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Abstract. Given a weakly coupled Hamiltonian system with short range, one
dimensional interactions, and any initial conditions a canonical change of
variables is constructed which yields a new Hamiltonian consisting of three
parts—an integrable term, a resonant term whose effects are localized in those
regions of the system which give small denominators in the Kolmogorov—
Arnol’ld-Moser iteration scheme and a non-resonant interaction term which is
very small. (In particular, much, much smaller than our original interactions.)
The conditions which allow such a transformation to be constructed are
independent of the number of degrees of freedom in the system, as are the
estimates on the size of the various terms. Thus, if the resonances are “sparsely”
distributed through the system most of the sites in the transformed Hamiltonian
behave essentially like an integrable system, at least for as long a time as the
trajectory of the system lies within the region where the canonical transform-
ation is defined. In subsequent work it is shown that this time is long, and once
again independent of the number of degrees of freedom in the system.

1. Introduction

In the present paper we continue the study of Hamiltonian systems with short range
interactions begun in [6]. We prove a theorem which we call the elimination of non-
resonance harmonics, because of its similarity to the lemma of the same name in [5].
Roughly speaking our result is as follows. Take a Hamiltonian in action-angle
coordinates with short range interactions, e.g.

H(I,¢}=%<1,I>+8‘Z cos (P41 — 9y, (1.1)

i=

and N degrees of freedom. Given some initial condition (I, ¢,) define a set of
“primary resonance vectors of order zero” to be ve Z" such that the denominators, in
the expression for the generating function of the canonical change of variables that
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solves the Hamilton-Jacobi equation, corresponding to these v’s are “very small.”
Given the Hamiltonian (1.1), the solution of the Hamilton—Jacobi equation given by
classical perturbation theory is the change of variables with generating function

I ¢+ S(I', ¢), where
eiv~¢

Pzt
S(1,¢)—zgl.<1,,v>, (1.2)

and the sum over v runs over all vectors of the form (0,...,0, £ 1, F1,0,...,0). We are
interested in I', near I, so we define the resonant vectors, R, to be those v in (1.2)
such that |{I,,v)| < ¢y, Where c, is a constant determined in the course of the proof.
We then define S(I', ¢) by (1.2) but we restrict the sum over v to those v¢ R. If we then
make the canonical change of variables defined by this generating function (it will
be well defined provided ¢ is sufficiently small) we find that the Hamiltonian
(1.1) is transformed into a Hamiltonian HY(I', ') = h}(I') + f1resomnt (I, @) +
fLmonresonant (I 4y The resonant part of the interaction, f17*°" has a Fourier
series ) f1(I')e"*, which has non-zero contributions only if ve R, or for those v' with
supp v’ “close” to supp v, for some veR. Since our change of variables was forced to
ignore the contributions of the resonant vectors, we expect /"¢ will still be O(g).
On the other hand, we have chosen S(I’, ¢) so that the change of variables will “kill”
the O)(¢) terms in the non-resonant interaction. Thus, we expect f 1:nenresenant L 0)(g2),
We now iterate this procedure (a finite number of times) and we find that there is a
canonical change of variables C, such that

H(I, ¢) = Ho C(I, ¢) — E(I') +-7‘resonant (I', ¢l) +fnonresonant (1/’ ¢/), (13)

where the Fourier series of 77" contains the resonant harmonics we encountered
at the various steps in the iterative procedure while frorresonant (e~ 1) for some
positive constant a. The conditions which allow this change of variables to be
constructed (and also the constant a) are independent of the number of degrees of
freedom in the system.

This would be of little interest if all vectors, v, were resonant. However, in [8] we
demonstrate that for “typical” initial conditions, (I,, ¢,), the resonant vectors are
quite “sparse” and, hence, that the motion of the system is governed largely by
fnonresonant We then show that this implies that for most sites j in the system, the
motion of I (t) is indistinguishable from that of an integrable system for a long (but
finite) period of time. Thus, while the system may well become ergodic as the number
of degrees of freedom N — oo, the irregular motion tends to be localized in the
vicinity of the resonances, (at least for ¢ small), while large parts of the system
undergo very regular motion, for a long time.

To state our results more precisely we introduce some notation. Let V be a set in
RM. A Hamiltonian in action angle form is a function H°(I, ¢): V x R" - R that is
periodic with period 27 in each of the ¢; variables. Since H? is periodic as a function
of ¢ we may also regard H%(I, ¢) as a function on V x TV, where TV is the N-torus.
We will make no distinction between these two meanings for H°(1, ¢»). Write the
Hamiltonian as

HO(L, ¢) = h°(1) + 11, ¢), (1.4)
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where f°(I, ¢) is assumed to be small, in a sense made precise below. Given an N

vector p° and a constant &, we define the domain W(p% ¢y V)= ()
Iev

{(I', p)eC*||Im ¢;| < &, |I; — I;| < p?, for i=1,...,N}. We assume that there are
constants p, and &, such that HO(I, ) is analytic on W(p° &y; V), with p®=
po(1,...,1). Since we need lots of analyticity in the angular variables to prove our
main theorem we assume £° > 1. For later convenience define pr, W(p°, &y; V) to be
{IeRM|3¢peR" such that (I, p)e W(p° &y V).}. Given initial conditions (I, ¢)
define the strength of the interaction, &, by

a 0 (0]
sup{ aj; (?fTJ }éso, (1.5)

where the supremum runs over both j=1,...,N and (I, §)eW(p°, &y; {I,}). We note
that it might seem more natural to choose & to measure the strength of the
interaction in (1.1), but a little calculation shows that ¢ and ¢, are related by
epy 1e?° < g, and (1.5) proves somewhat more useful in the general case.

The Hamiltonians we consider consist of almost independent almost identical
subsystems, lying along a line, with interactions which decrease rapidly in strength
as the distance between the points of interaction increases.

(a) nearly independent, nearly identical subsystems: Define w°(I) = 6h/dI (I). We
require

+p5!

(4]
| <emmli-il ifi £ .
sup al, <e ifi #j, (1.6)
for some constant m > 0, and
a 0
al, ) =1+ 2°L;i,1), (1.7)

with sup |¥°(1;i,i)| £ c,,c, some universal constant, say 2~ 3. The suprema all run
over W(p°, &% {I,}).

(b) short range interactions:

2 0
aZfO i)
sup aqsaz( ¢)' poe” ", (1.8)
sup aalzig;j(l’ 4)) §e‘"‘“_”-

All suprema are taken over W(p°% ¢y {I,}). This definition of short range
interactions differs slightly from that of [6]. Except for the factors of p,, however,
which merely serve to keep the dimensions of the two sides the same, (and the
corresponding factors of £y0¢, &, and gypg ! in [6]) the previous definition follows
from (1.8) by applying Cauchy’s theorem and setting m = |In (g,p, )|. Note also that
(1.1) obeys (1.8) provided we choose ¢ such that ge?%° = pZe™™.
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We note that the conditions above correspond to considering this system as
lying on a one dimensional lattice. We expect our results to extend to higher
dimensional lattices, and to systems with periodic boundary conditions, but the
technical difficulties encountered are greater there.

Theorem 1.1. (The elimination of non-resonance harmonics) There exist universal
constants 0 <c« 1,0< g, and K > 1, and a constant k, defined below such that if

g9 <cpolky)™® and m>K, (1.9)

we can construct a set, R, of vectors veZ", an N vector p and a change of variables
C:(I', ")~ (I, ), analytic and invertible on W(p, 1; {I}), where T will be defined in the
course of the proof. Furthermore, if I = pr, W(p, 1,{I}), C is canonical on I" x T".
Defining H(I',¢') = H°>C(I', §'), we have

ﬁ([/’ d)/) — E(I/) +]((I', d)/) — E(I') _*_}'resonam (I', ¢/) +]‘n0nrescnant(1/’ d)/)’ (110)

with fresonent (', ¢') = ZRf (I)e”®. The interactions of H(I', ") obey the bounds

sup 2T (I', ¢')| < p2 e—Gmaii=i
agiog; = ’
o*f -
I. o) < —(3m/4)|l—1|, 1.11
Sup 7o ' )| < po (L.11)
0*f ;
1 AN < p—Bm/)|i—j|
sup ”_“51;(71;.(1"‘5) <e

and
af‘nunresonant a]‘nonresonam
I/ ’ -1 1 ’
< poleopo )P, (1.12)

for all i and j, with the suprema running over W(p, 1; {T}). The constant kg in (1.12) is
givenby ko < min([(¢,—1)/K ], [m/K]),for K some universal constant which could
be calculated from the proof of the theorem, and [x] = integer part of x. (We remark
that one could make the interactions in (1.11) decay as e ===l forany 0 < § < 1,
by slight modifications in the proof, and by changing the constants in (1.9).) We note
that this theorem can be trivially proved by picking R to be all of Z", in which case,
fronresonant — () and we have gained nothing. The point is, that the procedure used to
define R yields, for most initial conditions, a “small” set of vectors R, so that the
effects fre°"a" are localized, and the motion of the system is largely determined by
R 4 fmonresonant Thjs as we demonstrate in [8], allows one to give strong bounds on
the trajectories of the system.

The proof of this theorem can be used to give bounds on the amount by which
the canonical transformation C differs from the identity. Such estimates are implicit
in Sects. 3 and 4.

We now discuss the application of this theorem to the Hamiltonian (1.1). Since



Elimination of Non-Resonance Harmonics 355

the Hamiltonian is an entire function we can take the size of the analyticity domain
as large as we like. Choose ¢, =%|In¢| and p, = 1. Then condition (1.5) implies ge?%° =
€2 <g,. Set g, =¢'/2. Then the left hand side of (1.8) is bounded by ee?¢°=¢/2 <
e™™ If we set m=%|In¢| = |Ingy|, then (1.8) is satisfied and by making ¢ small we
can make m as large and ¢, as small as needed. Furthermore, the constant k, in
Theorem 1.1 can be chosen to be k, = [(1/5K;)|In¢|]. Finally note that (1.6) and
(1.7) are trivially satisfied for (1.1). Thus we obtain as a corollary to Theorem 1.1:

Corollary 1.2. Given the Hamiltonian (1.1) there is some constant 0 < ¢ « 1 (independ-
ent of N) such that if 0 £ ¢ <c we may construct a canonical transformation C, by
Theorem 1.1 such that

Ho C(I/, d)/) — ;;(I/) +]‘resonant(1/’ ¢/) +j’nonresonant(1/, ¢/)

a nonresonant
sup{\——f T (1'¢)’
J

for some positive constant a, (independent ¢ of the number of degrees of freedom of the
system.) T he supremum runs over W(p, 1; {I o)) (with p and T defined in the course of the
proof)) Also, the interactions fresorant +f“°‘“es°““"' satisfy (1.11) with m = %|Ine|.

We close this section with some remarks about notation. Throughout the paper
B, B, B,, B,,...will denote universal constants of magnitude greater than one, while
¢, c,cy,cCsy,... will denote constants of magnitude less than one. They may represent
different constants in different contexts.

The second note concerns the factors of p, which occur, for instance, in (1.8) and
(1.11). These are included to keep the dimensions of the two sides of the inequality
the same, since as was pointed out in [4], this often provides a check on one’s
calculations at intermediate stages of the proof. In the final analysis, however, they
are less important and we will often, to save space, write inequalities like (1.8) as
follows: Let x; equal either I, or ¢; depending on the context. Then f°(I, ¢)=f(x)
and we write (1.8) as

with

nonresonant
___(1' ¢>‘} < DO < o1t (113)

62
a

where n is chosen to keep the dimensions of the two sides of the inequality the same.
If the reader finds this notation ambiguous just set pf, = K wherever it appears and
remember that K is a constant depending on the size of the analyticity domain of the
initial Hamiltonian, but independent of the number of degrees of freedom in the
system.

We note that Theorem 1.1 is related to Theorem 1.1 of [6]. There are two
principal differences in the results. First of all, by more careful estimates it has
proved possible to eliminate all dependence on the number of degrees of freedom of
the system. This is largely a technical improvement. Of more fundamental
importance is the fact that the present work allows resonant regions to exist in the
system, but provides a method of isolating (at least for a finite time) their effects. The
work of Nekhoroshev [5] provided the motivation for this improvement in the
theory.

poe =il (1.14)

(X)
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A final note concerning terminology—when we speak of “dimensional esti-
mates” we mean the standard estimates on derivatives of analytic functions that
Cauchy’s theorem provides.

Recently, Benettin et al. [1] have studied the model (1.1) by means of classical
perturbation theory. They have shown that one can construct a canonical
transformation which transforms (1.1) into an integrable system up to errors of
arbitrarily high order in ¢ by this means. Their method (like that of the present work)
is restricted to small ¢, but thus far the dependence of the size of the allowed
perturbation on the parameters of the system, such as the number of degrees of
freedom, has not been determined. If these estimates are performed their method
may yield an alternate proof of Corollary 1.2.

2. The Induction Procedure

Consider the initial Hamiltonian H°(I, ¢) of Sect. 1. We first locate the primary
resonances of order zero, R. Let X, = {veZ"|d(suppv) < Ly, 0 <|v| £ M,}, where
d(supp v) is the diameter of supp v, if v is considered as an integer valued function on

N
the lattice {1,...,N}, |v|= Z |v;l, and L, and M, are constants defined below.
=1
Given initial conditions (I, ¢,), set w°(I) = 0h°/dI (I) and define
Rg = {VEX0| [<®o),vD| < poAleo) {B1e(3/2)IVI+L°} h 1},

where A(eo) = (000 1)* for o some small positive constant that will be implicitly
defined in the course of the proof and B; some large constant. In the KAM theory
one attempts to construct a canonical change of coordinates which “kills” the
nonintegrable part of the Hamiltonian to order &3. In the present case we must be
content to “kill” only those harmonics, (Fourier coefficients), f9(I), with V¢RY.
Constructing a canonical transformation C?, via the classical perturbation theory,
we obtain a new Hamiltonian

HY(I',¢)=HCI', ¢) = h'(I') + f1"(I', ') + f 1", ).

As expected, the size of f1™(I', ¢') < &,. What is perhaps slightly surprising is
that one must include in the “resonant” part of the interaction, f”, not only
harmonics f}(I) with ve R}, but also those harmonics which are “close” to primary
resonances, in a sense made precise below. We call these harmonics the secondary
resonances of zeroth order. One then iterates this procedure locating at each stage the
primary resonances, and choosing the canonical transformation to kill the
nonresonant harmonics. A finite number of such iterations suffices to prove
Theorem 1.1.

Suppose we have constructed H¥(I,¢) = h*(I)+f*"(I, §)+f*™(I, ¢), with
fer1, @)= Zkf KIe™*, for some set of harmonics R¥, specified below. Define

Lk=2(3/2)"vlefn(aop0" HI/m, M, = (3/2)|In(gopg 1)|/6, for & a universal constant to
be specified in the course of the proof. Define p. = p,i(eo)[Bye*Mx*2L]~1,
for k=0,..., and set X;={veZ"|d(suppv)<L,, 0<|v|<M,}. Let o* )=
(6K¥/oI)(I). In the course of the proof we will define a sequence of vectors I,
Iy,....I;,, whose first element is the initial value of the action variables, I. The
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primary resonances of order k are
= (Ve X \R¥|[<M(I,), v )| <polleo) (B +14] 71} 2.1)
The secondary resonances of order k are
Rl = {veXkH\(ﬁ"uR’,‘,)lmmw # J for some vVeR*URE}.  (2.2)

Heresuppv = {i,i + 1,...,j — 1,j}, fori and j respectively the leftmost and rightmost

sites in supp v. We assume that the set of vectors R¥ which defines f*" above is given
k-1

by R¥= U [R*UR™ if k>0, and R°= .

The k® order sites, S¥, are all sites j such that:

(i) jesuppv for some veREURE™! (for k=0 take R; ' = &)

(i) j¢S™, m=0,...,k— 1.

Roughly speaking, the motion of (I{t), ¢ (1)) for jeS™, is controlled by the m*"
order resonances.

One interesting technical difference between the present work and previous
work on the KAM theory is that we must allow the size of the neighborhood on
which we define our change of variables to vary as we move about through the
system. Given a domain W(p,&;{I}), (p); determines the size of the complex
neighborhood about I;, and we must choose that size to be much larger when jeS™,
for m small, than when j lies in the non-resonant regions (i.e. j¢S™ m=0,...,k).
Define

m ) C1Pmir/ko fi€eS",m=0,... .k
b )E_{O otherwise. 23)
Then for k = 1, define
k—2
. prifi¢ () S™ (orforalliifk=1)
(p )i = m=0
(2.4)

(01, —8(b™, if ieS"m=0,....k—2.

In the angular variables ¢ we give up a fixed amount of analyticity with each
iteration and set &*1 = &k —3(5 + 2).
We assume that H¥(I, ¢) obeys the following estimates, on W(p*, &,; {I,}).

a k,nr B 6 k,nr
sup{ e }§ek, 23)
J J
with &, = po(eopo 1)3/?", and
a k,r a k,r )
sup{‘ LAl TS af¢_ }gA(k,J), 26)
J J
where
k—1

polecor ™™ if g | ] s
Ak, j) = olewpr 1) ]¢"L=)0

Polenpr "™ if  jeS"n=0,...,k—1, 27
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k—1
and , =8 Z B;j, (ny=0) and Bi=c1(3/2) 77+ c,/kq, with ¢, and ¢, chosen so that
j=0

i=
m.<1/8, for k=0,...,k,. We note that ¢ < A(k,j), so the non-resonant part of the
interaction is smaller than the resonant part. We also assume that our Hamiltonian
retains its short range character, so that

0%h* §
611811( ) 511+X(1,l7])s (2 8)
where
e~ =ngmli—jl if i #]
sup | x(1;i, )| < 6(k; i, j) = k=1 (2.9)

¢y +Bko Y, eipit, il i=j
J

and the constant ¢, that appears on the right-hand side of (2.9) is the same as that
appearing in the bound on y°(I;i,i) in Sect. 1. We also need

al k
0x;0x ;

L)
with x defined as in (1.14) and p§ chosen to insure that the dimensions of the two
sides of (2.10) are the same. Also, in both (2.9) and (2.10) the suprema run over
W(p*, & {I,})- Given these assumptions we have

Proposition 2.1. Let HXI, ¢) be as above (with k =0, 1,...,kg—1). Then if
e <Cpolko)™® and m>K, 2.11)

(x)

sup < poe (il (2.10)

with ¢, o, K the same constants as in Theorem 1.1, there exists a change of variables
Ck(I', @)= (I, §), analytic and invertible on W(p**1, & .3 {Ix+1}). Furthermore
CEW( 1, & {Ik+1})_’ W(p*, & {Ik})' yrevt = prlw(pkﬂa Gerts s ) c*
is canonical on I'**! x T™. Define

H** (I, ¢) = H*CHI', ¢) = K" (1) + f** (I, ¢)
= hk+ 1(11) +fk+ 1,r(1/’ ¢/) +fk+ 1""(1', ¢/) (212)

where f¥* (I, ¢ = Y, f*!(Ie™?. (The procedure for splitting H*** (I, ¢')
veRkuRguRi‘
into its integrable (k**!) and nonintegrable parts is given in Sect. 3.) H**! (I, ¢)
obeys the bounds (2.5)-(2.10), with k replaced by k + 1, and the suprema are now
taken over W(p**%, & i3 {Ti+1})-
We note that I, is defined inductively by (I, . 1, Px 4 1) = (C*) ™ *(I,, ¢3). (Of course
we must check in the course of the proof that (I,, ¢,) lies in the domain of (C¥)™'.)
Given Proposition 2.1 we immediately obtain Theorem 1.1. Note that our
original Hamiltonian H(I, ¢) satisfies (2.5)-(2.10) if we take R°= ¢, and hence
f9(I, ¢) = 0. Now apply Proposition 2.1, until k=k,— 1. Note that if the constant
K, in Theorem 1.1 is large enough (in particular K; > 3(6 +2)) &, = 1. Define
C=C%Clo...oC®~ 1 T=1,, and j = p,,. Then C is defined on W(p,1;{I}) and



Elimination of Non-Resonance Harmonics 359

maps this set into W(p, &y; {I,}) so
H(I',¢")=H°-C(I', ') = H*(I', §)

— E(I/) +]‘resonant(1/’ d)/) +-7‘nonresonant(11, ¢I)s (213)
with j‘resonant(ll, ¢/) =fko,r(11’ ¢/) and 7nonresonant([/, ¢/) =]‘ko,nr(11, ¢/) The stated
bounds on H(I', ) then follow from (2.5)—(2.10).

Note that we obtain somewhat more information from Proposition 2.1 than was
stated in Theorem 1.1 For instance from (2.6) and (2.7) we see that if 6 and m are
large enough, g,0, * < (gopg 1)/ G/" (§ and m do not need to depend on n for this to
be the case,) and we have

Corollary2.2. If H(I, ¢) is the Hamiltonian constructed in Theorem 1.1, then

“ a]‘resonant aj’resonant
Pl ar, 39,
ko—1

J
poleops YRR i jg | ) S

n=0

polegpe HADBD™ if  jeS" n=0,...,ko—1, (2.14)

+po !

and the supremum runs over W(p, 1, {T})

We remark that at many places in the proof we will state inequalities which are
true, provided m and J are sufficiently large (where “sufficiently large” does not
depend on the number of degrees of freedom of the system) without explicitly
stating this assumption. Note also, that because of the definition of m, ky, and f,,
m-B, = c,K,,forallk=0,...,k,, where K, is some universal constant which we may
choose as large as we need, which means that m- 5, can be chosen to be some large
constant.

We note that one could replace the factors of (1/2) in the exponents in (2.14) with
any number less than one, by making only minor changes in the proof.

3. The Canonical Transformation

In this section we construct the canonical transformation, C¥, whose existence is
asserted in Proposition 2.1. Let H¥I, ¢) = h*(I) + f*(I, ¢) be a Hamiltonian satisfying
the inductive hypotheses of the previous section. Define the generating function for
the desired change of variables by

Sty § S
*:¢) vszxk DX 3D
v¢RkuR‘;

with f%(I') the Fourier coefficients of f*(I’, ¢).

This is the generating function that one is led to by classical perturbation theory
if one only attempts to “kill” the non-resonant harmonics in the interactions. Since
there are only a finite number of terms in the definition of S, it can fail to be well
defined only if the denominator of one of the terms vanishes. That this does not
occur is guaranteed by
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k—2
Lemma3.1. Define the N-vector r} by (r});=2°""p,., if i¢ () S™ (rpi=(p")—
m=0
n(b™); if ieS™, m=0,...,k—2. Then on W(ry, & {1,}),
sup [|<a*(I'),v>|™ '] < 2By(podeo)) ™t exp [(3/2)v] + L], (3.2

for all veX,, but v¢ R* U R%. The constant By in this inequality is the same as that in
@.1).

Remark. We could actually define the generating function S on a larger domain than
W(ry, & {I.}). If R% is defined by (2.1), let V; be the largest connected set in RY
containing I, such that if veX, \(R¥UR¥), and IeV,, |<ofI),v)|"'<

B,(poA(eo))expL(3/2)|v] + Li]. (Roughly speaking V, is the set of I's with the same
resonant vectors as I,). Then (3.2) holds on the larger domain W(r}, &,; V,), with an
attendant increase in the size of the domains on which the canonical transformations
in Proposition 2.1 and Theorem 1.1 are defined. At present, however, I have found
no use for this larger domain.

Proof. Since veX,, v¢ RXUR,
[<*(I),v> ™1 = By(poA(eo)) ™ exp [(3/2)]v] + LyJ. (33)

Furthermore there is a path y, consisting of N components, y;, along which only one
coordinate of I varies, joining I, to I' for every I' such that (I, §) is in W(ri, & {1,})
for some ¢. Also, the length of y; is bounded by (r;);. By the fundamental theorem of
calculus,

(oI vy = <w“(1k),v>‘1{1 (MY vy x 5d1"<‘35;(1~) v>}_1. (3.4)

Since v¢ R* U R%, (ri); = 2"p, 4, for all j such that dist(j,suppv) < L,_,.(Ifk=0or 1,
k—2

(r8);j=2"py+, for all sites j.) This follows since if je { ) S™, the definition of the
m=0

secondary resonances would force v to be an element of R¥™! if dist(j,suppv)<

L,_,. Write

a k th
ar I I")vdl]. 3.5
jar (S ) =5 1w 69
For each iesupp v, bound the sum over j by breaking it into two parts. For those j’s
with [j—i| £ L, -, bound the length of y; by 27p, .., , while for j’s with |j—i| > L, _,
we bound the length of y; by p,. In all cases, the integrand is bounded by (2.8) and
(2.9). Summing the resulting geometric series in j we find (3.5) is bounded in
magnitude by

22|V1pys, + 22[v|pget-wmtas, (3.6)

(provided m is sufficiently large). Bounding the factor of {@*(I,),v)> ! by (3.3), and
using the fact that |v| < M, since ve X, we see that the quantityin {---} in (3.4) can be
bounded below by (1/2). Then Lemma 3.1 follows. (If k = 0 or 1, the second term in
(3.6) may be omitted and Lemma 3.1 still follows.)
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Lemma 3.1 allows us to bound the derivatives of S(I, ¢). We obtain the following
results which we prove in Sect. 7. To simplify our notation let y, be either I} or ¢;
depending on the context. Then regard S(I’, ¢) = S(y).

Proposition 3.2. On W(ri, & —6; {I,}),

sup 6dy.(y) < pi(Meo)) ™ *eB™,
and on W(r}, & —6—1; {I,}),
028 o
< pih g~ =n1 = Bli=jl 3.7
p ayiayj(” < poe W (37

for some constant B. As usual the factors of p} are chosen to keep the dimensions of the
two sides equal.
Now define the change of variables by

I—Pﬁa@@ ¢=@+M

By the implicit function theorem of Appendix A, the first of the pair of Egs. (3.8)
may be inverted in the form:

(I, 9). (3.8)

Ir=I1+E&(¢) (3.9)
for £'(I, ¢) analytic on W(r?, & — 6 — 1; {I,}), provided
swi,wwﬂqw

and (3.10)

sup <c1p+1/kos

39,

for all j, where the supremum runs over W(r?, &, — 6 — 1; {I,}). Similarly the second
equation in (3.8) is inverted in the form:

¢=9¢" +AI,¢), (3.11)
with A(I', ¢') analytic on W(rZ, &, — 6 — 2; {I,}), provided
sup ; I’6¢ T ¢)‘ =(1/2)

and (3.12)

—(I’ ¢)l =(1/2),

sup 61,

on W(rZ, & — 6 — 1; {I,}) for all j. Both (3.10) and (3.12) follow from (3.7). Note that
E'(1, )= —(0S/0¢) (I',¢) and A(I',¢")= —(dS/dI') (I, $), so bounds on deriva-
tives of S lead to bounds on £’ and A. We also define

¢=0+A4(¢), I=I+EI,P), (3.13)
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where A'(1, §) = (0S/0¢) (I + E'(I, ), $) is defined and analytic on W(r2, &, — 6 — 1;
{I,}) and E(I', ¢")=(3S/0¢)(I', ¢’ + A(I', ")) is defined and analytic on W(rZ, &, —
6 —2; {I,}). Define the transformations

k(U ') — I=I/+E(II, ¢/)
cu(r,¢) {¢=¢’+A(1',¢,)>
and (3.14)
. Lr=1+20.9)
(1, ¢) {¢/=¢+A'(I,¢)~

Both are defined on W(ri, & — 6 — 2; {I,}) and map this set into W(r?, &, —
{I.}),and on their common domain of definition C¥o C* = C*> C* = identity. Also by
construction, C* and C* are canonical on pr,(W(r}, & — & — 2; {I,})) x T". Define
(Ies 1, Pus1) = CU, ). Since E'(I, p) = — (0S/0¢) (I'(I, d), d), the bounds of Pro-
position 3.2 imply

[T+ 1);— Ll < polewpy 1)’ for j=1,...,N. (3.15)
Thus, W(r§, &— 06— 2 {Li+1}) < W(rk,‘fk —0—2; {I}), so C* and C* map W(r{,
b= 8= 2 (I )= WO & — 6 — 1; {I,}) © W(p" &, {I,}). Define
HE I, ) = HE O ) = B + E(1,4)
+f + 2, @), ¢+ AL, ¢))

+feMI + 2, ¢, ¢ + AT, §)). (3.16)
Define f=XI,¢)= Y f4l)e** and define fM2U(I,p)= Y f4I')e"*. Then
veXu{0 vgX
v¢§kuR: vgﬂgng

applying the fundamental theorem of calculus in a manner similar to [3,4, 6] we find

H Y, @) =W I) + /5 + "I+ BT, ¢),¢'+ AT, 4))

+ 1 6) + £ )+ ) + £V ), (3.17)
with
£, e) = ,fdt Jds: IZI(" +SE(,¢))-EW,¢) 2L, ),
£, ¢) = jds L2046+ A6 509,
£ g) =fkf23<1' +5(I',¢').¢' + A(I', ¢')) and
PN @)= TSI+ B ¢))e 409,
In deriving (3.17) w: R&sed the fact that
6_}1"(1) EI,¢)+ Z fHIe ¢4 =0, (3.18)

veXy
véﬁku R}“,
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because of our definition of S. Setting h** }(I') = h*(I')+f¥(I') we see that

ath+1 B} %fﬁ
2 (1) = 0+ (50 J) + () = 05+ 171 (T3 ) (3.19)
o101 J o101 J
The bound (2.5) and a dimensional estimate implies
a%fk
I/aI: (I) Bkogkplc—+11 on W(rlh éka {Ik})a
while (2.10) implies
ot L
N < g—(—ngmli-jl i
01;61}(1) <e k for i#j,

on the same domain. Combining these estimates with the bound on y%(I’; i, ) in (2.9)
we see that
k-1
¢y + Bko Y gjpjit + Bkogpery i =]
sup [* " 1(I'55,j)) i=0 (3.20)
e~ L—mgmli }|<e (I=ng— Jmli—ji if i #].

Thus, (2.9) can be iterated.
In the next section we begin the task of verifying that the bounds on the
interaction terms can also be iterated.

4. Some Preliminary Decay Estimates

We begin iterating the estimates (2.5)—(2.7) and (2.10), which control the interaction
terms in H**! . In this section we prove a series of estimates on various components
of f¥*1, The first lemma is an application of the chain rule.

Lemma 4.1. Suppose g is analytic on some domain @ < C*N. We let xrepresent either
the j* or the (j + N)™ coordinate of a point in C*N, (This is in keeping with our notation
in (1.14).) Suppose that

2

I_(x)

0x,0x,

a_(x) < Cherinr (4.1)

sup ox

2

<C,, sup
9

for some non-negative constants, C, C3,, and x(n,p=1,...,N). Suppose X is a
holomorphic map from 9’ — 9 satisfying

Xn
0x, ()
2~

Xm_ 2 —xin—pl
p 7 /(x)‘écmnpe i p’
0x,0x,
for some constants C,, and C,z,,,,p Here, in analogy with our notation above, we let X;

denote either the j™ or the (j+ N)Y"* component of the map. (See Lemma 4.2 for an

sup < Cpe e,

9

(4.2)
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explicit example of this notation.) Then
2

0 <De™i-l (43)
X0, '

sup (g °X(x')) =2 (g°%(x))

; <D;, and sup
0x; P

N N
Here D;=2 ) C,C); and D=4 sup ( Z C.ChLi+ Y Ci’,,,,C,‘,,,.C,}j). The easy
m=1 ij mn=1
proof is omitted. Note that (4.3) can always be satisfied by picking D, and D
sufficiently large. The point of the lemma is that D; and D may be chosen to have the
stated form.

The next lemma tells how the changes of variables I,=1(I', ¢') and ¢, = p(I', ¢')
depend on the variables I; and ¢; as |i—j| becomes large. To state the result
concisely, let x} be either I or ¢}, and let X,(x') be either I (I, ¢") or ¢(I', ¢") depending
on the context.

Lemma 4.2. Let @' = W(r{, & — 6 — 3; {I,.}). Then

Supa,(X) 3y
< pamin((Aleo)) ™ *ko&pi sy BH, e~ 7 md (1738010, 4.4)
Also
2 ~
supl o ()| S BT, — 0D x e BT 4

Here, Sij=1 if X, =L,¢") and x;=1I; or X,=¢(I', ') and x;= ¢;, and 5,.}:0
otherwise. This slightly awkward definition is necessitated by the fact that if
0%
%;=1{I',¢") and x;= ¢} (or if X;,=¢(I',¢) and x;=1Tj), then ‘571 «1—not O(1).
However, this notation has proved so convenient otherwise that I think it is worth
putting up with this problem. The constant n is chosen as usual to insure that the
dimensions of the two sides are equal.

Remark. Note that (r2), — (), ~ O((b™),) if £€S™ for some m=0,...,k—2, and
(r), — (rd), ~ O(p + 1) otherwise, so the “size” of these derivatives depends on the
order of the site 7.

At numerous points in what follows we will have occasion to bound sums over
veZ¥, in which the summands obey certain estimates that we wish to show are
inherited by the sum. Estimates on the sums are provided by

Proposition 4.3. Suppose g(x)= Y, g,(x) and

vez™

§mm{Kﬂ®em” (4.6)

sup
2

Ox

K167K1|i_['€76l|v',

i

for some domain 9, some constant e(i) and ¢ the point in suppv such |£—i| is
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maximized. Then if &' and x, are greater than 6,

<K, e(i)B~, 4.7)

dg
6_x7(x)

sup
2

where L is any number greater than (2/x,)|In e(i)|, and B is some universal constant.
Suppose further that

d%g K ,erali=ilg=o1
IV < . , 48
S‘;p axian(X)l = {Kse—lczll-fle—&lﬂ ( )
and i, > 6. Then
g —kgli=j| gUi=jl+1)
sup =2 ()| = (K + Ky)ea=/I BV (4.9)
2 iYANj

for some constant B.

The proofs of Lemma 4.2 and Proposition 4.3 are presented in Sect. 7. With these
two results we are ready to study H*'!, beginning with these corollaries of
Proposition 4.3.

Corollary 44. Let 9 = W(ry, & — 6; {I,}). Then

ofi] _, |of*E] 2], ,-1RL ~1)(13/8)(3/2)¢
SUP{‘ + Pr+1 < pokopx 1 Bhrri(gopg 1) HIB IR,
s oI, 00,
fori=1,...,N. Let x; be as in (1.14), then
aka[;] )
()| < Bpemm e nni-, @1
iUXj

on Wz, & — 6 —1; {I,}), where as usual the factors of p, are chosen to keep the
dimensions of the two sides the same.

Proof.

afk[Z] B 0
= T g, @12)

v#0

where g,(x)=f*%1I)e”?¢. Using (2.5), (2.10), the inductive hypotheses, and
Cauchy’s theorem bound |(8/0L)(f*(I)e”?)| by min(Bkop, i ple !~ mdsepp)
e M poe~mt-mli=¢lg=dl g e=0M) on @, which is in turn bounded by min
(Po(egpg 1) 13BN g=dlvA | g o=mil-mli=¢le=31)  since v¢X,. (Recall that ¢ is the
point in supp v furthest from i). In deriving this estimate we have used a little trick
that we will often call on below, and so we mention it here. If j and £ are the two most
widely separated sites in supp v, then by integrating by parts,

k 1 > iv-6
O e [P ALY

2n

where [d¢ = ( I1 I(d¢i/2n)>. Thus 0f*/d1, is the v* harmonic of the function
0

i=1
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—(1/vyv,) [(0%/01,04;0¢,) f(I, $)], which with the aid of (2.10) and a dimensional
estimate we bound in magnitude by Bphkp, .l e ' ~w"¢=il But |/ —j|=d(suppv),
and the first estimate above follows from Cauchy’s theorem. Similarly
(0/0¢)(g,(x))=f,(D)(iv)e”? =0 unless iesupp v. Using this observation, plus (2.5),
(2.10) and Cauchy’s theorem, we find [(0/d¢;)g,(x)| is bounded by

min (po,|v]e =", p2e=mU—mli=CI|y| g=dlvl, BpZ o=mil—ndisuppy)|y| o ~dlvl)
é min(p(z)(sopa 1)(1 3/8)(3/2)ke~5\vi/4, pge—mﬂ7.,k)‘i7:;e_5‘v|/2).
Applying (4.7) yields (4.10). Next note that (2.5), (2.10) and Cauchy’s theorem imply

el (p");— (rg)1 ™ te Wi
< pimin € e~ -mwli=slg=ll )

pol(p"); = (rh);] ™ el Mlg-o

g,
0x;0x;

(x)

efm(l~nk)llfjle—5|\'|
< pf min
= Po e—m(l~qk)(1—zﬂk)u—jle—mﬁk(l—r/k)|i—f\e—5|v|,

where as usual n is chosen to keep the dimensions correct. In addition the last
inequality used the fact that if ¥y < min (c,,c,), one has y < cfci ~? for pe[0,1].
Inequality (4.11) then follows from the second half of Proposition 4.3. (Note that we
can assume |i—j|>(1/8)L,, since otherwise (4.11) follows from (4.10) by a

dimensional estimate.)

In like fashion, if we let f*(I,$)= Y f,(I) "¢, we have

14
veRy

Corollary 4.5. If 2 = W(ri, & — 6; {I;}), then

ofH=] _ |ofksl } .
su +p <¢gB™,
gp{, ol ° "o, "
aft _|art }
su +pgt <e¢B™, 4.14)
‘@p {\ all p() a¢l k
and
afk,r - afk,r } ) )
su +p < A(k,i)BW,
p{‘ or, | TP | a4,

where L(i) = L,, if ieS™ m=0,...,k—1, L(i)= L, otherwise. Also, if x is as in (1.14),
then on W(rZ, & — 38— 1; {I,}),

o2 k=]

sup (x)] < phe—mt-mdt-2p0li-il,
0x;0x; -

214

Sup ()| < phe~m- W2,

Ox;0x;  "|~
and 4.15)

aka,r o

sup |—2L—(x)| < p" e—ml—m)(1=2Bli~jl,

p 6xi6xj( )| = o
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Once again the factors of p,y are chosen to “fix” the dimensions.

Proof. By (2.5), (2.6), (2.10), and Cauchy’s theorem we have

01 U v o) 4 ps 1| f5v )6 | < min (AGk, )| v]e~*¥, poe-mi-mii=C1|y] o),
while
0 o
axg ()| < o min (e -W-Te-3M1_AGk, )

’ [(Pk)j - ("l%),] “leol, Po[(Pk)j - ("1%)1] ~le~lizdlg=lM),
on W(ri, & — 6 {I,}) with ¢ the point in supp v such that |i — /| is maximized. Note
that this last inequality implies
aka
0x;0x;

< p'(') min (e~m(l—rlk)li—jle—6IVI,

()

ce—ml—m)(1 —2ﬁk)|l—j|e—m(1 —'Ik)ﬁkh—/le—élvl).

(The last step used the fact, easily derived from the definitions of the m™ order zones,
Sm’ that lflGSm and Lm+n = |l _]I < Lm+n+ 1 then ”:(pk) - (r;)_]] 1' = Bkopm+n+2
Proposition 4.3 then yields (4.15) and the last of the three inequalities in (4.14). (Note
that we may assume |i—j| > (1/8)L,, in the first two inequalities in (4.15), and
li—j] > (1/8) max (L(i), L(j)) in the last of these inequalities since otherwise they
follow immediately from (4.14) by dimensional estimates.) The first two inequalities
of (4.14) follow if we note that all the Fourier coefficients f*(I) in f<=1and f* satisfy
véR, so by (2.5) and Cauchy’s theorem we have

o
sup { ol
J

on W(p*, & —&; {I,}) for these harmonics. Combining this estimate with those
above, and then applying Proposition 4.3 completes the proof of (4.14).

+p5 | LD e

} < el (4.16)

5. The Short Range Nature of f**!

We demonstrate in this section that the estimate (2.10) holds for the Hamil-
tonian H** 1. Let X(x’) be as in Lemma 4.2. f 2' = W(r§, &, — 6 —3; {I,}) and 2 =
W(rd, & —6—2; {I,}), then & 2'>2. If f™ and f' are as in (3.17) we have
S ¢ =f4EX(x) and [V, @) =f*ox(x), while e +E(I )¢ +
A(l', @) = f*ro%(x’). We then have

Proposition 5.1.

flll ,
ox; )

v

a I

1\(13/8) (3/8) RL
S 0o (egpg HIABI OIS Bk,

sup
o

()| = pbe B, (.1)

sup
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and
k,r

0x;

i

°X(x)| < Py A(k, 1) BIO.

sup
P

Furthermore on W(ri, &, — 8 —4; {I,})
aZflll
0x;0x);
aZflll
0x;0x;

()] S (p/22)e -t 1,

()| S (b2,

and

alfk,r
0x;0x;;
Proof. Apply Lemma 4.1, taking the function g(x) in that lemma to be f¥21, 4 and

f*r respectively in each of the inequalities in (5.1) and (5.2). Choose « (in (4.1) and
(4.2)) equal to zero for (5.1). From Lemma 4.2 take C};=2 if i=j, and

oX(x)| < (p/2%)e - m i, (5.2

Clj = min(pge =" =m0 ==i\, pi(i(eq)) "2 Koeppy sy BY)if i # .

From Corollaries 4.4 and 4.5 we see that the constants C , may be chosen to be
ph Bl+1(ggpg A3 GI2Y pne Bl and pB A(k, /) B respectively in the cases g equals
fY21 f4 and f*. Inequalities (5.1) then follow from the first inequality in (4.3). In
calculating the constant that appears on the right-hand side of the third inequality,
we note that ko A(k, p)(e.ors' ) B < Ak, i)BLY for all sites p, while kog oyl B <
e~ m1-m1-4p0li-pI”2 for at most BL, sites p, so

Zc CL<(2+2%)Alk, z)BU“+(supk0 Ak, p)(ewpor HBX)BL,

< A(k, i)B"10, (5.3)

For (5.2) choose x=m(l —m)(1—58,). Then Cy;=2 if i=j and Cj;=pj
e~ mI=nBdi=il if j # j by Lemma 4.2.

C2,=Bpy[(rD), — (r),] " te mi—mli=il if |i—¢| <2|i—j]
and
C3, = poL(r); — (r); 1™ e mt -l =301z

otherwise. This estimate follows by noting that (4.4) and a dimensional estimate on
W(ri, & — 0 —4; {I,}) imply

0%, 5) 1~ 1 gl —m)(1 =38l — /|
Ox'0x. '(3 0[(rk) ("k)j] € k K

é Bp'(',[(":'), _ (rlf)]] - le~m(l~—nk)(l—3ﬂk]li-/|/2e*m(1*ﬂk)(1'Wk)llﬂl,

if [i—¢| > 2]i —j|.
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Choose the constants C,, as we did in the previous paragraph. Corollaries 4.4
and 4.5 also imply that the constants C%,, may be chosen to be p§e " -mlim=nlin each
of the three cases. To prove (5.2) first note that we may assume |i — j| > (1/8)L, in the
first two inequalities in (5.2) while in the third inequality we can assume |i—j|>
(1/8)max (L(i), L(j)), since (5.2) would follow from (5.1) and a dimensional estimate
were this not the case. Given this assumption, (5.2) follows from the second
inequality in (4.3), since a straightforward computation of the constant D appearing
there shows it may be bounded by (p§/2°) in each case.

We now study the two remaining terms in (3.17), /" and f". We first prove the
following easy consequence of the product rule

Lemma 5.2. Suppose f, and g/ =1,...,N) are analytic on some domain 9 = C*¥,
and satisfy the bounds

suplg,| < C,,sup|f,| <Cpy,

0 . ;
sup —ﬁ% <m1n(Cg1,, ngfe_Kll_[l)s
0 . .
sup a—? <min(C},, Cie "), (5.5)
g, : i —klie
sup Fx0x, <min(CJ,e~1, CJ,e~+i=11),
and
2
SuP’&x-a; < min(C}e~"1, Cfe=*i=),
iVXj

where we again let x; represent either the j** or (j + N)* component of xe C*N. Then if
k>0, and L is a nonnegative integer we have

%( 5 ff(x)g/(x))

sup <2¥(1—e ) 'sup(C,,C} + C,,CL)e **
9 £=1 1
+22sup(C,,Cl + CLC,)(L). (5.6)
'3
Furthermore,
62 u P -\~ 12 2
sup| 5 Y fgAx) )| S [2(li—jl+2(1—e™ )~ HCLC,
2 |0%:0x;\ /2

+ sup(2®|i—j|+ 22)(sz C;( + Cgfcfaf)
¢

+225up(C,,C% + C,,CA)] (1 —e ™)~ Te=4L (57
4
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Proof. By the product rule,

I VL2 4 p 2 p

< Z (ngcf2/+cffcg2/)efxli4[l
i-fizL
+ Y (C,ClL+CLCy), (5.8)

£
li—f|<L

and (5.6) follows immediately.
Applying this product rule a second time we find

82 Zf[ 2
e L4999 S X005 50 1005 a C(x)

f/

59/ 99,

x)|. (59)

e

Bound the last two terms by boundmg the derivatives by C;‘/Cf/e"‘["“’ I+b=41) and

then summing over / to obtain the term sup(2(|i—j|)+2(1 —e™*)~")C2,Cle=*.
¢

Bound the second term by first summing over all # such that |i—7| < 2]i—j|. If we

bound f, by C;, and bound |d%g,/dx;0x;| by C)e "/, these terms give a

contribution of sup 2%(|i—j| +2)Cf/Cg,e"‘" -l whlle the remaining terms are

bounded by

Y C,Che™<sup22C,,Ch(l—e ) temrli=il
e ’
The first term in (5.9) is bounded exactly as the second, interchanging the roles of f,
and g,, and (5.7) follows.

Lemma 5.3. Let 9" = W(ri, &, — 6 —4; {I,}), and let x' be as in Lemma 4.2. Then

f"
sup|——(x)| < poC1ks 1,
17 i
and (5.10)

2001

U ’
0x;0x;

(96/23)6_"'“ —m)( = 6Bli—jl

sup (x| =

on W(rg,&—0—5;{1,}), where we can choose C,~ O((gpy *)%), for some a>0.

Proof. Define Xj(x') to be either I;+s=Z(x’) or ¢;+ A,(x’) depending on the
context. Since

X;
5 . ——(x)— 5:’,’

so that Lemma 4.2 bounds derlvatlves of . Let g/(x) =0fM=1/ol, (x), (¢ =1,...,N).

Is|=1,

ij 3
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Then Corollary 4.5 implies |g,(x)| < B on W(ri,&—d;{I,}). On the domain
Wi, & —6—1; {I,}), (4.14), (4.15) and a dimensional estimate imply

< min(pkopy 16 B™, poe™ 1~ =2AI=A),

29¢(x)

while (4.15) and a second dimensional estimate bounds |(9%g,/dx,0x;) (x)| by
min(pgkdpy 216 B™, Bpokopi iy e~ U =Bl
Bphkopi it e mi-mwi=260li=)
on W(r?, &—06—2; {I,}). Combining these estimates with the bounds on
derivatives of x° that come from Lemma 4.2, and applying Lemma 4.1 yields

o [ofHs=) iy
za'( o1, ™)

sup < Bpj(li—¢| + 1)e=m == =]
< Bple~m1-mi=sholi—| (5.11)
on W(rt, &, —6—3; {I,}). Note also that (4.14) and a dimensional estimate imply
K <]

sup 77— F(x)| < 5B

and (5.12)
o (offt=l | np -

SI;P 5_X:< ol, oX(x') || £ pokopiis eB".

The second half of (4.3), combined with Lemma 4.2 and the estimates

above imply
0% 6f“[<]
6x’i6x< al, Xx )>

This follows by noting that the estimates above imply we can pick the constants
k, C,, and CJ, of (41) equal to m(l—n)(1—5B), pokopiii&B™, and
23p8kopi e~ T . respectively, on the domain 2= W(r,
& —0—3; {I,}), while Lemma 4.2 implies we can pick the constants C,,=
BpGe At -mln=pl, and C/; = Bpgkopy i el f |4 —j| < 2]i—j| and C/u
Bpkopi e " =451 512 otherwise. (This last estimate follows from a dimen-
sional estlmate similar to (5.4).) Estimate (5.13) then follows by inserting these
bounds in the definition of the constant D in (4.3).
Note also, that (5.11) and a dimensional estimate yields

62 afk[é]
p ax;.ax;.< TR ))

The factors of Z (x'), in /™ are bounded by po(e.px *)7/® on W(ri, &— 6 — 2; {I,}),
using (3.7) and the fact that Z,(I', ¢') = (0S/0¢,) (I', (I', ¢)). Factors of 6=5,/0x; and
02E,/0x;0x; are bounded by Lemma 4.2 using the observation that

0E, 0%, s, 0’
ox;  ox, 0xi0x;  0x0x)

< Bpkopi it e ™1 =m0 =shli—i, (5.13)

sup
o

—m{l=n)(1=5pli—£| (5.14)

< Bpikopi i€

-4, and
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Define  §,(x)=af*=1/d1,°%%(x’) and f,(x)=E,(x'). Then inequalities
(5.11)—(5.14) and the remarks in the preceding paragraph are just what we need to
apply Lemma 5.2 to bound derivatives of f2(x Z g,(x)f/x'). Take « in that
lemma equal to m(l —n)(1—58,), set the constants C,=¢B"™ C),=
pikopi e B, C2=Ch=Bph, Cy=Cl=CY=Ch=Bptkopils, and C;=
polexpic )78 and C}, = plkopy 1 Meo) 26, B™, and let the constant L= L, in (5.6). We
find

afi .,
0x; ()

sup S p6Ci8k+1> (5.15)

7

where C, may be chosen O((gp; !)*) for o some small positive constant. On
W(rl?,ék - 5 - 57 {Ik})9

02
sup E ,gs,(x) < Bp}[li—jl+- ]e—xlz—1|<(pn/23)e—m(l (1= 6By)li—j| (5.16)

In the last step in (5.16) we used the fact that we can assume |i—j| > (1/8)L,, since
(5.16) follows from (5.15) and a dimensional estimate otherwise. But if we now note
that

aZfz
0x;0x;

fll
ox,0x,

J

and

(x| =

()| = )],

= sup

f"
%

a 2\
26

<sup
s

we see that (5.10) follows from (5.15) and (5.16).
Finally we address derivatives of f.

Lemma 54. Let X%(x’) be as defined in the proof of Lemma 5.3. Define

N A2k
h N = o ¥y’ ,E ’ .
) 1;161,61,, ¥x) ELX)
Then on W(rf, & — 6 —5; {I,}),
sup [h(x')| < Bpo(ewpx )", (5.17)
h : Pokopii (e 1)’
sup Ox ,(x) <mln{p,(,)e_mu_,,km_7ﬁk),,~_,,|, (5.18)
and
pokopics e =t = Thli=n
6 i0% I(X) {Bpokopkﬂe ml =) =TBli=jl * (5.19)

Assuming Lemma 5.4 holds for the moment we prove

Lemma 55. Let 2 = W(r], & — 6 — 6; {I,}). Then

d
f (")

Sup a /

< p0C 841
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and

82f1

<(p" 23 7m(1*'1k)(1*8ﬂk)|"*ﬂ’ 5.
dxiox, (po/27)e (5:20)

(x| =

sup
@

where we can choose C; ~ O((g,px )¥) for o some small positive constant.

Proof. Note that
( Z h (x )"-’n X )>

a /a ! a (Zlh x)'—'n(x)>

We apply Lemma 5.2, w1th fi=h (the function defined in Lemma 5.4),and g, = =,
to derive bounds on the right hand side of these inequalities. (Our bounds are
independent of s.) Bounds on f, are given in Lemma 5.4, while bounds on =, and its
derivatives were discussed in the proof of Lemma 5.3. Pick the domain & in Lemma
5.2 to be W(r,f, ék §—5; {I,}), and choose k=m(1—n)(1=7B), C,, =
Bpj(ewor )7® C = Bppkopi+1(epi )%, C/{ C = Bpg, C CA =
C;= Bpoxopk 21 and the constant Lin (5.6) to be L. Then (5.20) follows easﬂy from
(5.6) and (5.7).
Combine Proposition 5.1 with Lemmas 5.3 and 5.5., and take the definition of

f**(I, ¢') in (3.17) to obtain
Corolary 5.6. Let @ = W(rl, & — 6 —6 (L) > W{* Y, Gev iy Ur1))- Then

oY
X0
This implies that (2.10) holds for the Hamiltonian H***. All that remains is to

verify that (2.5) and (2.6) also hold for f***, which we do in the next section.
We now prove Lemma 5.4. By (2.8) and (2.9),

21k

01,01,

< sup (5.21)

il

and
2

f(X)

(X) <p e~ M-+ D=l (522)

sup

o ~s(x/) _ 6{n é e~m(l—l1k”f*"l (523)

on W(rd, & —6—2; {I,}). Since | EAx')| < polewps )78, on this same domain, we see

that {h,(x')] < Bpolewor 1)7'® as claimed in {5.17). A dimensional estimate immedi-

ately yields the first estimate in (5.18) on the smaller domain W(r{, &, — 6 — 3; {I,}).
Note that (2.8) and (2.9) coupled with a pair of dimensional estimates imply

o ( o%h pokopic+ e~ =
5.
*Pl5 <61 ol (X)) {Bpokopkﬂe m(l=nl¢ —nl (5.24)
and
62 alhk B k e~ mil- —nli—¢|
Pl () pokgpitie ™! (5.25)
0x;0x;\ 01,01, Bﬂokoﬂkﬂe )
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where the suprema run over W(ri, & — 6; {I,}) and x is as in (1.14). Now apply
Lemma 4.1, with the domains 2 = W(r?, &, — 6 — 2, {I,})and @' = W(r§, & — 6 — 3;
{I.}) and the function g = 3*h*/01,01,. The bounds on g and its derivatives coming
from (5.23)—(5.25) and the bounds on %* from Lemma 4.2 combined with the second
estimate of (4.3) imply

* [ 0%k
6x§0x}<61 01,

;

while the first estimate in (4.3) implies

0 [ 0*h* 0 $(x')
ox;\ 01,01,

Because of the symmetry between ¢ and n, (5.27) also holds with Z and n
interchanged. Furthermore, (5.23) and (5.27) plus a pair of dimensional estimates on

W(ri, & — 6 —4; {I,}) imply

» [ n
ox0x; (az,azfx b ))

A L

ax\aLar, >
Now apply Lemma 5.2, with f,(x)=(8*h*/01,01,)°X(x), g,(x)=E,(x) and

D =W(ri,& — 6 — 4 {I,}). Then (5.23) and (5.26)—(5.28) bound f, and its derivatives

while (3.7) and Lemma 4.2, coupled with the observations in the proof of Lemma 5.3
bound g, and its derivatives. Estimate (5.6) implies

sup < Bplkopycs'y e w0 -Sh, (5.27)

7%

Bplk2py 2y e mi-m=spli=c|
< min .
= Bpgk%p]:+2le_'”(‘_’"‘)u—sﬁk)h_"\:

and

< Bpokopyype ™ I, (5.28)

0

h !
)
which implies the second estimate in (5.18). The first of the bounds in (5.19) follows
from (5.29) by a dimensional estimate. Applying Lemma 5.2 a second time we find
(5.7) implies

sup < Bpfie~m1-mot~6fli=n| (5.29)

2

02
WX
0x;0x]; )
which completes the proof of Lemma 5.4. We note that in applying Lemma 5.2 to
derive (5.29) and (5.30) it is necessary to make different choices of the constant x, and
hence of the other constants, in the two cases but the details are not difficult to work
out so we omit them.

sup < Bpgkgpy 2y et =TAN, (5.30)

2

6. The Strength of the “Renormalized” Interactions

In the present section we verify that (2.5) and (2.6) hold for the Hamiltonian H***,
First note that the fundamental theorem of calculus allows us to write
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o+ EW,¢), ¢+ A, ¢)
k,r
— g+ 3 [T 55 454 £ )

¢=10

+ Z j'ds 61;”(1’ +SE,¢' +sA) AL, @)

=10
=f*(I, ¢') + of* (L', d)) (6.1)
and
f4
YL =4I, ) + Z fds—(l'+5-,¢'+sA) E,¢)
N 1 f4

+ Z gdsaq5 (I'+s5,¢"+sA)A, ¢ (6.2)

=40, ¢) +of U, ¢).

Proposition 6.1. On W(rf, & — 6 —5; {I,})

)

= C1008k+1

sup |

and
< {pgkoskp,c_+llBLk lf iGSm, m=0,...,k

g L TV
a;_(éf (x)) - p8C1£k+l if lésmamzo’-,ka (6'3)

sup

where C; ~ O((g,p4 1)), for o some small positive constant.
Now note that

L) = [ fE T, e
= [’ (f4L, @) + 140, 8) + 614, )
+ L)+ @)+ @)+ @)} (64)

(Here, [d¢' = ﬁ( > | d¢;) But
[de' {f¥5 (I, &)+ f4UT )} =f4I) (6.5)

k-1 k

if ve[ U Rru R;")] U Rk, and zero otherwise. Note that if v¢ | ) [RTURYT], then
m=0 m=0

either there exists Zesupp v such that /¢S™, m=0,...,k, or véX, . In the first of

these cases, notice that Proposition 6.1, Proposition 5.1, and Lemmas 5.4 and 5.5.

when combined with Cauchy’s theorem, and the observation that for such a v,

fdo' {f*(I', ¢)+f*I',d)}e" ¥ =0, imply that (on W(r], & — 6 — 6 {I,}))

_ank+1 1)

In the second case, Corollary 5.6. combined with the estimates above, implies

+p0 '1v; SEUI) £ Copokotis 1o e GO (6.6)

0
a—ﬂf'v‘“(l')l +po VAT
J

; 2} =1 ,—m(l— —(—d— -
S min(Bpikopy e s dlsuppyg =G~ 6)|V',pok0€kpk+11BLke~(Ck—5—6)|v])’ 6.7)
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k
on the same domain, from which it follows that if v¢ () [RpUR}],

m=0

f"“(l’) +po VST S Cotyy e G0N, (6.8)

oI;
with both C, and C, ~ O((g,p; 1)*.

Remark. Inequality (6.7) does not imply (6.8) in the case v = 0—we treat this special
case at the end of this section.
Next remark that on W(p** 1, &, 15 {Lis1}),

k+1,nr k+1,nr k+1
‘3f oft” < Z( af
v¢R’'

oI, 0 oI
k
with R = U (RFURY). Corollary 5.6, (6.8), and Cauchy’s theorem imply the
m=0
summand in (6.9) is bounded by min (C g, ;e %", poe ™!+ 0i=¢l g=9M) where ¢ is
the point is supp v farthest from j. If we now apply Proposition 4.3 we see that on

W(pk+19 6k+1; {Ik+1})s

af'k+ i,nr
SupﬂT
J

-1
0

+p6‘|ij’é“|>eé“'lvl’ (6.9)

afk+1,nr
09;

+pot

}§3k+1, (6.10)

so (2.5) applies to the Hamiltonian H**!.
Next assume that jeS™ for some m=0,...,k. Then on W** !, vt {Ls 1))

‘afk+1,r afk+1r fkr fk,r
ar og; |~ | oI o¢;

IR PO+ A @O -p e e
veR

By Proposition 6.1, Corollary 5.6, (2.10), (6.5) and Cauchy’s theorem, the summand
on the right hand side of (6.11) can be bounded by

+oq! +po’

. _ Ly — —m(l— i—¢|,—
min(pGkoeipi sy B e, 2poe ! Mk U Cle o),

where ¢ is the point in supp v farthest from j. Apply Proposition 4.3 and bound this
sum by pokogypi+1B"+1. By (2.6)

afk,r afk.r
oI, ¢’

and since jeS™, A(k 7) + pokoerpr 1B+ 1 < A(k+ 1, ), so (2.6) holds for the Hamll-

+po " < Afk, j),

tonian H**! if je U S™ and it remains only to check that it holds for j¢ U sm.

m=0 m=0
k-1
If j¢ U S™ and ve |} (R®URY), the definition of R¥™" implies there must be
m=0

some £ esupp v such that dist (j, £) > L. Thus applying (2.10) and Cauchy’s theorem
we see that if ve U [RyURY],
m=0
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af,: " -1 k(1 —m(l—mp)lj—¢] ,— &l
ol )| +p0 Vi f W) ¢ < 2pge~m! = et

i
< min(Bpo(sopg 1)®/P /P ¢4, Bpoe=mi—mii—llo=ti),

on W(p* & {I,}). Here ¢ is the point in suppv farthest from j, and the second

inequality used our observation that |j—¢| > L,. Hence, applying Proposition 4.3

(6.12)

we find
fkr _ fk,r 6fk . .
< i+ 11v]
Sup{’ aI/ +p0 a¢; =V§(’ aI/ +p0 lvjf ' 4
= Po(ﬁopo_1)(8/5)(3/2)kBL“*’, (6.13)
k
on W(p**1, & 1 1; {I+1}). Combining this with (6.11) we see that if j¢ () S™,
m=0
{ afk+1,r afk+1,r }
~1
7 0 | A
< poleopo VO Bt 4 C gy BHt1, Sgyy, (6.14)

so that (2.6) holds for all sites j, and the Hamiltonian satisfies the estimates (2.5)—
(2.10). Note that in (6.14) we used the fact that on W(r/, & — 6 —6; {I,}),

(f"“(l' f"(I’))\ jd¢/ T G, @)+ Of 4T, ¢)
+1I, @)+, @)+ T, ¢'))e |

< Coeps e G (6.15)

if j¢S™, m=0,...,k, and analogously for pg *|v,(f5*(I')—f%I"))|, and then applied
Proposition 4.3 to bound the sum in (6.11) by C, ¢, B%+1.

We complete this section with the proof of Proposition 6.1. The first inequality in
(6.3)is an easy application of Lemma 5.2. Let x be asin (1.14), x" as in Lemma 4.2, and
redefine X{(x’) as either I} + s=(x') or ¢;+ sA;(x’) depending on context. Let the
functions f,(x) and g,(x) of Lemma 5.2 be defined by f(x")=(9f*/0x,)° £5(x'), g (x') =
Z,(x') in the second term on the right hand side of (6.2), and g,(x') = A4,(x) in the
third term on the right hand side of (6.2). Let 2, the domain in Lemma 5.2 be
W(re, & — 6 —4; {I,}). We will give estimates on |(9/0x})(}_fAx")gAx"))| which are

independent of se[0, 1], and which therefore bound |(8/6x,)l(5 f4(x"))|. By Corollary

4.5 and a dimensional estimate we choose the constants C;, = pe,B" and C;,=
poeckopr 1 B*. Applying Lemma 4.1, with the bounds on derivatives of the map X*

that come from Lemma 4.2 (since (0%}/0x}) — J = s((0%,/0x}) — 5[})) we see that

4
af{ /)‘ <£0)?s(x')>

on W(rf, & — 6 — 3, {I,}), so we can take C}, = Bpj and k = m(1 — 5, )(1 — 5p,). Since
E(x")=(0S/o¢,) (I',p(I',¢")) and A ,(x')=(8S/0L,) (I',¢(I', ")), 3.7) and a dimen-
sional estimate imply we can pick C, = pg(A(eo))” 2g, B, C;, PE(A(Eg)) ™2
koeypy i B, while Lemma 4.2 implies that CZ, = piy with the same choice of k as

or;

< Bplie~mt-m)i=shli~c1|,
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above, (since dg,/0x;=(0%,/0x;})—J,,, with X as in Lemma 4.2). Combining these
observations with (5.6) and setting L = L, in that expression we obtain the first
inequality in (6.3).

To prove the second estimate in (6.3), let f,(x') = (3f**/dx,)° X(x’), g Ax) be just as
above, and set 2 = W(rf, &, —6—35; {I,}). Once again we will prove estimates on

[(0/6x;) }_ f Ax")g Ax))| which are independent of se [0, 1], and thus imply the second

£
inequality in (6.3). Combining Lemma 4.2 with Corollary 4.5 and Lemma 4.1 we see
that we can set C}, = C2, = Bpj, and x = m(1 —n,)(1 —6,), in Lemma 5.2.
We now consider two cases.
k-1

Casel. /¢U S™. We can set C,=po(epy ) ™™ and Cj,=Bpokopis1 X

(ewpi HE~ m by combining (2.6), (2.7), and a dimensional estimate. Then just as
above set Cg = p(Meo)) " *e,B"™ and CJ, = pi(Meo)) ™ *kotrpr 1 B,

Case 2. £eS§" for some n=0,...,k— 1. We must now consider two subcases within
this case:
(a) ieS?,p=0,....k. Set C;, = po(e,p, ') 7™, Cj, = Bpokopiii(epn ) ™™, C,,
= p"((',(/l(so))_ 2g,B™, and C,, = Bpj(Meo)) ~*kopi i1 xB™ .
(b) i¢ |) S™ Set C, = polep, 1) ™™, and C,,=plh(Aeo)) ™ 26, BX as before.
m=0
Since/eS",andi¢ | ) S”, wehave|i—¢|> L,. Thus by combining (4.15) with
m=0
Lemmas 4.1 and 4.2 and our estimates on dg,/0x; above we can pick Cj, =
C}, = Bphe ™ "m0 =Ml < BC, phey . 1, with C; ~ O((eepi '))-
With these choices for the constants, the second estimate of (6.3) follows from (5.6) if
weset L=1L,.
Finally we show how (6.8) follows in the case v = 0. First note that by another
application of the fundamental theorem of calculus, one can write

(B8 Y Nafkl' 1 ’ fkr AN Ay,
5f'(1,¢)=Z oL, I, ¢)EA, ¢)+Z 00 (I, )AL, )
+ Zj' dsj dt (x +t9)g(x)g (x). (6.16)

Here, x is as in (1.14), x’ is as in Lemma 4.2, and g,(x’) is either 5(x') or A (x). We
note that the summation over Z, p here is slightly ambiguous. We emphasize that it
should run over both meanings of x,, and x,, i.. both I, and ¢,, and I, and ¢,.

It is straightforward to show that the derivative of the last term with respect
to I is bounded by p§Cy&,.; on W(r], &, — 6 —6; {I,}), using Lemma 5.2 and the
bounds on g(x') that we used above. (As before C; ~ O((eypx *)%).) Since E(I',¢) =
(0S/o¢,)I', ¢ + A), use the fundamental theorem of calculus to write

Nafkr ! 4 ! kr 7 / (
ST YEN )= 3 L )0
1 afkr{l /‘ 62S 7 ! . ! I
+£ds(§11 o (#) a¢,,a¢,”’¢ +sA)- AL, ). 6.17)
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Because f** and S have no harmonics in common and no contributions from the
v =0 harmonic, the orthogonality of the trigonometric functions insures that

5d¢’<iafk’r(l’ oy, ¢’)>—0. (6.18)
£=1 aI( a¢l

Using Lemma 5.2 it is once again easy to show that the derivative of the second term
on the right hand side of (6.17), with respect to I is bounded by C ¢, on
W(rl, & — 6 — 6; {I,}). By an exactly analogous procedure we obtain

fkr
31’{ (I, @) A, (f’)}' S Criis

on W(r(, & — 0 — 6; {I,}). Putting these observations together we see that

S Cigty (6.19)

/ 0 (T
(fd¢ a_m{éfk I}

on W(r!, &—0—6; {I,}), and combining this with (6.4), the fact that
k-1
O¢|: U (R';UR;"):IUR’;,, and the bounds on §f*%, f, /", and f™ coming from

m=0
Proposition 6.1, Proposition 5.1, and Lemmas 5.4 and 5.5 we obtain inequality (6.8)

in the case v=0.

7. Some Final Estimates

We now complete the results that were stated but not proved in Sects. 3 and 4.
We first note that Proposition 3.2 follows from Proposition 4.3. Using (2.5) and
(3.2) we readily verify that on W(ri,&—6; {Ii}),

o [ ful)er
aTS,[i<w"(1'),v>]
B(po/Meo))et et —mli=¢lg=C=32IM), (7.1)
where ¢ is the point in supp v farthest from j. This follows by using integration by
parts to write the expression for f%I')v;as — [d¢ (0%/0¢;0¢,) { fUI',¢)} " ¢/v,, and
the using (2.5) or (2.10), and Cauchy’s theorem.
Similarly, if we note that (2.8) and (2.9) imply

(%)

where n is the point in supp v closest to j, we find

[ fun)er?

oL i<aMI'),v)
(B/A%(go))e !~ wli~“lg2br| y| et~ M), (7.3)

again on W(rl, & —6; {I,}). If we now apply Proposition 4.3 with K, =
PO(B/A(go))e* ™, e(i) = eupo *, Ky =m(1 — ), and & = §/2, (which implies § = 12)

< min (B(g,/Aeo) e e =032,

< 2[v[em i, (7.2)

< min(B(e,/AX(go))pg te? x| v| eI,
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we have

S . .
. < P3(B/2(eo))e* expq ' B2 < (p/A%(eo))er B, (7.4)
J
on W(ri, & — 6 {I,}), by (4.7), where yeC?" is defined in Proposition 3.2. This
verifies the first inequality in (3.7).

Next note that using (2.10), Cauchy’s theorem, and a dimensional estimate we

have

sup

62 fk(I/)eiwﬁ ) o o
v < —m(l—nli—jl pLic.| 1|23
|6¢ia¢,~[i<w*(1'),v> < min ((Bpo/Aeq e~ e [y

(Bpo/Aeq))e ! —mli=llghi| y |2 g2 (7.5)

on W(ry, & — 6 — 1; {I,}), where as usual, Z is the site in supp v most distant from i.
Similarly

* [ fAl)e?
001\ i (1), v

< min((B/A2(zo))e !~y |2eLeel 01,

BL(p"); — (7)1 H(po/A%(g) e =™ ~wli= |y |22 gl =), (7.6)
and
02 fAl)e" ¢ . .
v < 3 —m(t=nl1=il| |23 Lk o5 —S)v]
'61}61}<i<w"(1’),v> < min((B/poA>(eo))e [v]“e* e >

“(B/A%(e)) L(p"); — ()] poe !~ 41|y |2 g3l =OlM), (7.7)

on W(rt, & — 6 {I}). If we combine (7.5)—(7.7) with the observation that if y <
min(C,, C,), then y < CAC% ~P for Be[0,1], we see that we can apply the second
half of Proposition 4.5, choosing

K, =Ky =B{pg "' [(04);— )1} " (Aeo)) et -mt=hli—lgdh,

K, =m(l —n)Bi, and &' = /2.
Then (4.9) implies that

sup}a— y)‘ Bob {pg [(p");=(rh);1} P (Aeo) P31 e m i,

with the supremum running over W(ri, & — 9;{I,}). Note that we can assume
|i —j| > (L,/4), since otherwise the second estimate in (3.7) follows from the first by a
dimensional estimate. But then, using the fact that

B{pgl[ ) (rk)]}—pk(/1(80))_3€3LkB”|l*}|e*"'(l*Wk)ﬁk“’]"é1’

when |i —j| > (L,/4), we obtain the second estimate of (3.7).
We next prove Proposition 4.3. To prove (4.7) note that

dg ag,
0x, g’ ax,.(x)+ ;

~¢|SL li—=¢|>L

ag,
0x;

(X)) =

(x )' (7.9)
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where L is any positive integer and ¢ is the point in suppv such that |i—/]| is
maximized. Bound the summand in the first term on the right hand side of (7.10) by
K e(i)e?", and in the second term bound it by K ;e *1"-¢l ¢=91"|,. Next note that the
number of vectors with |[v|=M and |i—/|=L is bounded by 2(2L + 1)2122M_ This
estimate follows from the observation that the number of vectors with |v|= M,
d(suppv) =L, and the rightmost point in suppv fixed is bounded by 2L22¥ (a
discussion of this bound is contained in [6]) and then noting that if |i — #| = L one
must have 0 < L' < 2L, and that there are at most 2L + 1 choices for the rightmost
point in supp v. Thus (7.9) is bounded by
0 L ) 0 -~

S Y 2L+ 1)2122MK je(i)e M+ Y, Y 2QL+1)2122MK ek~ M

M=0L-0 M=0L-L+1

< 22(2L + 1)2EK ye(i) + 24K ;e 1 -2 DL, (7.10)

from which (4.7) follows immediately if L > (2/x,)|In e(i)|.
Inequality (4.9) is proved in much the same fashion. Note that

0%g d%g 0%g
< X Y|, 7.11
Ox,0x j(x) = Z ax0x, Z dx;0x, (7.11)
l1=¢1<hi—ji li—¢]>i—j|
Bound the first sum by
MZOLZ 2L+ 1)2122MK e~ *ali-ile =M < K, Bl =11+ Dg—xali=il, (7.12)
=0L=0

Bound by the second term by
Y 2QL+ 12122 MK jer2le "M < KB+ De—rali=il (7.13)
M=0L=|i—+1
and (4.9) follows immediately by combining (7.12) and (7.13).
We finish up by proving Lemma 4.2. As in [6] the proof turns on the following
lemma:

Lemma 7.1. Let M be an n xn matrix whose elements satisfy |M,;| <min(c,
c,e ™= If ¢ and ¢, are less than (1/4), and x =21n2 then

|(0 = M);' — 6,51 < min(cBL, 24211 ~Jle=rii-1), (7.14)

where B is some universal constant, and L is any number such that L > (2/x)|Inc|.

The proof of this lemma is in Appendix B.

Let j be the holomorphic map taking W(r¢, &, — 6 — 3; {I,}) into W(r{, & — 6
—2; {I,}) defined by j(x')=xjif 1 i< N, and y/(x) = X(x') if N <i < 2N, where
F(x)={I(I',¢)if 1 <i<Nand ¢;_n(I',¢')if N<i<2N} and x;= {[;if ISi<N
and @;_y if N <i<2N}. Finally let y;={I;if 1<i< N, ¢,_y if N<I=<2N}. This
notation saves writing out many special cases, but it has the following disadvantage.
If we consider 02S/0I0¢, (I',¢")=0%S/dy,0y, (y), where £/ =k+ N, we expect it to
decay only as exp[—m(l —#,)|j—k|], not as exp[—m(1—n,)|j —¢|]. Thus we
define 4(j,¢) = |(j —¢)(mod N)|, and then we see that the derivatives above decay as
exp [ —m(1—n,)d(j,¢)].

If N <i< 2N, X(x') = x; — 0S/0y;_n°J(x'), by (3.14), and (3.11), where y is as in
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Proposition 3.2. Thus,

o aZS ~0r 65}/ ’
o J(x) - (x
Zaywiy, ) 3 )

N FEXY /
z::(&y, ~OY, I )>.50

2N s 0%,
ey (ayi_Nay/ y"") (a " )> (15

where the first of these steps used the chain rule, and the second the definition of j.
Let M be the N x N matrix with elements M;;=(—325/0y;0y;, y)°J(x). We now
consider two cases. If thejin (7.15)is less than or equal to N, define D tobe the N x N
matrix with elements D;; = (0X; . y/0x}) (x), and A the N x N matrix with elements
A;j= —(0%S/dy,0y;)° (x'). If the jin (7.15) is greater than N, let D’ be the matrix with
elements Dj; = (0X;, n/0Xj,y) (x), and A’ =N x N identity matrix. Then, (7.15)
becomes the pair of matrix equations

D=A+MD and D' =A"+MD, (7.16)

6561' ’
Tx;(x )= 5;‘1‘ -

or
D=(0—M)"'A and D' =(-M) A" (7.17)

By Proposition 3.2 and a dimensional estimate,
| M ;| < min(pt(Aeo)) ™ 2kogipy i1 BH, ple !~ =il

for all X" in W(r¢, &—0 — 3; {I,}). Note that if i and j are both greater than N, the
second equation in (7.17) implies

s ,( X)=[0=M)" Ty (7.18)

and (4.4) follows (in the case i, j > N) from Lemma 7.1. If i is greater than N and j is
less than or equal to N, (7.17) implies
6”

N
)= Y 0= M)A, (7.19)

j 1

Using the bounds on (I — M)~ ' that come from Lemma 7.1, and the fact that
Proposition 3.2 implies

|41 < min(pb(Aeo)) ~ koepis 1 B, phe !~ ~AAeD)

for all x" in W(r{, & — 36— 3; {I,}), it is easy to bound (7.19) by

< min(B'ph(Aeo)) ~*kotupis B, Bp(d(i,j) + 120

0%,
) (X)) =

a l

-e ML= m) (1= Bd(i.0)) (7.20)

from which (4.4) (in the case j < N, i > N) follows.
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If1<i< N, %(x') = x; + (0S/0y; + y)° J(x'), so applying the chain rule we obtain

0%; N 0%S )
()= 0= Y| 7———°Fx) |6,
5x;-( ) ! t=1|:ay1‘+1va)’/ R )J “

2N 08 } 0x,
+ —oJ(x) ['=—=(x"). 7.21
/=§+1 [aYHNa,V/ #x) 5x;-( ) ( )

Use Proposition 3.2 to bound derivatives of S, and use (7.18) and (7.20) to bound
0%,/0x;, for N <¢ < 2N. If we do so we find (on W(rg, & — 0 — 3; {I,})).
0x;

(x")—0;;| < min (Pokotrpi+ 1 B¥/(Aeo))?, Bpo(8(i,)) + 1)

Qli=slg=ml = mI (1 = Bdni)). (7.22)

The remaining cases of (4.4) follow from (7.22).
Finally, we turn to the proof of (45). If N</=<2N, X,(x)=x,—
(0S/0y,_y)°§(x'), and the chain rule and the definition of j imply

62x~/ ’ w a3S ~C T aj;p ’ 6&” ’
ax;.ax;.(x)‘ _p,;l[ay,_Nﬁypéy,, y(x)][ax;(")][ax;(")]

e N U | L A
- L mm ) 02

Assume for the moment that j is less than or equal to N. Define D? to be the N x N
matrix with elements D}, = (0%, v/0x;0x)) (x'), and A? the N x N matrix with

elements
2N 038 0y, 0y,
2 o i(x Ay 2T
Apf“,,,nzl[ay,ayqayn y(x)][ﬁx}(x)][ﬁ)CE(x)]'

If M is the same matrix as in (7.16), then (7.23) may be rewritten as
D*=A2+MD?* or D*=(—M)"'A% (7.24)

Using Proposition 3.2, a dimensional estimate, and (4.4) it is easy to show that for x’
in W(r, & —0—3; {IL}),

-1,-m(1- — 4B1)d(isj
AL S Bpy[(rF), — ()] e m 7m0 = 4psi),

Using this bound, and the bound on (I — M)~ ! that comes from Lemma 7.1 (and
which we used previously in (7.18)), we find

%%,
0x;0x;

(x)

<TI0~ M)A
< Bpp[(); — ()] 1t T4t (1.25)

where Z = £(mod N). The bound in the case j > N follows in analogous fashion, and
we don’t write out the details. This completes the proof of (4.5) for £ > N.
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If 1 £/ < N, then the definition of X,(x’), and the chain rule imply

2N 0%S -, a5,
6 i0x ,( )_Ptlzl[aYHNaypayqoy(X)Jl: ( )][ ( )]

2N 0%s oy %%,
" p=;+1[5y/+~6y,, yx ):}[6 10X x )] (7.26)

Bound derivatives of S by Proposition 3.2, bound 6°%,/0x;0x] for p> N by (7.25),
and bound derivatives of j by noting that 07,/0x; _5 if p< N and 07,/0x;=
0%,/0x} if p> N, and then apply (4.4). Combining these observations yields the
remaining cases of (4.5).

Appendix A. The Inverse Function Theorem

We wish to invert the equations

I=I+—,
+3 4,( 9)
—(I', 9). Al
=6+ 1,9) (A1
Standard analytic inverse function theorems guarantee that these maps can be
inverted if they are 1 — 1. Assume there exists I' and 1% in W(r{, &, — 6 — 1; {I,}),
with

11-+-—¢(I1 ,P)= 12+—(I2 o). (A.2)
There is a path y, contained in W(r?, &, — 6 — 1; {I,}), joining I* to I? consisting of N
pieces, y;, along which only the j* coordinate of I varies, and the length of y; is
[I} — I?|. Then the fundamental theorem of calculus implies

N
RIS HE)
i=1

iJj

yjjd]’ 6(/) 61’

(I ¢)‘ (A3)

But if sup Z|(62S/6¢,~61})|§(1/2) on W(rZ, & —96—1; {I,}), for all j, this last
sum is bounded by (1/2) Y |I} —I?|, implying I' =I*. Thus, the first equation
j

in (A.1) is invertible as I’ =1 + Z(I, ¢) on the image of W(rZ,&—5—1; {I,}). If
supl(@S/aqS)(I’ @)l <cipp+1/ko for all i, the range of the map must contain
W(r, & — 6 — 1; {I,}), and hence E'(I, ¢) is analytic on this domain.

To invert the second equation in (A.1) assume there are ¢* and ¢* in W(r2, &, —
6 —1; {I,}) such that

¢!+ (1’¢ N=¢+

(1 L ¢%). (A4

61’ 61’

Pick, y, a path contained in W(rZ, &, — 6 — 1;{I,}), joining ¢' to ¢, and consisting of
N pieces, y;, along which only one component of ¢ varies. As before y; may be picked
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so that the length of y; is |¢] — ¢7|, and applying the fundamental theorem of
calculus just as above we find that the map is 1 — Lif sup )’ [(9°S/dI}0¢))| < (1/2) for

alljon W(rZ, &, — 6 — 1; {I}). Thus, the second equation in (A.1) can be inverted as

p=¢ +A(l',9), (A.5)

with A(I', ¢") analytic on the range of the original map. If sup |(0S/0I| < (1/2)for all j
(with the supremum running over W(rZ, &, —d—1; {I,})), A(I', ¢') must be analytic
at least on W(r?, &, — 6 —2; {I,}).

Appendix B. The Proof of Lemma 7.1

Using the random walk expansion of [2] we write

(I—=M);h= 3, A,fjl(]'[A,;"W))([‘[ MS). (B.1)

Q2:ioj teL. sef2

On the right-hand side of (A.1), A;;=1— Mj; and £ is a random walk on the
lattice L ={1,...,N}, i.e. a set of pairs {(i;,i5),...,(i, ix+1)}> i;€{1,...,N}. Each of
the pairs is referred to as a step, s, with | 2| the number of steps in the walk, and Q:
i—j means i, =i, i, =j. Finally J\7Is=1\~4ij‘,4j+1 =(1=0,,, )M, . IsI=li =i,
and n(j, £2) is the number of times j appears as the first element in some step in £2.

The second bound on the right hand side of (7.14) follows by estimating the sum
on the right hand side of (B.1) exactly as was done in proving Lemma 2.6 in [ 7], so we
don’t repeat that here.

The other bound in (7.14) follows by noting that if N = [2|,and L= ) |s|, there

se 2
is exactly one walk with M = 0, and its contribution to the sum is A ;;;;. Every walk

which contributes to (B.1) must have L > |i —j|. Furthermore, since any walk with a
step of zero length gives no contribution to the sum (M ;; = 0), there are at most 2-2¥

walks with fixed L. We bound factors of | A ;| ~* by (1 — ¢)™*, and factors of []|M,|
seN

by ¢V if L(Q2) <L, or by cYe D if [(Q)> L, where L is defined in (7.14). Thus,

tilj+1

o L
I(0 —M)—lij— 01 < 6;51(1 — Ayl +MZ1L ; -|(1 — ) N+ DNYLON
=15

+ Y Y (1= DelerEptoN, (B2)
N=1p=T+1

and the first bound on the right hand side of (7.14) follows by summing the geometric
series.
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