AiVi + AijViVj + ,

with real coefficients. Therefore a βL-valued form is equivalent to 2L real-valued
forms. Furthermore, it is closed or exact precisely when each of the real-valued forms
is. Therefore Hk

DR(M; BL) consists of 2L copies of Hk

DR(M) and contains exactly the
same information.

The relation between HG(M) and HDR(M; BL) is less clear. Both the forms and the
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derivative operators seem different. However, any G00 form can be regarded as a BL-
valued form by replacing each dzA by Vj4zA. With this correspondence, the
operators d and D in fact agree when acting on G00 forms. For example, if / is a
G00 function then

d f = d z A ^ r d z A r V r ^ = d z A ^ Df (A 3)

Thus any closed or exact G00 form is also closed or exact as a BL-valued form. This
means there is a map h\HG(M)-+HDR(M;BL). It simply maps the class of a closed
form in HG(M) to the class of the corresponding form in HDR(M,BL). This map h is a
homomorphism of the cohomology rings.

The next question is whether the map h is one-to-one or onto. Consider first the
zeroth cohomology H^R(M;BL\ which consists of the BL- valued functions which are
constant on each connected component of M. All such functions are G00, so h is an
isomorphism on H°. Next consider H1. In this case, h is one-to-one but not generally
onto. This statement is proven by showing that if ω is a G001-form with ω — dφ, then
φ is G00. Writing out the equation dφ = ω gives

dzA ^ = dzAωA = dzA

 Vrω
A (A.4)

Equating coefficients,

dφ/dzA = VJ<DA, (A.5)

which precisely says that φ is G00 and the ωA are its partial derivatives.

The conclusion of this analysis is that HG(M) is a subgroup of Hι

DR(M\ BL): the
G00 cohomology detects some but not all of the topology which is measured by the de
Rham cohomology. For the cohomology Hk, k > 1,1 know of no argument that h is
either one-to-one or onto in general. It would be extremely interesting to know
which topological properties can be detected by the G00 cohomology of general
supermanifolds, and what additional nontopological information it measures.

An analogous problem arises in the study of affine manifolds. There one is
interested in the relation between the de Rham cohomology and the cohomology of
polynomial differential forms. It is conjectured that they are isomorphic if the affine
manifold is complete, and this can be proven in special cases [14,15], but little else
seems to be known. The analogy between this and the G00 problem rests on the fact
that G00 forms are polynomial in the soul coordinates.
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