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Abstract. We study the ultraviolet behavior of two dimensional supersymmetric
non-linear g-models with target space an arbitrary Kédhler manifold M, so that
the models are N = 2 supersymmetric. We point out that these models have an
additional fermionic axial symmetry if and only if the metric on M is Ricci flat.
We show that the preservation of this symmetry in perturbation theory implies
that both bare and renormalized metrics on M are Ricci flat. Combining this
result with the constraint of N =2 supersymmetry requiring that all counter-
terms to the metric beyond one-loop order be cohomologically trivial, we argue
that N = 2 models defined on Ricci flat Kdhler manifolds are on-shell ultraviolet
finite to all orders of perturbation theory.

This is the second of two papers on the renormalization of supersymmetric non-
linear o-models in two spacetime dimensions. The first paper [1] treated N =4
supersymmetric models, and showed that they are on-shell ultraviolet finite to all
orders in perturbation theory. (This means that to all orders in perturbation theory,
all ultraviolet divergences can be removed from all Greens functions by using only
renormalization counterterms that arise from a (possibly non-linear) redefinition of
the fields.) In this paper we extend this result to N =2 supersymmetric models,
provided that the target manifold M on which the model is defined is Ricci flat. Since
all N =4 supersymmetric non-linear g-models necessarily have Ricci flat target
manifolds [1] (and, of course, are N =2 supersymmetric), the result of this paper
implies that of its predecessor.

We will make use here of results presented in [ 1] and in earlier literature without
reiterating their proofs. The main technical details necessary involve the topological
triviality of the counterterms on Kidhler manifolds beyond one-loop, and the
detailed structure of the tensor counterterms generated by performing perturbation
theory using the background field expansion. The interested reader is referred to [1]
for detailed explanations of these results and for references to the earlier literature.

The remainder of this paper gives the proof of our result. We first define the
models under study, and show that renormalization preserves Ricci flatness. In
other words, if one starts with a Ricci flat M, then, to all orders in perturbation
theory, all ultraviolet divergences can be removed from all Greens functions without
introducing counterterms that spoil Ricci flatness. We then use this property to
demonstrate on-shell ultraviolet finiteness.
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We begin with an m-dimensional riemannian manifold M with metric g;;. For two
dimensional spacetimes, an N = 1 supersymmetric o-model with scalar fields taking
values on M is given by the lagrangian [2]

L =%9:49)0,40" ¢’ + Egij(plquu‘[/J + T%Rijkz\p"//k‘pj‘pl,

DY =o'+ T0,6", =0, y'=ioy, (1)

where I'%, is the Christoffel connection and R;j, is the Riemann curvature tensor.
The ¢’s are bosonic fields which represent geometrically a coordinate system on M,
and the fermions /'’ are two-component Majorana fermions which behave like
vectors under coordinate reparametrizations. The supersymmetry transformation
rules for (1) are given by

0! =Y, O = —ifgie — [yt @

N = 2 supersymmetry implies that M must be Kéhler [3,4]. This means that there
exists a tensor f*; (the complex structure) on M satisfying

fikfkj = - 5ija (3a)
gijfikfjl =Gki» (3b)
Vifi =0. (3¢)

These equations imply that there exist complex coordinates ¢* and ¢* = ¢? where
and & run from 1 to m/2, such that the only non-vanishing components of the metric
are the mixed components g,;. Furthermore, the metric must obey

0,95 = 09> 05905 = 059+ 4)

The existence of these coordinates and these conditions on the metric can be used as
an alternative definition of a Kéhler manifold.

In any fixed coordinate patch on M, (4) implies that there exists a scalar function
K(¢, P), called the Kihler potential, such that g5 = 0,0;K. In general, K is only
defined patch by patch; it is impossible to choose the definitions in all the patches to
fit together to make a single valued scalar function on all of M. We shall not need the
Kaébhler potential for most of our analysis, but it will become important to us at the
very end. Another useful property of Kéhler metrics which we shall later need is that
the Ricci tensor can be written in terms of the metric g,; as

Rj= —0,05Indetg. )

In terms of the complex coordinates, (1) becomes
&= gagﬁud)“@”(fﬂ + ig@f&“ﬂ"ﬂ + %Rugux‘/jawu&ﬂ\/’1~ (6)
This has certain symmetries which become manifest if we write the fermions in Weyl

form, as % and y*,, where + denotes the eigenvalue of y5. The terms bilinear in the
fermions take the form

i > i a >
59V D+ 39,92 D yF, )
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where

DLW = 0. + 30,970,

¢ ﬁ(x0 £ x1),

and the quartic fermion term is proportional to

R, gs0% vyl (8)

All this is invariant under the U(1), x U(1)_ transformations

e
Ve, Y e Y
(with ¢* - ¢% ¢* — ¢*). This symmetry group includes both vector transformations,
n=rn’, and axial transformations, # = —#’. These are on much the same footing in
classical field theory. They play strikingly different roles in quantum field theory,
however, and therefore we will consider them separately.
The vector transformations, together with N=1 supersymmetry, generate
N =2 supersymmetry [3,4]. Equivalently, they generate the full Kahler structure
discussed above. In the quantum theory, there are supersymmetric regularizations
of perturbation theory which do not break the vector symmetry. (There is, for
example, superspace regularization by dimensional reduction, reviewed in [5], and
regularization by higher covariant derivative regulators in superspace, recently
reviewed in [6].)' Thus the Kéhler structure of the theory is preserved by
renormalization [7]. To be more explicit, let us consider constructing renormalized
perturbation theory in the usual way: we begin with some initial lagrangian, and, as
we encounter divergences in each order of perturbation theory, we change the
lagrangian, adding counterterms to it to cancel the divergences. In the case at hand,
standard power-counting shows that the only counterterms needed are of the same
general form as the terms already present in the lagrangian: any number of scalar
fields with two derivatives, any number of scalar fields with two spinor fields and one
derivative, and any number of scalar fields with four spinor fields and no derivatives.
Because our regularization procedure is assumed to preserve N = 2 supersymmetry,
the divergences in each order must be connected by the supersymmetry, and our
counterterms can be chosen to preserve it. The net effect of renormalization is merely
to replace the initial metric defining the theory (the “renormalized metric”) by some
other Kédhler metric (the “bare metric”). There is nothing of course in our reasoning
thus far that prevents the counterterms from being cutoff dependent, and the bare
metric from being consequently divergent.
The situation is very different for the axial transformations, for here the
symmetry can be spoiled by an anomaly. Computation of the anomaly is

©)

1 Although we are concerned here only with the ultraviolet behavior of these theories, we point out that
any infrared problems may be resolved by, for example, compactifying the space dimension and imposing
antiperiodic boundary conditions, or by adding a holomorphic potential term to (6) to provide a small
regulator mass to the particle content
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straightforward, because we can consider I'5;0,¢" as a (composite) gauge field, and,
in two dimensions, the anomaly is proportional to the trace, i.e. the U(1) part of the
field strength tensor (0,4 ~ tr F for a two dimensional gauge theory). The relevant
field strength here is related to the curvature tensor, which, on a Kihler manifold, is
just R*;, =0,I';,. Its trace, picking out the U(1) part of the holonomy group, turns
out by the Kéihler cyclic and Bianchi identities to be simply the Ricci tensor,
R’ 5= R,z A one-loop calculation thus results in

L1
0uf8 = ¢ R, 70,8, (10

where j% is the current associated with the axial symmetry. Notice that in two
dimensions the anomaly equation can be non-polynomial in the scalar fields
because they have zero canonical dimension.

Thus the statement that the manifold is Ricci flat is the same as the statement that
the axial current is conserved to one-loop. This observation is the key to our
argument, but to exploit it to all orders of perturbation theory, we need an analog of
the Adler—Bardeen theorem [8], the statement that (10) receives no corrections from
higher orders of perturbation theory.

To prove the Adler-Bardeen theorem requires a regulator which maintains the
axial symmetry while regulating all diagrams beyond one-loop. The most conve-
nient regularization for supersymmetric calculations is superspace regularization by
dimensional reduction [5]. This scheme is defined by keeping spacetime indices in
two dimensions whereas momentum integrals are done in (2 — ¢)-dimensions. It thus
respects axial invariance at the classical level, since spinor algebra is done in two
dimensions, but allows the existence of ¢-dimensional operators that mix with the
classical current. At the quantum level it is this mixing, which occurs only at the one-
loop level, that breaks the conservation of the y current [9]. We do not wish to enter
in detail into possible ambiguities in this procedure which may appeas in high loop
orders. As emphasized in [1], all of our results are dependent in any event on the
assumption that there exists some consistent supersymmetric regulator. We point
out, though, that any possible difficulties in the two dimensional non-gauge theories
we consider here are much less severe than those which may appear in four
dimensional gauge theories. In addition, many of the subtleties addressed in [9]
concerning the difference between the supersymmetric axial current (the one in a
supersymmetry multiplet with the energy-momentum tensor) and the Adler—
Bardeen axial current disappear here, precisely because we are interested in the case
when the anomaly vanishes. Indeed, although we will not use it explicitly here, we
expect that the vanishing of the f-function which we will prove for these theories
when the Ricci tensor vanishes and the vanishing of the axial anomaly are tied
together neatly in the supermultiplet containing the trace and conformal anomalies.

We mention that we could also prove the Adler-Bardeen theorem by using a
higher covariant derivative regulator [6]. Such a regulator regulates all diagrams
beyond one-loop because of their negative superficial degree of divergence.
Moreover on a Ricci flat manifold, the one-loop divergence vanishes and thus
cannot enter as a subdivergence in higher order diagrams. We recall [2] that the
superspace form of the action (1) is
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where @'= ¢’ + 0y’ +100F' is a 2-dimensional real superfield and 0 is a real two-
component constant Majorana spinor. A higher covariant derivative regulator can
be introduced into (11) via the substitution g; j{tb)"j@ DPI>g,(@)DP, DPI,. Here
we have defined the bare superfield @', =f(DD/A)®’, with f some regulator
function satisfying f(x/A)— 1 as A — oo. D is a supercovariant derivative defined
to act on the superspace coordinate @' by D@ = D®’, and to act on a vector
Wiby DWi=DWi4+ T L D®'W*, This definition ensures the manifest coordinate
reparametrization invariance of the regulator. Although this regularization pre-
scription is not practical for doing computations, it does show that if the anomaly
does not appear at the one-loop level, it will not appear in any order of perturbation
theory. Our ultimate results, of course, are independent of the choice of regulator.

After these preliminaries, we are now in a position to give our proof. Because our
regulator preserves the vector symmetry, we know by standard arguments that the
canonical vector current

= g 0 YP (12)
will have finite matrix elements which satisfy the vector Ward identities. The current
is to be understood as built up as a sum in terms of the renormalized metric plus its
counterterms. We shall denote by g} and j the metric and current up to and
including the n'* order counterterms. Now in two dimensions the canonical axial-
vector current is given naively in terms of the canonical vector current by

"Ji- (13)

This remains true in the presence of the supersymmetric dimensional regulator, so
(13) allows us to determine the canonical axial-vector current from the vector
current. Since (13) is a purely algebraic relation, it is trivial that the axial-current
matrix elements are also finite. (This step would have been much more difficult if we
had used higher covariant derivative regularization, for which (13) holds only up to
terms which vanish in the limit as the regulator is removed.)

The Adler-Bardeen theorem states that

jh=e

1 -
08" = ¢ RY V0,470, (14

(This is of course a shorthand notation for expressing the effect of an operator
insertion in arbitrary Green’s functions.) The n* order current j4* is related to the
(n—1)* order Ricci tensor R{;™ ! because of an implicit factor of the loop count-
ing parameter s on the right-hand side. We now wish to show that when the
renormalized metric is Ricci flat, no counterterms to the metric need be added which
induce a non-vanishing Ricci tensor. We shall proceed inductively, by assuming that
to (n — 1)* order the theory has been renormalized with the (n — 1)* order metric,
g% Y, Ricci flat, and show that this implies the same can be made true to n™ order. We
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know by renormalizability that the theory in n™ order can be made to have finite
Greens functions by addition of a suitable counterterm dg(} to the metric. The
question is whether the induced n™ order Ricci tensor will then continue to vanish.
To assess this requires an additional step forward to (n + 1)" order. Renormaliza-
bility of the theory insures that it can to this order also be made to have only finite
matrix elements (with the (n+ 1) order counterterms depending on the n'* order
ones). But it now follows from (14) that the divergence of the (n + 1)* order axial
current is given by

1
0" = e RY0,4%0, 5, (15)

where R{}is the Ricci tensor calculated from the n™ order metric. But since the axial
current is finite to (n+ 1)* order, the right-hand side of (15) must be finite. (Any
divergences due to the compositeness of the operator on the right-hand side involve
additional bosonic loops and so only appear in higher order.) This shows that any
non-Ricci flat part of the metric is at worst a finite piece which can be removed from
n order by a finite metric renormalization. (This is easily seen in perturbation
theory, where the Ricci tensor R% = — d,0;In det g™ induced by the n order metric
g™ =gV 4 5g™ reduces, to linear order in 69, to R%= —0,0;(gl-1)09'7) by
assumption of Ricci flatness of g~ V. g™ can then be decomposed into a part which
maintains the vanishing of the Ricci tensor and a part which does not, but which is
necessarily finite (as the regulator is removed) and so can be eliminated by a finite
renormalization of the metric. This part of the argument is especially simple if we
adopt minimal subtraction, fixing our counterterms to be sums only of negative
powers of e. In this case, the finiteness of the axial divergence to (n+ 1)* order
directly implies that there are no metric counterterms of the undesired form in n™
order, and there is no need to go back to make a further finite renormalization.) This
completes our inductive step; we have shown that the theory to n order can be
renormalized, possibly of course by divergent counterterms, while still retaining the
Ricci flatness of the n'* order metric.

To our knowledge the peculiar structure of this induction (two steps forward,
one step back), is unique in renormalization theory; we have used a Ward identity in
(n + 1) order to prove that a counterterm can be properly chosen in n'* order. This
stutter-step induction is a natural consequence of the fact that the breaking of the
axial symmetry is itself a quantum loop effect.

The remainder of the proof of on-shell ultraviolet finiteness for N =2
supersymmetric o-models defined on Ricci flat Kéhler manifolds follows the
discussion of N =4 theories in [1]. Rather than repeating directly the argument
there, which made use of a uniqueness result for the Ricci flat metric on a Kédhler
manifold due to Calabi and Yau [10], we give here instead for completeness a
straightforward perturbative argument. This argument suffices for our purposes
since we do not need the far more difficulty proven existence result of [10]. We are
instead here given a manifold admitting a Ricci flat metric (and hence a theory which
is one-loop finite), and need only the result that for a given complex structure on the
manifold, the Ricci flat metric is unique within a given cohomology class of the
Kaihler form. (Recall that preservation of supersymmetry means that perturbation



Finiteness of Ricci Flat N =2 Supersymmetric g-Models 429

theory acts only to renormalize the metric on the manifold, not the intrinsic complex
structure [4].)

We organize our counterterms by computing the effective action (evaluated to n
order) at a solution of the classical equations of motion (computed from the (n — 1)*
order action). There are two advantages to this procedure: (1) Because we are at a
stationary point of the (n — 1)* order action, counterterms arising from the change in
the action induced by a change in coordinates (and only such counterterms) will
disappear. (2) If we compute the effective action by the background field method,
every order of perturbation theory is manifestly invariant under general coordinate
transformations, and therefore all counterterms needed to cancel divergences in n'
order must be polynomials in the curvature tensor and its covariant derivatives. It
can be shown [1] that this implies that the n* order addition to the Kihler potential
is a globally well-defined scalar function on M. (This result also follows immediately
[11]from a manifest N = 2 formulation of the theory, in which the corrections to the
metric are calculated directly in terms of their corrections to the Kéhler potential.
The only cohomologically non-trivial counterterm generated in any order of
perturbation theory is the Ricci tensor R,; generated in one-loop, and this vanishes
here by assumption.) Thus

09y = 0,058™, (16)

for some scalar field S™, modulo terms arising from coordinate redefinitions.
Because Ricci flatness is preserved, the n™ order correction to the Ricci tensor (5)
must vanish. For our purposes, it suffices to compute only the change in the scalar
curvature.

0=0R™ = —111S™, (17)

where [J is the usual Laplace operator g*/V,V; acting on scalar functions.

If M is compact, this implies that S® is constant and thus that dg} vanishes.
(Proof. Multiply by S™ and integrate by parts over the whole manifold. This shows
that []S™ vanishes. Now multiply again by S™ and integrate once more, showing
that dS™ vanishes.) Thus, for compact M, there can be no divergent counterterms to
any order of perturbation theory. Although our argument has been formulated for
compact Ricci flat Kdhler manifolds, we may now appeal to a certain universality
property [ 7] to extend the result to arbitrary Ricci flat Kéhler manifolds. Because all
the counterterms calculated in the background field normal coordinate expansion
are polynomials in the curvature and its derivatives, they make no reference to the
global structure of the target manifold; a divergent counterterm which would spoil
on-shell finiteness for a noncompact manifold would spoil it as well for a compact
one, where we know it does not. This completes the argument.
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