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Abstract. Given a weakly coupled Hamiltonian system with short range, one
dimensional interactions, and any initial conditions a canonical change of
variables is constructed which yields a new Hamiltonian consisting of three
parts—an integrable term, a resonant term whose effects are localized in those
regions of the system which give small denominators in the Kolmogorov-
ArnoΓd-Moser iteration scheme and a non-resonant interaction term which is
very small. (In particular, much, much smaller than our original interactions.)
The conditions which allow such a transformation to be constructed are
independent of the number of degrees of freedom in the system, as are the
estimates on the size of the various terms. Thus, if the resonances are "sparsely"
distributed through the system most of the sites in the transformed Hamiltonian
behave essentially like an integrable system, at least for as long a time as the
trajectory of the system lies within the region where the canonical transform-
ation is defined. In subsequent work it is shown that this time is long, and once
again independent of the number of degrees of freedom in the system.

1. Introduction

In the present paper we continue the study of Hamiltonian systems with short range
interactions begun in [6]. We prove a theorem which we call the elimination of non-
resonance harmonics, because of its similarity to the lemma of the same name in [5].
Roughly speaking our result is as follows. Take a Hamiltonian in action-angle
coordinates with short range interactions, e.g.

H(I,φ) = ±<IJ) + εNfcos(φi+ι-φil (1.1)
i= 1

and N degrees of freedom. Given some initial condition (Io,Φo) define a set of
"primary resonance vectors of order zero" to be veZN such that the denominators, in
the expression for the generating function of the canonical change of variables that
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solves the Hamilton-Jacobi equation, corresponding to these v's are "very small."

Given the Hamiltonian (1.1), the solution of the Hamilton-Jacobi equation given by

classical perturbation theory is the change of variables with generating function

(Γ,Φ> + S{Γ,φ)9 where

and the sum over v runs over all vectors of the form (0,... ,0, ± 1, +1,0,... ,0). We are
interested in /', near J o, so we define the resonant vectors, R, to be those v in (1.2)
such that I < / 0 , v > | < c0, where c 0 is a constant determined in the course of the proof.
We then define S(Γ, φ) by (1.2) but we restrict the sum over v to those vφR. If we then
make the canonical change of variables defined by this generating function (it will
be well defined provided ε is sufficiently small) we find that the Hamiltonian
(1.1) is transformed into a Hamiltonian H1(Γ,φ') = h1(Γ)+fUresonant (/',</>') +
y-i.nonresonam (/'̂  ^')# χ h e resonant part of the interaction, / 1 ' r e s o n a n t , has a Fourier
series Σfl{Γ)eiv'φ9 which has non-zero contributions only if veR, or for those v' with
supp v' "close" to supp v, for some veR. Since our change of variables was forced to
ignore the contributions of the resonant vectors, we expect/ l r e s o n a n t will still be Θ(ε).
On the other hand, we have chosen S(I\ φ) so that the change of variables will "kill"
the Θ(ε) terms in the non-resonant interaction. Thus, we e x p e c t / l n o n r e s o n a n t - ^ ( ε 2 ) .
We now iterate this procedure (a finite number of times) and we find that there is a
canonical change of variables C, such that

/?(/, φ) = H°C(/, Φ) = ϊϊ(Γ)+JreSOnant(I\ 0')+7"onresonant (^ ^ ^ 3 )

where the Fourier series of/
resonant contains the resonant harmonics we encountered

at the various steps in the iterative procedure while J n o n r e s o n a n t ~ (9(e~1/εα) for some
positive constant α. The conditions which allow this change of variables to be
constructed (and also the constant α) are independent of the number of degrees of
freedom in the system.

This would be of little interest if all vectors, v, were resonant. However, in [8] we
demonstrate that for "typical" initial conditions, (I0,φ0), the resonant vectors are
quite "sparse" and, hence, that the motion of the system is governed largely by
Jnonresonant W e t h e n ^ Q ψ ^ ^ j m p l j e s tfoat fQr m Q s t s j t e s j j n t h e System, the

motion of Iβ) is indistinguishable from that of an integrable system for a long (but
finite) period of time. Thus, while the system may well become ergodic as the number
of degrees of freedom ΛΓ -• oo, the irregular motion tends to be localized in the
vicinity of the resonances, (at least for ε small), while large parts of the system
undergo very regular motion, for a long time.

To state our results more precisely we introduce some notation. Let V be a set in
UN. A Hamiltonian in action angle form is a function H°(I, φ): V x UN -> U that is
periodic with period 2π in each of the φ-} variables. Since H° is periodic as a function
of φ we may also regard H°(I, φ) as a function on V x TN, where TN is the Λf-torus.
We will make no distinction between these two meanings for H°(I, φ). Write the
Hamiltonian as

H0(I,φ) = h0(I)+f°(I9φ)9 (1.4)
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where /°(/, φ) is assumed to be small, in a sense made precise below. Given an N
vector p°, and a constant ξ0 we define the domain W(ρ°, ξo; V) = (J

IeV

{(/', φ)eC2N\ |Im </>t | < £ 0 , |/|. - /t | < p?, for i = 1,... ,JV}. We assume that there are
constants p 0 and ξ0 such that H°(I9φ) is analytic on W(p°, £0;K), with p° =
p o (l, . . . ,1). Since we need lots of analyticity in the angular variables to prove our
main theorem we assume ξ° » 1. For later convenience define prx W(p°, ξo; V) to be
{/eff^ia^eR* such that (I,φ)GW(p°,ξo;V).}. Given initial conditions {Iθ9φo)
define the strength of the interaction, ε0, by

sup
df°

P 0 1
df°
δφj

(1.5)

where the supremum runs over both; = 1,... 9N and (I,φ)eW(p°, ξo; {/0}) We note
that it might seem more natural to choose ε to measure the strength of the
interaction in (1.1), but a little calculation shows that ε and ε0 are related by
εpo 1e2ξo ^ ε0, and (1.5) proves somewhat more useful in the general case.

The Hamiltonians we consider consist of almost independent almost identical
subsystems, lying along a line, with interactions which decrease rapidly in strength
as the distance between the points of interaction increases.

(a) nearly independent, nearly identical subsystems: Define ω°(/) = dh/dl (I). We
require

dω?
sup

for some constant m > 0, and

dω9
(1.7)

with sup \χ°(I; U 01 ̂ cί,cί some universal constant, say 2 3. The suprema all run
over W(p°,ξ°; {/0}).

(b) short range interactions:

sup

sup

sup

d2f°
dφidφj

d2f° .
• ι

oφidl:

(
dlidlj

(I,Φ)

(hΦ)

9-m\i-j\ (1.8)

< e~mli~i

All suprema are taken over W(p°,ξ0; {/0}) This definition of short range
interactions differs slightly from that of [6]. Except for the factors of p 0 , however,
which merely serve to keep the dimensions of the two sides the same, (and the
corresponding factors of εopo, ε0, and εopΰ * in [6]) the previous definition follows
from (1.8) by applying Cauchy's theorem and setting m = |ln (εoPo 1)l Note also that
(1.1) obeys (1.8) provided we choose ε such that εe2ξo = p%e~m.
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We note that the conditions above correspond to considering this system as
lying on a one dimensional lattice. We expect our results to extend to higher
dimensional lattices, and to systems with periodic boundary conditions, but the
technical difficulties encountered are greater there.

Theorem 1.1. (The elimination of non-resonance harmonics) There exist universal
constants 0 < c « 1, 0 < σ, and K » 1, and a constant k0 defined below such that if

εo<cpo(ko)
 σ and m>K, (1.9)

we can construct a set, R, of vectors veZN, an N vector p and a change of variables
C:(Γ, φ')-+(I, φ), analytic and invertible on W(p, 1; {/}), where Twill be defined in the
course of the proof Furthermore, if Γ = pr1 W(p, 1, {/}), C is canonical on Γ x TN.
Defining H(Γ, φ') = tf°°C(/', φ'), we have

R(r, φ1) = %(Γ) +/(/', φf)=%(Γ)+Jτesonant(r, (/>')+7n o n r e s o n a n t(r, φ'\ (l.io)

with/resonant (/',φ') = Σ 7v(Γ)eιvφ- The interactions ofH(Γ,φ') obey the bounds
veR

sup

sup

sup

<

(1.11)

1', Φ')

and

sup

3 Tnonresonant
J (Γ,ΦΊ

dl'j

< g

Po 1

(1.12)

for all i and], with the suprema running over W(p, 1; {/}). The constant k0 in (LI2) is
given by k0 ^ min([(^0 — \)/K{\, [mlK{\),for Kγ some universal constant which could
be calculated from the proof of the theorem, and [x~\ = integer part ofx. (We remark
that one could make the interactions in (1.11) decay as β-o-^i '-^ for any 0 < δ < 1,
by slight modifications in the proof, and by changing the constants in (1.9).) We note
that this theorem can be trivially proved by picking R to be all of ZN, in which case,
jnonresonant = Q̂  a n ( j w e j i a γ e g a jn e ( j nothing. The point is, that the procedure used to
define R yields, for most initial conditions, a "small" set of vectors R, so that the
effects J r e s o n a n t are localized, and the motion of the system is largely determined by
£_l_jnonresonant j^ i s , as we demonstrate in [8], allows one to give strong bounds on
the trajectories of the system.

The proof of this theorem can be used to give bounds on the amount by which
the canonical transformation C differs from the identity. Such estimates are implicit
in Sects. 3 and 4.

We now discuss the application of this theorem to the Hamiltonian (1.1). Since
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the Hamiltonian is an entire function we can take the size of the analyticity domain
as large as we like. Choose ξ0 =^| lnε | and p0 = 1. Then condition (1.5) implies εe2ξo =
ε 1 / 2 ^ ε 0 . Set εo = ε1/2. Then the left hand side of (1.8) is bounded by εe2ξo = ε1/2<,
e~m. If we set m = ^ | lnε | = | lnε o | , then (1.8) is satisfied and by making ε small we
can make m as large and ε0 as small as needed. Furthermore, the constant k0 in
Theorem 1.1 can be chosen to be k0 = C(l/5K;1)|lne|]. Finally note that (1.6) and
(1.7) are trivially satisfied for (1.1). Thus we obtain as a corollary to Theorem 1.1:

Corollary 1.2. Given the Hamiltonian (1.1) there is some constant 0 < c « 1 (independ-
ent of N) such that ifθ^ε<c we may construct a canonical transformation C, by
Theorem 1.1 such that

H°C(Γ, φ') = Tl(Γ) +/resonant^ φ') + Jnonresonant^ φ,}

with

pi 7nonresonant

sup dl'j

for some positive constant a, (independent of the number of degrees of freedom of the
system.) The supremum runs over W(β, 1; {/0}) (with p and 7defined in the course of the
proof) Also, the interactions Jresonant + ?nonresonan\ satisfy (1.11) with m = | | l n ε | .

We close this section with some remarks about notation. Throughout the paper
B, B\Bι,B2i... will denote universal constants of magnitude greater than one, while
c,c'9cί9c2,... will denote constants of magnitude less than one. They may represent
different constants in different contexts.

The second note concerns the factors of p 0 which occur, for instance, in (1.8) and
(1.11). These are included to keep the dimensions of the two sides of the inequality
the same, since as was pointed out in [4], this often provides a check on one's
calculations at intermediate stages of the proof. In the final analysis, however, they
are less important and we will often, to save space, write inequalities like (1.8) as
follows: Let xt equal either /, or φt depending on the context. Then/°(/,</>)=/°(x)
and we write (1.8) as

d2f°
sup -(x) (1.14)

where n is chosen to keep the dimensions of the two sides of the inequality the same.
If the reader finds this notation ambiguous just set pn

0 = K wherever it appears and
remember that K is a constant depending on the size of the analyticity domain of the
initial Hamiltonian, but independent of the number of degrees of freedom in the
system.

We note that Theorem 1.1 is related to Theorem 1.1 of [6]. There are two
principal differences in the results. First of all, by more careful estimates it has
proved possible to eliminate all dependence on the number of degrees of freedom of
the system. This is largely a technical improvement. Of more fundamental
importance is the fact that the present work allows resonant regions to exist in the
system, but provides a method of isolating (at least for a finite time) their effects. The
work of Nekhoroshev [5] provided the motivation for this improvement in the
theory.
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A final note concerning terminology—when we speak of "dimensional esti-
mates" we mean the standard estimates on derivatives of analytic functions that
Cauchy's theorem provides.

Recently, Benettin et al. [1] have studied the model (1.1) by means of classical
perturbation theory. They have shown that one can construct a canonical
transformation which transforms (1.1) into an integrable system up to errors of
arbitrarily high order in ε by this means. Their method (like that of the present work)
is restricted to small ε, but thus far the dependence of the size of the allowed
perturbation on the parameters of the system, such as the number of degrees of
freedom, has not been determined. If these estimates are performed their method
may yield an alternate proof of Corollary 1.2.

2. The Induction Procedure

Consider the initial Hamiltonian H°(I,φ) of Sect. 1. We first locate the primary
resonances of order zero, R®. Let Xo = {veZN\d{s\xpp v) g Lo, 0 < |v| ^ Mo}, where
d(supp v) is the diameter of supp v, if v is considered as an integer valued function on

N

the lattice {l,...,iV}, |v| = £ |v7 |, and Lo and M o are constants defined below.
7 = 1

Given initial conditions (I0,φ0), set ω°(/) = dh°/dl (I) and define

where 2(εo) = (εopo *)* for α some small positive constant that will be implicitly
defined in the course of the proof and Bί some large constant. In the KAM theory
one attempts to construct a canonical change of coordinates which "kills" the
nonintegrable part of the Hamiltonian to order SQ. In the present case we must be
content to "kill" only those harmonics, (Fourier coefficients), /?(/), with vφR°.
Constructing a canonical transformation C°, via the classical perturbation theory,
we obtain a new Hamiltonian

H\I\ φ') = H°oC°(Γ9 φ') = h\Γ) +/1 ' r(/', φ') +/1'nr(J', φ'l

As expected, the size of fltnr{Γ, φ')«ε0. What is perhaps slightly surprising is
that one must include in the "resonant" part of the interaction, fίtf, not only
harmonics f\(ϊ) with VGR°, but also those harmonics which are "close" to primary
resonances, in a sense made precise below. We call these harmonics the secondary
resonances ofzeroth order. One then iterates this procedure locating at each stage the
primary resonances, and choosing the canonical transformation to kill the
nonresonant harmonics. A finite number of such iterations suffices to prove
Theorem 1.1.

Suppose we have constructed Hk(I9φ) = hk(l)+fk-τ(I9φ)+fk'nr(I9φ)9 with
fk'r(I,φ)=Σf1l(I)eiv'φ, for some set of harmonics Rk, specified below. Define

v 6 £ f c

Lfc = 2(3/2)* | In (εopo~ )IM Mfc = (3/2)fc|ln(εoPo )!/<*> f o r δ a universal constant to
be specified in the course of the proof. Define pk+i=pkλ(εo)[B2e

2Mk + 2Lk']~1

9

for fc = 0,..., and set Xk = {veZN\d(suppv)gιLk9 0 < | v | ^ M j . Let ω\l) =
(dhk/dl)(l). In the course of the proof we will define a sequence of vectors / 0 ,
/!,...,Ik o, whose first element is the initial value of the action variables, /. The
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primary resonances of order k are
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(2.1)

The secondary resonances of order k are

for some VeRkuRk

p}. (2.2)

Here supp v = {i, i: + 1,... J' — 1J}, for i andj respectively the leftmost and rightmost

sites in supp v. We assume that the set of vectors Rk which defines fk'r above is given
k-l

by Rk = (J [K™ufls

m] if k>0, and R° = 0 .
m = 0

The kth order sites, Sk, are all sites j such that:

(i) 7'esuppv for some v e / ^ u t f j " 1 (for /c = 0 take R'1 = 0)

Roughly speaking, the motion of (//ί)> ΦjίΌ) for jeSm, is controlled by the mth

order resonances.
One interesting technical difference between the present work and previous

work on the KAM theory is that we must allow the size of the neighborhood on
which we define our change of variables to vary as we move about through the
system. Given a domain W(p,ξ;{I}), (p)j determines the size of the complex
neighborhood about /y, and we must choose that size to be much larger whenjeiS"1,
for m small, than when; lies in the non-resonant regions (Lε.jφS™, m = 0,...,/c).
Define

(bm)t =
if *'eSm, m = 0,... ,/c

T h e n f o r / c ^ l , define

0 otherwise.

k-2

(2.3)

pk if iφ (J Sm (or for all i if k = 1)

k-1)i-S(bm)ί if
(2.4)

In the angular variables φ we give up a fixed amount of analyticity with each
iteration and set ξk+ι = ξk - 3(δ + 2).

We assume that H\I,φ) obeys the following estimates, on W(pfc,£fc;{/fc}).

sup

with εk = Po(εoPoΨ/2)\ and

3 fk,nτ

+ Pol dpm

dφj

sup
dp'1

dij
+ P 0 1

df'r

dφj

(2.5)

(2.6)

where

A(k,j) =
JΦΪJS"

if
(2.7)
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fc-l

and ηk = 8 £ βj9 (ηo = 0) and βj = cι(3/2)~J + c2/kθ9 with cγ and c2 chosen so that
; = o

τ/ft<l/8, for fc = 0,...,ko. We note that εk^A(kJ), so the non-resonant part of the
interaction is smaller than the resonant part. We also assume that our Hamiltonian
retains its short range character, so that

-^jJ) = δii + ftϊ,Uj\ (2.8)

where

and the constant cx that appears on the right-hand side of (29) is the same as that
appearing in the bound on χ°(l;ij) in Sect. 1. We also need

sup

fk

-(x) (2.10)

with x defined as in (1.14) and pn

0 chosen to insure that the dimensions of the two
sides of (2.10) are the same. Also, in both (2.9) and (2.10) the suprema run over
W(pk,ξk\ {//c}) Given these assumptions we have

Proposition 2.1. Let Hk(I, φ) be as above (with k = 0,1,... ,/c0 — 1). Then if

εo<cpo(ko)~σ and m>K, (2.11)

with c, σ, K the same constants as in Theorem 1.1, there exists a change of variables
Ck:(Γ,φ')->(I9φ), analytic and invertible on W(pk+1, ξk + ί; {/k + i}). Furthermore
Ck:W{pk + \ξk+1-{Ik+1})^W{pkΛk\{lS ϊfΓk + 1=prW^^
is canonical on Γk + 1 x TN. Define

Hk+1(I\ φf) = HkoC\I\ φr) = hk + 1(Γ) +fk+1(I\ φ')
1''(Γ9 φ') + / * + 1 •"(/', φf). (2.12)

where fk + x ' (/ ' , Φ')= Σ / ϊ + ' ( J Vv'φ' (The procedure for splitting Hk +' (Γ, φ')

into its integrable (hk+1) and nonintegrable parts is given in Sect. 3.) Hk + 1 (Γ,φf)
obeys the bounds (2.5)-(2.10), with k replaced by k + 1, and the suprema are now
taken over W(pk + \ ξk+1; {Ik + 1}).

We note that Ik is defined inductively by(Ik + l9φk + 1) = (Ck) ^ / ^ φk). (Of course
we must check in the course of the proof that (lki φk) lies in the domain of (Ck)~1.)

Given Proposition 2.1 we immediately obtain Theorem 1.1. Note that our
original Hamiltonian H°(I,Φ) satisfies (2.5)-(2.10) if we take K° = 0 , and hence
/°'Γ(7, φ) = 0. Now apply Proposition 2.1, until k = ko-l. Note that if the constant
Kx in Theorem 1.1 is large enough (in particular Kx > 3(5 + 2)) ξ k o = 1. Define
C = C0oC 1o °C f e o"1, 7 = 7ko, and p = ρko. Then C is defined on W{p9l;{T}) and
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maps this set into W(p,ξo;{Io}) so

= £(/') +/resonant(//) ^/j + Jnonresonant^ ^ £ . 13)

with Jresonant(Γ,φ')=fko>r(Γ,φ') and Jtnonresonant(I\φf)=Jk^nτ(I\φf). The stated
bounds on B(Γ,φ') then follow from (2.5)-(2.10).

Note that we obtain somewhat more information from Proposition 2.1 than was
stated in Theorem 1.1 For instance from (2.6) and (2.7) we see that if δ and m are
large enough, εnp~1 ^ (εoPo 1 ) ( 3 / 4 ) ( 3 / 2 ) " (δ and m do not need to depend on n for this to
be the case,) and we have

Corollary 2.2. If H(I,φ) is the Hαmiltoniαn constructed in Theorem 1.1, then

a 7resonantresonant
1 v i

sup dlj

\n (P />-iyi/2)(3/2)k0 :f
)PovεoPo J π

)n if jeS\n = 09...9ko-l9 (2.14)

and £ne supremum runs over W(p, 1; {/}).
We remark that at many places in the proof we will state inequalities which are

true, provided m and δ are sufficiently large (where "sufficiently large" does not
depend on the number of degrees of freedom of the system) without explicitly
stating this assumption. Note also, that because of the definition of m, fc0, and βk,
m βk^ c2K1, for all k = 0,... ,fc0, where Kx is some universal constant which we may
choose as large as we need, which means that m-βk can be chosen to be some large
constant.

We note that one could replace the factors of (1/2) in the exponents in (2.14) with
any number less than one, by making only minor changes in the proof.

3. The Canonical Transformation

In this section we construct the canonical transformation, C\ whose existence is
asserted in Proposition 2.1. Let H\U Φ) = hk(I) +fk{I9 φ) be a Hamiltonian satisfying
the inductive hypotheses of the previous section. Define the generating function for
the desired change of variables by

«r.«- Σ

with fk(Γ) the Fourier coefficients of /*(/', φ').
This is the generating function that one is led to by classical perturbation theory

if one only attempts to "kill" the non-resonant harmonics in the interactions. Since
there are only a finite number of terms in the definition of S, it can fail to be well
defined only if the denominator of one of the terms vanishes. That this does not
occur is guaranteed by
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k-2

Lemma 3.1. Define the N-vector r* by (rk

v)i = 2s~npk + 1 if iφ \J Sm, (rg)£ = (pk\ -

n(bm\ ifίeSm,m = 0,...,k-2. Then on W(rl,ξk;{Ik}\
(3.2)

for all veXk,but vφRkκjRk

p. The constant Bx in this inequality is the same as that in
(2.1).

Remark. We could actually define the generating function S on a larger domain than
W(rj;9ξk;{Ik}). If Rk

p is defined by (2.1), let Vk be the largest connected set in UN

containing Ik, such that if veXk\(RkuR% and IeVk, | < ω * ( / ) , v ) Γ ^
^i(Po^(εo))exP[(3/2)|v|-f Lk~]. (Roughly speaking Vk is the set of/'s with the same
resonant vectors as Ik). Then (3.2) holds on the larger domain W(rl, ξk; Vk\ with an
attendant increase in the size of the domains on which the canonical transformations
in Proposition 2.1 and Theorem 1.1 are defined. At present, however, I have found
no use for this larger domain.

Proof Since veXfc, vφRkvRk

p,

(3.3)

Furthermore there is a path y, consisting of N components, yj9 along which only one
coordinate of / varies, joining Ik to /' for every Γ such that (/', φ) is in W(rl, ξk\ {Ik})
for some φ. Also, the length of y5 is bounded by (rl)j. By the fundamental theorem of
calculus,

. (3.4)

Since vφRkuRk (rl)j = 27pk+ί for all; such that dist (/, supp v) ̂  Lk _ x . (If k = 0 or 1,
k2k-2

rl)j = 2Ίpk + 1 for all sites;.) This follows since if e (J Sm, the definition of the
m = 0

secondary resonances would force v to be an element of Rk 1 if dist ( , supp v)^

£*-i W r i t e

( ^ > | ^ (3.5)

For each /esupp v, bound the sum over; by breaking it into two parts. For those/s
with [/— ί| g L k _!, bound the length of yά by 2Ίpk + 1, while for/s with | ; - i\ > Lfc_ x

we bound the length of ys by p0. In all cases, the integrand is bounded by (2.8) and
(2.9). Summing the resulting geometric series in we find (3.5) is bounded in
magnitude by

22|v|p0^
1-^^-s (3.6)

(provided m is sufficiently large). Bounding the factor of < ωk(Ik\ v > " x by (3.3), and
using the fact that | v| ^ Mk since veXk, we see that the quantity in { •} in (3.4) can be
bounded below by (1/2). Then Lemma 3.1 follows. (If k = 0 or 1, the second term in
(3.6) may be omitted and Lemma 3.1 still follows.)
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Lemma 3.1 allows us to bound the derivatives of S(Γ, φ). We obtain the following
results which we prove in Sect. 7. To simplify our notation let yt be either I[ or φi

depending on the context. Then regard S(I\ φ) = S(y).

Proposition 3.2. On W(rl, ξk-δ; {Ik}%

sup
dS

andonW(rlξk-δ-l;{Ik}\

sup
d2S

•iy) (3.7)

for some constant B. As usual the factors of pi are chosen to keep the dimensions of the
two sides equal.

Now define the change of variables by

dS , dS

By the implicit function theorem of Appendix A, the first of the pair of Eqs. (3.8)
may be inverted in the form:

Γ = I + Ξ'(I9φl (3.9)

for Ξ'(/,φ) analytic on W(r3

k,ζ
k~δ-l; {Ik}), provided

sup

and

δ2S

(3.10)

sup
dS

for all;, where the supremum runs over W(rl, ξk-δ-l; {Ik}). Similarly the second
equation in (3.8) is inverted in the form:

φ = φ' + Δ(I\φ% (3.11)

with A(I\φ') analytic on W(rl,ξk-δ-2; {Ik})9 provided

sup
δ2S

and (3.12)

sup

on W{rl ,ξk-δ-l; {Ik}) for all;. Both (3.10) and (3.12) follow from (3.7). Note that
Ξ'(I,φ)=-(δS/δφ) (Γ,φ) and Δ(Γ,φ')= -(δS/dΓ) (Γ,φ), so bounds on deriva-
tives of S lead to bounds on Ξ' and A. We also define

' = φ + Δ\I,φ\ I = Γ + Ξ(Γ,φ'), (3.13)
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where Δ'(I,φ) = (dS/dφ) (I + Ξ'(I,φ\φ) is defined and analytic on W(rf,ξk-δ-l;
{Ik}) and Ξ(I\φ') = (dS/dφ)(I\φ' + Δ(I\φ')) is defined and analytic on W(rl, ξk-
<5 —2; {/*}). Define the transformations

and (3.14)

Both are defined on W(rk,ξk — δ — 2; {Ik}) and map this set into W(rk, ξk — δ — 1;
{Ik}), and on their common domain of definition Ck° Ck = Ck° Ck = identity. Also, by
construction, C* and Ck are canonical on p r ^ W ^ , ^ - δ — 2; {/t})) x TN. Define
(/»+,, φk+1) = CH/jk, 4>*) Since Ξ'(/, (/>)=- (δS/δ(/)) (/'(/, φ), φ), the bounds of Pro-
position 3.2 imply

Ύ'S for j=l,...,N. (3.15)

Thus, W (̂r?, {k - <5 - 2; { / i + J ) ^ W(r»3, {t - 3 - 2; {/t}), so Ck and Ck map W(if,
ξ k - ^ - 2 ; {/ t + 1 })->VF(r, 2 ,^-^-l; {Ik})^W(pk,ξk, {/,}). Define

Hk+!(/', ^0 = Hk°Ck(Γ, φ') = h\Γ + Ξ(Γ, φ'))

•"'(/' + Ξ(Γ,φ'),φ' + Δ(Γ,φ')). (3.16)

Define /««(/, Φ)= £ /ϊ(/)e ί v ψ and define / f e[δ](/,φ)= ^ /5(/')e"-*. Then
veXku{0} v£Xfc

vφRkuRk

p vφRkvRk

p

applying the fundamental theorem of calculus in a manner similar to [3,4,6] we find

Hk + \I\ φ') = h\Γ) +/*(/') +/fe'r(/' + S(/', 0'λ 0' + A (/', 0'))

+/I(Γ, φ') +/«(/', 0') +/IΠ(/', 00 +/ I V(/', 0'), (3.17)

with

•(/', φ') = ) dt'μs~(Γ + sΞ(Γ, φ')) Ξ{Γ, φ')-Ξ(Γ, φ%

/"(/', φ ) = 1 rfs^—-(/' + sΞ(Γ, φ'\ φ' + Δ (/', φ')) Ξ(Γ, φ%
0 < ^ ^

/'"(/ ', </>') = / * [ δ ] ( / ' + 2 ( Λ 0'), Φ' + Δ (Γ, φ')) and

/IV(/', φ') = Σ /ΐ(/' + Ξ(Γ, φW*™.
veRk

p

In deriving (3.17) we used the fact that

δ4-(n Ξ(Γ,φ')+ Σ /ί(/y^ ( Λ Ψ ) = 0, (3.18)
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because of our definition of S. Setting hk+1(Γ) = hk(Γ)+fk

0(Γ) we see that

fc+l Ά2fk

(//) = ̂  + /+ 1(/ /;U') (3.19)

The bound (2.5) and a dimensional estimate implies

l2fk

1 J 0 / Tr

while (2.10) implies

λ on W(rl,ξk;{Ik}l

for Iφj^

on the same domain. Combining these estimates with the bound on χk(Γ', ij) in (2.9)
we see that

k 1

+ Bk0 X εjp]-+\ + Bkoεkpk+\ if ί =j

— ( 1 — » 7 f c - i jf j ^. j t

(3.20)

Thus, (2.9) can be iterated.
In the next section we begin the task of verifying that the bounds on the

interaction terms can also be iterated.

4. Some Preliminary Decay Estimates

We begin iterating the estimates (2.5)-(2.7) and (2.10), which control the interaction
terms in Hk+ *. In this section we prove a series of estimates on various components
of fk + 1. The first lemma is an application of the chain rule.

Lemma 4.1. Suppose g is analytic on some domain β) a C2N. We let Xj represent either
thejth or the (j + N)th coordinate of a point in C2N. (This is in keeping with our notation
in (1.14).) Suppose that

sup sup
d2g

dxndxp

(x) < C9

(4.1)

for some non-negative constants, Cπ Cg

np, and κ(n,p = l,...,N). Suppose x is a
holomorphic map from 3)' -> @l satisfying

sup
dxM

dx'

sup
d2xn

δx'n

(4.2)

< C2

for some constants C\v and C^np. Here, in analogy with our notation above, we let Xj
denote either the j t h or the (j + N)th component of the map. (See Lemma 4.2 for an
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explicit example of this notation.) Then

d ,
sup ^ Dh and sup

δ2

< De~κli-n. (4.3)

Here Ό=2 £ CmClt and D=4 sup ( £ CΠCM

2,.,+ £ C ^ d A The easy
m=l ij \«=1 m,n=l /

proof is omitted. Note that (4.3) can always be satisfied by picking Z), and D
sufficiently large. The point of the lemma is that Dt and D may be chosen to have the
stated form.

The next lemma tells how the changes of variables It = /f(/', φ') and φt = φ^Γ, φ')
depend on the variables /} and φ\ as \i— j \ becomes large. To state the result
concisely, let x\ be either ![ or φ'h and let xf(x') be either /,.(/', φ') or φ^Γ, φ') depending
on the context.

Lemma 4.2. Let 9)' = W(rt,ξk-δ-3; {/,}). Then

sup

Also

sup dx'fix'j

(4.4)

(4.5)

).. = 1 if x. = /.(/',φ') and x\ = l\ or xt = φi(Γ9φ') and x[ = φ'h and ό^ = 0
otherwise. This slightly awkward definition is necessitated by the fact that if

ΘX:

xi = li(I\ φ') and x\ = φ\ (or if χt = φ&l\ φ') and x\ = I[), then -^ « 1 — n o t Θ{\).

However, this notation has proved so convenient otherwise that I think it is worth
putting up with this problem. The constant n is chosen as usual to insure that the
dimensions of the two sides are equal.

Remark. Note that (rΛ

2),- (rj?), - Θ{{bm\) if tfeSm for some m = 0,...,fe-2, and
(rk)f-(rk)s~@(Pk+i) otherwise, so the "size" of these derivatives depends on the
order of the site L

At numerous points in what follows we will have occasion to bound sums over
veZN, in which the summands obey certain estimates that we wish to show are
inherited by the sum. Estimates on the sums are provided by

Proposition 4.3. Suppose g(x) = £ gv(x) and

sup
9

Kxe{ϊ)e -δ'\v

(x)^min " ^ (4.6)
\Kxe

 Kίl e v,

for some domain 2, some constant e(i) and i the point in suppv such \ί — i\ is
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maximized. Then if δ' and κx are greater than 6,

sup - ^ ( .

365

(4.7)

where L is any number greater than (2/κ1)|ln e(i)|, and B is some universal constant.
Suppose further that

sup -(x)

and κ2 > 6. Then

sup

(4.8)

(4.9)

for some constant B.
The proofs of Lemma 4.2 and Proposition 4.3 are presented in Sect. 7. With these

two results we are ready to study H k + 1 , beginning with these corollaries of
Proposition 4.3.

Corollary 4.4. Let 2 = W{r{, ξk - δ\ {Ik}). Then

sup<

for i = l , . . . ,JV. Let xt be as in (1.14), then

~Ί—(χ) ••
(4.11)

on W(rl,ξk — δ — 1; {/J), w/zere as usual the factors of p0 are chosen to keep the
dimensions of the two sides the same.

Proof.

(4.12)

where gv(x)=fk

v(I)eivφ. Using (2.5), (2.10), the inductive hypotheses, and
Cauchy's theorem bound \{d/dl^{f\{l)eiv^)\ by minίBfcop^iPo^"^ 1"^ 8 1 1^^
β"δ|v |, p o β-^ 1 -^ | i - / ie- a i v | , £ke~δ]v]) on ®, which is in turn bounded by min
(Po^oPoΨ3/8)(3/2)ke-δM\ poe-rt-iM-'ie-'M), since v^Xfe. (Recall that t is the
point in supp v furthest from i). In deriving this estimate we have used a little trick
that we will often call on below, and so we mention it here. If j and { are the two most
widely separated sites in supp v, then by integrating by parts,

N 2π

where f dφ = [ f ] j (dφjlπ) . Thus df\jdli is the vth harmonic of the function
V Ϊ = I O /
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-(l/v/v,) L(d3βlidφjdφ,) fk(I9φ)], which with the aid of (2.10) and a dimensional
estimate we bound in magnitude by BpQkop^+ίe'{l~η^m^'j{. But |/-/|=d(suppv),
and the first estimate above follows from Cauchy's theorem. Similarly
(d/dφi)(gv(x))=fv(I)(ivi)eivφ = 0 unless iesupp v. Using this observation, plus (2.5),
(2.10) and Cauchy's theorem, we find \{d/dφι)gγ(x)\ is bounded by

e-δ\v\Bρle~m^

Applying (4.7) yields (4.10). Next note that (2.5), (2.10) and Cauchy's theorem imply

(x) <.pn

omin
(4.13)

- ^

=zPθmm\-m(l-ηk)[l-2βk)\i-j\e-mβk(l-ηk)\i-t\e-δ\v\^

where as usual n is chosen to keep the dimensions correct. In addition the last
inequality used the fact that if χ < min (c l Jc2), one has χ < c[c{2~β) for βe[0,1].
Inequality (4.11) then follows from the second half of Proposition 4.3. (Note that we
can assume \i-j\ >(l/8)Lfc, since otherwise (4.11) follows from (4.10) by a
dimensional estimate.)

In like fashion, if we let / 4(/, φ)=Σ fvi1) ̂  t we have
veRζ

Corollary 4.5. If 3= W(rl, ξk - δ; {/,}), then

sup
8Φ,

sup
df*

and

sup

81,

fk,r

ύ £kB
Lk,

(4.14)

P0
βf k.r

where L(i) = Lm if IES™, m — 0,...,/c — 1, L(i) = Lk otherwise. Also, if x is as in (LI4),
thenonW(rlξk-δ-U{Ik}\

and

sup

sup

sup

(x)

irAr
d2f

-(X)

< p" g-mu-ηkHi-zpkj|z-./i

p β-m(l-ηk)(l-2βk)\i-j\

(4.15)

ψ *dψ
dxβx

(X) n e-m(l-ηk)(l -2
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Once again the factors of p0 are chosen to "fix" the dimensions.

Proof. By (2.5), (2.6), (2.10), and Cauchy's theorem we have

dl,
^ min \v\e-όM,poe-m{ι-"M-^\v\e-δM),

while

-(x) ^ pn

0

5 | v |, A(k, i)

• ί(Pk)j ~ (rl)j] ~' e-4'", Poί(p% - (rl)j] ~ ιe~^e-^),

on W(rl, ξk — δ; {Ik}) with (the point in supp v such that | i — ί \ is maximized. Note
that this last inequality implies

dx/xj{x)

.e-m{i-ηk){l-2βk)\ι-j\e-m{\-ηk)βk\ι-ί\e~δ\v\\

(The last step used the fact, easily derived from the definitions of the mth order zones,
S^ that ifίeS* and ί ^ + Λ ^ | ί - 7 Ί <
Proposition 4.3 then yields (4.15) and the last of the three inequalities in (4.14). (Note
that we may assume \i— j \ >(l/8)Lfe, in the first two inequalities in (4.15), and
\i—j\ >(l/8) max (L(/), L(j)) in the last of these inequalities since otherwise they
follow immediately from (4.14) by dimensional estimates.) The first two inequalities
of (4.14) follow if we note that all the Fourier coefficients/^/) infkί=^ a n d / 4 satisfy
vφR, so by (2.5) and Cauchy's theorem we have

sup f Po1 (4.16)

on W(pk, ξk — δ; {Ik}) for these harmonics. Combining this estimate with those
above, and then applying Proposition 4.3 completes the proof of (4.14).

5. The Short Range Nature of fk+1

We demonstrate in this section that the estimate (2.10) holds for the Hamil-
tonian Hk+1. Let x(x') be as in Lemma 4.2. If 2' = W(rt,ξk-δ-3; {Ik}) and 2 =

W(ri9ξk-δ-2; {Ik}), then x: 2'->2. If/111 and / I V are as in (3.17) we have
/'»(/',</>')=/^]ojφc') and fιλ/(Γ,φ')=f*oχ(x')9 while fk'{Γ + Ξ(I'9φ'\φ' +
Δ(Γ,φ'))=fk>roχ(x'). We then have

Proposition 5.1.

sup

sup

fill

(5.1)



368

and

C. E. Wayne

sup
dx\

Furthermore on W{rl, ξk ~ δ — 4; {Ik})

2 find2f (x')

2fmd2f

(5.2)

Apply Lemma 4.1, taking the function g(x) in that lemma to be/* c - ] ,/ 4 , and
/ k ' Γ respectively in each of the inequalities in (5.1) and (5.2). Choose K (in (4.1) and
(4.2)) equal to zero for (5.1). From Lemma 4.2 take Cfj = 2 if i=j9 and

}j = min(pSe Λ pn

0(λ(ε0)) +\BL«)if i Φj.

From Corollaries 4.4 and 4.5 we see that the constants C, may be chosen to be
pn

QBLχ+ i(εopo ψ*/*)W2)\ pn

oεkB
Lk and pn

0Λ(k, ί)BUe) respectively in the cases g equals
fkί-\f*> and/ f c > r. Inequalities (5.1) then follow from the first inequality in (4.3). In
calculating the constant that appears on the right-hand side of the third inequality,
we note that k0A(k,p){εkpϊ:+ί)BLk ^ Λ(kJ)BL^ for all sites p, while koεkpk~\BLk <
e~m(l-ηk)(\-4βk)\i-p\/2 fQr

(5.3)

J)B^ + (suVk0A(kfp)(εkPk

 ι)

S A(k, j)β"ί(i).

For (5.2) choose K = m(\ -ηk)(\ - 5βk). Then Cfj = 2 if i=j and C\} = p"0

e-m(i-ηk)βk\i-j\ jf i φj jjy Lemma 4.2.

if | , W

and

otherwise. This estimate follows by noting that (4.4) and a dimensional estimate on
W(rl ξk~δ-4; {Ik}) imply
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Choose the constants Cn, as we did in the previous paragraph. Corollaries 4.4
and 4.5 also imply that the constants C9

mn may be chosen to be pn

oe-
m^-nk)\m-n\ m e a c h

of the three cases. To prove (5.2) first note that we may assume | i —j\ > (l/8)Lk in the
first two inequalities in (5.2) while in the third inequality we can assume \i—j\>
(l/8)max(L(z')5 L(j)\ since (5.2) would follow from (5.1) and a dimensional estimate
were this not the case. Given this assumption, (5.2) follows from the second
inequality in (4.3), since a straightforward computation of the constant D appearing
there shows it may be bounded by (pJ/23) in each case.

We now study the two remaining terms in (3.17), fι and /" . We first prove the
following easy consequence of the product rule

Lemma 5.2. Suppose fe and gj/ = 1,... 9N) are analytic on some domain 3f a C2iV,
and satisfy the bounds

sup

sup (5.5)

sup

and

sup

where we again let Xj represent either thejth or (j + N)th component ofxeC2N. Then if
κ>0, and L is a nonnegative integer we have

sup

Furthermore,

sup
d2 («

cg(qe)

• C C2\p~κL

(5.6)

(5.7)
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Proof. By the product rule,

d

Ik Σ

Σ (5.8)

and (5.6) follows immediately.
Applying this product rule a second time we find

(5.9)

andBound the last two terms by bounding the derivatives by C^C^e~κίli~η+

then summing over t to obtain the term sup(2(|ί-/|) + 2(l - e " κ ) " 1 ) C ^ C ^ - ' c | / - /l

Bound the second term by first summing over all ί such that \i — £\ ̂  2|i— ; | . If we
bound /^ by Cfe and bound \d2g,/dxidxj\ by C^e~κ]i~jl

9 these terms give a
contribution of sup 22(|i— j\-\-2)C^C^e~K^~^9 while the remaining terms are
bounded by

The first term in (5.9) is bounded exactly as the second, interchanging the roles of/,
and gn and (5.7) follows.

Lemma 5.3. Let 3f' = W(r%, ξk-δ-4; {/fc}), and let x' be as in Lemma 4.2. Then

and

sup

sup
9'

2rll

= Po

(5.10)

d2f
dx'idx'j <

on W(r%,ξk — δ — 5;{Ik}\ where we can choose C1^Θ({εkpk

 ι)a\for some α>0.

Proof. Define x\(x') to be either IΊ + sΞ^x') or φ\ + A f(x') depending on the
context. Since

so that Lemma 4.2 bounds derivatives of xs. Let #/x) = dfkί^/dl^ (x), (/ = 1,... 9N).



Elimination of Non-Resonance Harmonics 371

Then Corollary 4.5 implies \g,(x)\^εkB
Lk on W{rl,ξk-δ;{Ik}). On the domain

W{r\, ξk — δ—l; {Ik}\ (4.14), (4.15) and a dimensional estimate imply

while (4.15) and a second dimensional estimate bounds \(d2g(/dXidXj) (x)\ by

on W(rl, ξk — δ — 2; {Ik}). Combining these estimates with the bounds on
derivatives of xs that come from Lemma 4.2, and applying Lemma 4.1 yields

sup dl,

^ ]JPQ€ k k , (5.11)

on W{rl, ξk — δ — 3; {Ik}). Note also that (4.14) and a dimensional estimate imply

sup

and
5/,

(5.12)

sup
Lk

The second half of (4.3), combined with Lemma 4.2 and the estimates
above imply

sup
a/,

°xs(x')

This follows by noting that the estimates above imply we can pick the constants
κ9 CH9 and Cg

np of (4.1) equal to m{\ -ηk)(\ - 5βk\ pn

okopk+\εkB
L\ and

23pΊ)kopk+ίe~m{i~ηk)βkln~p\ respectively, on the domain @=W(rk,
ξk — δ — 3; {/*}), while Lemma 4.2 implies we can pick the constants C\v =
JJPQ€ k k , and (^*jj=zL$pokopk+ ^€ k k li \t—j\ s±2,\ι—j\ and C^ ==

BpnQkopk~\e~m(ϊ'ηk){{~AβkW~m otherwise. (This last estimate follows from a dimen-
sional estimate similar to (5.4).) Estimate (5.13) then follows by inserting these
bounds in the definition of the constant D in (4.3).

Note also, that (5.11) and a dimensional estimate yields

δ2

sup ~°xs(xf) (5.14)

The factors of Ξ,{x'\ in / " a r e bounded by Pofep*"1)7'8 on W{r3

k,ξk-δ - 2; {/k}),
using (3.7) and the fact that Ξe(l\ φ') = (dS/dφ,) (/', φ(Γ, φ')\ Factors oiδΞejδx\ and
δ2Ξί/δx'iδx) are bounded by Lemma 4.2 using the observation that

δΞ( δx(

 Ά2~
 p 2 c :

ψ£. = ψL-δ and
δx: δx,

δx' fix'
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Define g,(xf) = dfk^/dl^χs(χf) and f,(x') = Ξ,(xf). Then inequalities
(5.11)—(5.14) and the remarks in the preceding paragraph are just what we need to

apply Lemma 5.2 to bound derivatives of fl{x') = £ §M')fλx')- T a ^ e κ *

lemma equal to m(l - ηk)(l - 5j?k), set the constants C~gΐ = εkB
Lk, C\e =

ρnokopϊ+\εkB
L\ q, = Cf, = Bpn

0, C]e = C% = q, = Cf, = Bpn

okoPk+\, and Cfί =
po(εkpk~

 f ) 7 / 8 and C}e = pn

okopk^1λ(εoy
2εkB

L\ and let the constant L = Lk in (5.6). We
find

sup (5.15)

where C1 may be chosen Θ((εkpk

 1)") for α some small positive constant. On
W(r6

k,ξk-δ-5;{Ik}),

sup

2r2
d2f.

ύ Bpll\ί-j\^ ' (5.16)

In the last step in (5.16) we used the fact that we can assume |ί—;| > (l/8)Lk, since
(5.16) follows from (5.15) and a dimensional estimate otherwise. But if we now note
that

dfu

dx[ s

d 2 and s2fn

δx'βx'j s

d2fs Ί

dxβXj X

we see that (5.10) follows from (5.15) and (5.16).
Finally we address derivatives of fι.

Lemma 5.4. Let xs(x') be as defined in the proof of Lemma 5.3. Define

ThenonW(rt,ξk-δ-5;{Ik}),

suplM^ίl^βpoίβtP*"1)7'8.

dh.

and

sup

sup

d2K

<minί
BpokoPk + i(εkPk J

<min

-U7/8

Assuming Lemma 5.4 holds for the moment we prove

Lemma 5.5. Let 2 = W(rΊ

k9 ξk-δ-6; {Ik}). Then

sup Bxΐ

-^

(5.17)

(5.18)

(5.19)
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and

sup dx'βx'j

373

(5.20)

y^here we can choose Ct

Proof. Note that

and

lY)for 0L some small positive constant.

5̂  sup (5.21)

dx'βx' )

We apply Lemma 5.2, with/, = fi, (the function defined in Lemma 5.4), and g€ = Ξ(,
to derive bounds on the right hand side of these inequalities. (Our bounds are
independent of 5.) Bounds on/, are given in Lemma 5.4, while bounds on S, and its
derivatives were discussed in the proof of Lemma 5.3. Pick the domain 2 in Lemma
5.2 to be W(4,ξk - δ - 5; {Ik}), and choose K = m{\-ηk)(l-Ίβk), Cqi = Cf<f =

C*, = BplKlpϊ^, and the constant L in (5.6) to be Lk. Then (5.20) follows easily from

(5.6) and (5.7).
Combine Proposition 5.1 with Lemmas 5.3 and 5.5., and take the definition of

/k + 1(/\(/>')in(3.17)to obtain

ξ f c ^ δ - 6 ; {Ik}) => W{pk + \ ξk+{, {h+ι}). Then

s2f ,

CoroHary 5.6.

sup (5.22)

This implies that (2.10) holds for the Hamiltonian Hk + 1. All that remains is to
verify that (2.5) and (2.6) also hold for/* + 1 , which we do in the next section.

We now prove Lemma 5.4. By (2.8) and (2.9),

d2hk

>*"(*')-
< g-m(l-ηk)\ι?-n\ (5.23)

on W(rki ξk-δ-~2\ {Ik}). Since \ΞJ(x')\ ̂  po(εkpk

 1 ) 7 / 8 , on this same domain, we see
that \hn{x')\ g Bρo{zkρk

 1 ) 7 / 8 as claimed in (5.17). A dimensional estimate immedi-
ately yields the first estimate in (5.18) on the smaller domain W(rk, ξk-δ-3; {Ik}).

Note that (2.8) and (2.9) coupled with a pair of dimensional estimates imply

sup

and

^ . JBpΌkoPϊλe-*1-'*-*
- n\Bp»okopX1e-«-W-«

sup
d2 ί d2hk

(x) <min
ι-f\

(5.24)

(5.25)
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where the suprema run over W(r\, ξk — δ; {Ik}) and x is as in (1.14). Now apply
Lemma 4.1, with the domains 3> = W(rl,ξk -δ-2; {/*}) and & = W(rt, ξk-δ-3;
{Ik}) and the function g = d2hk/dl^dln. The bounds on g and its derivatives coming
from (5.23)—(5.25) and the bounds on xs from Lemma 4.2 combined with the second
estimate of (4.3) imply

sup

while the first estimate in (4.3) implies

sup

1 ί (5.27)

Because of the symmetry between / and w, (5.27) also holds with f and n
interchanged. Furthermore, (5.23) and (5.27) plus a pair of dimensional estimates on

d2 ( d2hk

-°xs(x') <min
l-5βk)\i-n\

and

e2hk

(5.28)

Now apply Lemma 5.2, with f/x') = {d2hk/dlίdln)°$!t{x')9 g,{x') = Ξ,{x') and
Of = W(r\ ,ξk-δ-4; {Ik}). Then (5.23) and (5.26)-(5.28) bound/, and its derivatives
while (3.7) and Lemma 4.2, coupled with the observations in the proof of Lemma 5.3
bound ge and its derivatives. Estimate (5.6) implies

sup (5.29)

which implies the second estimate in (5.18). The first of the bounds in (5.19) follows
from (5.29) by a dimensional estimate. Applying Lemma 5.2 a second time we find
(5.7) implies

sup (5.30)

which completes the proof of Lemma 5.4. We note that in applying Lemma 5.2 to
derive (5.29) and (5.30) it is necessary to make different choices of the constant K, and
hence of the other constants, in the two cases but the details are not difficult to work
out so we omit them.

6. The Strength of the "Renormalized" Interactions

In the present section we verify that (2.5) and (2.6) hold for the Hamiltonian Hk+1.
First note that the fundamental theorem of calculus allows us to write
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ίΣ ί ds^~(Γ + sΞ> Φ' + s Δ ) -dX//' ̂ ')
/= 1 0 ^

and

tί, φ') =f\l, φ')+tί dsd-£-(I' + sΞ, φ' + sΔ)-Ξ({Γ, φ')

+ Σ ίds%r(Γ + sΞ9φ
f + sΔ)'Δ,(I\φ')

Proposition 6.1. On lζk-δ-5;{Ik})

sup

and

sup
if /

where Cx ~ ίP((εtpt~
Now note that

if

for α some small positive constant.

(Here, \dφ'=f[(~\] dφ',) But

(6.1)

(6.2)

(6.3)

= f dφ' {/*•'(/', Φf) +f\r, Φf) + δfk>v\ ΦΊ
+ δf\l\ φ') +/•(/', φ') +/"(/', ΦΊ +/m(/\ ΦW*. (6.4)

(6.5)

Γfc-1 Ί k

ifvG (J (R™kjR™) \vRk

p, and zero otherwise. Note that if vφ [j [^u i? s

m ] , then
\_m = 0 J m = 0

either there exists /esuppv such that /^S m , m = 0,...,k, OΪ vφXk+1An the first of
these cases, notice that Proposition 6.1, Proposition 5.1, and Lemmas 5.4 and 5.5.
when combined with Cauchy's theorem, and the observation that for such a v,
Sdφ'{fk>V\ΦΊ+f\I\Φ')}e!v'φ' = O, imply that (on W(rl ξk-δ-6; {/,}))

^ f c + 1 + -1\v.fk + 1(Γ)\<C pokoεk+lPk-+\e-^-δ-6^ (66)

In the second case, Corollary 5.6. combined with the estimates above, implies

(6.7)
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on the same domain, from which it follows that if v^ (J [R

δ
—f

k+1(Γ (6.8)

with both Cj and C2 - (9((εkpk T )

Remark. Inequality (6.7) does not imply (6.8) in the case v = 0—we treat this special
case at the end of this section.

Next remark that on W(ρk+\ ξk+ί; {Ik + ι})>

(6.9)
δfk+1 n r

δl\
+ P01

Sfk+l.nr

S Σ (
vφR' \

dfk

v

+1

δΓj

with R'= \J (R™uR™). Corollary 5.6, (6.8), and Cauchy's theorem imply the

summand in (6.9) is bounded by min (C2εk + ίe-δ^ Poe-m{{-η^^-^ e~δ^\ where ί is
the point is supp v farthest from;. If we now apply Proposition 4.3 we see that on

pk + \ξk+ί;{Ik+ι}%

sup
df

+ P0 1
rfc+l,nr

(6.10)

so (2.5) applies to the Hamiltonian Hk+ι.
Next assume that jeSm for some m = 0,...,k. Then on W(pk+1, ξk+1, {Ik+ί}),

Qfk+Uv

dl'j
+P0 1

Λ(/i
j

gfk+l,τ

dΦ'j

- ( / ' ) - ,

VII

m

dfkyT

dl'j

')) +

+ P0 1

Po'H

dfk r

dφ'j

rk + 1/ -/*(/'))! J e f ' + l l w (6.11)

By Proposition 6.1, Corollary 5.6, (2.10), (6.5) and Cauchy's theorem, the summand
on the right hand side of (6.11) can be bounded by

where f is the point in supp v farthest fromj. Apply Proposition 4.3 and bound this

sum by pokoεkpk'\BL^κ By (2.6)

fk,τ

Pol

fk,τ

and since jeSm, A{kJ) + ^ A(k+ 1,;), so (2.6) holds for the Hamil-
k k

tonian Hk+1 if e (J Sm and it remains only to check that it holds for;<£ | J Sm.
m = 0

If jφ [j Sm, and ve (J {R%uR?)9 the definition of Rk

s~
1 implies there must be

m = 0 m = 0

some ίesupp v such that dist ( , ί) > Lk. Thus applying (2.10) and Cauchy's theorem
fc-l

we see that if ve (J
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dl'.
e-«'i

377

(6.12)

on W[pk, ξk; {Ik}). Here i is the point in supp v farthest from j , and the second
inequality used our observation that \j—f\>Lk. Hence, applying Proposition 4.3
we find

sup
dfk,r

+ Pol df 1

dφ'j
UΣ\
J V6.R' (.

dl)

(6.13)

on W(pk+1, ξk+1; {Ik+1}). Combining this with (6.11) we see that iϊjφ (J Sm,
m = 0

Qfk+l.t

^ Po(^o

dfk+1-r

dφ'j

)(3/2)*<βLk

1
1

(6.14)

so that (2.6) holds for all sites j , and the Hamiltonian satisfies the estimates (2.5)-
(2.10). Note that in (6.14) we used the fact that on W(r7

k, ξk-δ-6; {Ik}),

di :

+fXΓ,φ')+f"(Γ,Φ')+f"
e-^-δ~5^ (6.15)

) -/ϊ(/')) I, and then appliedif jφSm, m = 0,... ,/c, and analogously for po ' I v/ZΪ
Proposition 4.3 to bound the sum in (6.11) by C1εk + 1B

L^+1.
We complete this section with the proof of Proposition 6.1. The first inequality in

(6.3) is an easy application of Lemma 5.2. Let x be as in (1.14), xf as in Lemma 4.2, and
redefine x]{x') as either ![ + sΞ^x') or φ\ + sΔ^x') depending on context. Let the
functions/Λx') and gfa') of Lemma 5.2 be defined by //*') = (df4/dx,)oχs(x%g^(xf) =
Ξf(x') in the second term on the right hand side of (6.2), and g^x') = Δj(x') in the
third term on the right hand side of (6.2). Let 3>, the domain in Lemma 5.2 be
W(r5

k,ξk-δ - 4 ; {/k}). We will give estimates on \(d/dx$(Σfλx')Qλx'))\ w h i c h a r e

independent of se[0,1], and which therefore bound |(δ/δxj) (δf\x'))\. By Corollary
4.5 and a dimensional estimate we choose the constants Cfί = pn

oεkB
Lu and Cje =

Po£kkoPk + ιBLk Applying Lemma 4.1, with the bounds on derivatives of the map xs

that come from Lemma 4.2 (since (dxydx'j) — Zη = s((δxjdx'j) — δ^)) we see that

on W{rt, ξk-δ-3; {/J), so we can take C£ = Bpn

0 and K = m(l - ηk)(l-5βk). Since
Ξ,{x') = (δS/δφ,) (Γ9φ(Γ9φ')) and Δ,(x') = (dS/dΓ,) {l\φ{I\φ')\ (3.7) and a dimen-
sional estimate imply we can pick Cg, = pn

0(λ(ε0))~2εkB
Lk, Cι

gί = pn

0(λ(ε0))~2 x
Lk> while Lemma 4.2 implies that C\ = pi with the same choice of K as
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above, (since dg£jdx!i = {SxJdx!^ — δei, with x as in Lemma 4.2). Combining these
observations with (5.6) and setting L = Lk in that expression we obtain the first
inequality in (6.3).

To prove the second estimate in (6.3), let//*') = (dfk'r/dx^)° xs(x'), g^x') be just as
above, and set 3) = W(rf, ξk — δ — 5; {Ik}\ Once again we will prove estimates on

\(δ/dx'i) (Σfλx')9λx'))\ which are independent of se[0,1], and thus imply the second
ί

inequality in (6.3). Combining Lemma 4.2 with Corollary 4.5 and Lemma 4.1 we see
that we can set C2

e = C2

gί = Bpn

0, and K = m(l - ηk)(l~6βk\ in Lemma 5.2.
We now consider two cases.

fc-l

Casel. Sφ[JSm. We can set Cf, = po(εkpkψ~ηk) and C}, = Bpokopk+\ x
m = 0

(εfcPk~1)(1~l'k)j by combining (2.6), (2.7), and a dimensional estimate. Then just as
above set Cg, = pn

0(λ(ε0)y2εkB
Lk and Cl, = pn

0(λ(ε0)r2k0εkpk.+\BLK

Case 2. ίeSn for some n = 0,... ,/c — 1. We must now consider two subcases within
this case:

(a) ieS>, p = 0,... X Set Cfi = po(εnp-ψ~ηk\ C)t = Bpokopk+\(εnp- ψ-**\ Cgt

= pno(λ(εo)Γ2εkB
L\ and Cl, = Bpn

0(λ(ε0))~2k0pk+\εkB
L\

(b) iφ \J Sm. Set Cf, = p0(εnp-ψ~^\ and Cg, = p»0(λ(ε0)Γ2εkB
L« as before.

w = 0

Since SeSn, and iφ [j Sm, we have | i-1\ > Lk. Thus by combining (4.15) with
m = 0

Lemmas 4.1 and 4.2 and our estimates on dgjdxt above we can pick Cje =
Clt = Bpn

oe-m^-^-^L^BCιP

n

oεk+u with C^Θ{{εkpk'n
With these choices for the constants, the second estimate of (6.3) follows from (5.6) if
we set L = Lk.

Finally we show how (6.8) follows in the case v = 0. First note that by another
application of the fundamental theorem of calculus, one can write

δfk v\ΦΊ=Σd-w^(r>Φ')Ξλr,Φ')+ Σ d-~(i',Φ')Δe(r,Φr)

Σ ίΣ ί dsί dtPτ
t,p 0 0 OX fiXp

Here, x is as in (1.14), x' is as in Lemma 4.2, and gj(x') is either ΞJ^x!) or Δ^x'). We
note that the summation over /, p here is slightly ambiguous. We emphasize that it
should run over both meanings of x,, and xp9 i.e. both l( and φ^ and Ip and φp.

It is straightforward to show that the derivative of the last term with respect
to I) is bounded by pn

0C^k+1 on W{rη

k, ξk -δ-6; {/k}), using Lemma 5.2 and the
bounds on g{x') that we used above. (As before Cί^O((εkp^1)<x).) Since Ξ^(I\φf) =
(dS/dφ;)(I\φ + 4), use the fundamental theorem of calculus to write

Σ ^r-i^Φ'yJr^Γ^'Φ'+^^P^^'y ( 6 1 7 )
Γ^ dI oφOφ

s Σ
p = l
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Because fKτ and S have no harmonics in common and no contributions from the
v = 0 harmonic, the orthogonality of the trigonometric functions insures that

(6.18)

Using Lemma 5.2 it is once again easy to show that the derivative of the second term
on the right hand side of (6.17), with respect to Γ} is bounded by Cvεk + ι on
W(rl,ξk — δ — 6; {Ik}) By an exactly analogous procedure we obtain

= ^ίbk+ί (6.19)

on W(rk, ξk — δ — 6; {Ik}). Putting these observations together we see that

d
— {δfk%

on W(rk, ζk — δ — 6; {/&}), and combining this with (6.4), the fact that

0φ\ U (R"^RT) \vRk

p, and the bounds on δf\ f\ /", and fm coming from

|_m = O J
Proposition 6.1, Proposition 5.1, and Lemmas 5.4 and 5.5 we obtain inequality (6.8)
in the case v = 0.

7. Some Final Estimates

We now complete the results that were stated but not proved in Sects. 3 and 4.
We first note that Proposition 3.2 follows from Proposition 4.3. Using (2.5) and

(3.2) we readily verify that on W(rl,ξk-δ; {Ik}),

, - ( < ? - 3 / 2 ) M

where t is the point in supp v farthest from j . This follows by using integration by
parts to write the expression for/*(/')vj as — ̂ dφ(d2/dφjdφίf) {fk{Γ, φ)} eiv φ/vn and
the using (2.5) or (2.10), and Cauchy's theorem.

Similarly, if we note that (2.8) and (2.9) imply

8ωk

where n is the point in supp v closest to j , we find

(7.2)

Γ '),v>

again on W(rl, ξk — δ; {/fc}). If we now apply Proposition 4.3 with Kx =
pn

o(B/λ2(εo))e2L\ e(i) = εkpQ\ κι=m(l-ηk), and δ' = (5/2, (which implies δ^ 12)
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we have

sup
δS

< {pH λ\εo))εkB
L\

C. E. Wayne

(7.4)

on W{r\, ξk-δ; {Ik}), by (4.7), where yeC2N is defined in Proposition 3.2. This
verifies the first inequality in (3.7).

Next note that using (2.10), Cauchy's theorem, and a dimensional estimate we
have

_Kωk(Γ),vy]

) (7.5)

on W(r\, ξk — δ — 1; {Ik}\ where as usual, ί is the site in supp v most distant from i.
Similarly

(7.6)

and

L(Γ)eh"φ

j-irDjT'poe-^-^-^vl'e31-^-^), (7.7)

on W(rl,ξk-δ;{Ik}). If we combine (7.5)-(7.7) with the observation that if χ<
mm(Cι,C2), then χ < C\C(2 ~β) for βe[0,1], we see that we can apply the second
half of Proposition 4.5, choosing

K2 = K3 =

κ2=m(\ — ηk)βk, and δ' = δ/2.

Then (4.9) implies that

δ2S
sup (y)

with the supremum running over W(r\, ξk — δ;{Ik}). Note that we can assume
|i — y| > (Lk/4), since otherwise the second estimate in (3.7) follows from the first by a
dimensional estimate. But then, using the fact that

when \i—j\ >(Lk/4), we obtain the second estimate of (3.7).
We next prove Proposition 4.3. To prove (4.7) note that

* Σ
U-HSL

+ Σ
\i-}\>L

dx, (x) (7.9)
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where L is any positive integer and ί is the point in suppv such that \i — i\ is
maximized. Bound the summand in the first term on the right hand side of (7.10) by
KγeH$)e-bΛ\ and in the second term bound it by K^e~K^l~^ e~m. Next note that the
number of vectors with |v| = M and | ι W | = Z is bounded by 2(2L + 1)2L22M. This
estimate follows from the observation that the number of vectors with |v| = M,
d(supp v) = L', and the rightmost point in supp v fixed is bounded by 2L '2 2 M (a
discussion of this bound is contained in [6]) and then noting that iϊ\i — £\=L one
must have 0 ^ L ^ 2L, and that there are at most 2L + 1 choices for the rightmost
point in supp v. Thus (7.9) is bounded by

-3'MΣQΣΆ2L+\)2L22MKAi)e

^ 22(2L + l)2L K^i) + 24K1e-{κi-2ln2)L,

from which (4.7) follows immediately if L > (2/ιc1)|lnβ(i)|.
Inequality (4.9) is proved in much the same fashion. Note that

d2g
(x) * Σ

\ι-f\i\ι-j\

+ Σ

Bound the first sum by

oo \i-j\

Σ Σ
Bound by the second term by

00 00

Σ Σ 2(21-

(7.10)

(7.11)

(7.12)

(7.13)

and (4.9) follows immediately by combining (7.12) and (7.13).
We finish up by proving Lemma 4.2. As in [6] the proof turns on the following

lemma:

Lemma 7.1. Let M be an n x n matrix whose elements satisfy |M f j | ^min(c,

C l e - φ-./i). if c and cx are less than (1/4), and K ̂  2 In 2 then

|(D - M ) y x -δtJ\ ^mm{cBLX2^e-κ\ι->\\ (7.14)

where B is some universal constant, and L is any number such that L > (2/ιc) | In c |.
The proof of this lemma is in Appendix B.
Let y be the holomorphic map taking W(r%, ξk — δ — 3; {Ik}) into W(rl, ξk — δ

- 2; {Ik}) defined by ^.(x') = χ\ if 1 ̂  / ^ N, and y£x') = xt{x') if N<i^ 2N9 where
χ.(χ') = {/.(/', φ') if 1 ̂  Ϊ g N and ^-jvίΛ </>') if N < i ^ 2ΛΓ} and xj = {/; iϊί^i^N
and φ'i-ffifNKi^ 2N}. Finally let ^ = {/; if 1 ̂  / ̂  ΛΓ, 0,._N if N < I ^ 2N}. This
notation saves writing out many special cases, but it has the following disadvantage.
If we consider d2S/dΓjdφk (Γ,φf) = d2S/dyjdy^ (y), where /' = k + N, we expect it to
decay only as exρ[ — m(l — ηk)\j — fc|], not as exp[ —m(l—^/fc)|7 — / | ] . Thus we
define δ{j,£) = 10' —^)(mod ΛΓ)|, and then we see that the derivatives above decay as

p [ m ( l ^ 0 , 0 ] .
If N < i'^ 2ΛΓ, xf(x') = xj - dS/dyt-N°y(x'\ by (3.14), and (3.11), where y is as in
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Proposition 3.2. Thus,

- Σ (Γ^-JMK^M). P '9

where the first of these steps used the chain rule, and the second the definition of y.
Let M be the N x N matrix with elements Mij = ( — d2S/dyidyj+N)°y(x'). We now
consider two cases. If they in (7.15) is less than or equal to N, define D to be theiVxN
matrix with elements Du = (dxi + N/dx'j) (x'\ and A the N x N matrix with elements
Λij = - (d2S/dyidyj)oy(χf). Ifthej in (7.15) is greater than N9 let D' be the matrix with
elements DΊj = (dxi + N/dx'j+N) (x'% and A' = N x N identity matrix. Then, (7.15)
becomes the pair of matrix equations

D = A + MD and Df = Λ'+ MD\ (7.16)
or

D = (D-M)- 1 /1 and D' = (D - M ) " M r . (7.17)

By Proposition 3.2 and a dimensional estimate,

for all x' in VK(r̂ , ξfc —(5 — 3; {/fc}). Note that if i and; are both greater than N, the
second equation in (7.17) implies

dx-
^ f ( V ) = [ ( 0 - M ) - 1 ] , _ W J _ w , (7.18)

and (4.4) follows (in the case ij > N) from Lemma 7.1. If i is greater than N and; is
less than or equal to N, (7.17) implies

OXj I = 1

Using the bounds on (D — M)~ι that come from Lemma 7.1, and the fact that
Proposition 3.2 implies

\Λ,j\ £min(plMεo))-2koεkpϊ+\B^9ple-«^^

for all x' in W(ri, ξk-δ-3; {/fc}), it is easy to bound (7.19) by

^ m\n{B'pn

0{λ{ε0)) 2k0εkpk+\BL\ Bpn

0(δ(iJ)-

.e-m(l-ηk)(ί- βk)δ(i,j) y (7.20)

from which (4.4) (in the case j ^N, i> N) follows.
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If 1 ̂  i ̂  N, Xi(xr) = xt + (dS/dyi+N)°y(x'\ so applying the chain rule we obtain

2JV
( 7 2 i )

Use Proposition 3.2 to bound derivatives of S, and use (7.18) and (7.20) to bound
dxβx), for N < t ^ 2N. If we do so we find (on Wtf, ξk-δ-3; {/,})).

'J) +1)

The remaining cases of (4.4) follow from (7.22).
Finally, we turn to the proof of (4.5). If N < ί ^ 2JV, x,(x') =

(dSldye_N)°y{x'\ and the chain rule and the definition of y imply

f)2Ύ 2 N

0 x< (x>) = _ y

(7.22)

- Σ

Assume for the moment that; is less than or equal to N. Define D2 to be the N x N
matrix with elements D2

j = {d2xif+N/δxf

idxf

J) (x'\ and Λ2 the JV x N matrix with
elements

«

If M is the same matrix as in (7.16), then (7.23) may be rewritten as

D2 = Λ2 + MD2 or D2 = (D - M ) " M 2 . (7.24)

Using Proposition 3.2, a dimensional estimate, and (4.4) it is easy to show that for x'

in W{rtΛk~δ- 3; {/*}),

Using this bound, and the bound on (D — M ) " 1 that comes from Lemma 7.1 (and
which we used previously in (7.18)), we find

where ??= /(mod ΛΓ). The bound in the case; > N follows in analogous fashion, and
we don't write out the details. This completes the proof of (4.5) for { > N.
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If 1 ̂  £ ^ N, then the definition of x/x')> a n < i the chain rule imply

Bound derivatives of S by Proposition 3.2, bound d2xp/dxfidxfj for p > N by (7.25),
and bound derivatives of y by noting that dyp/dx'j = δpj if p^N and dyp/dx'j =
δxp/dxfj if p > N, and then apply (4.4). Combining these observations yields the
remaining cases of (4.5).

Appendix A. The Inverse Function Theorem

We wish to invert the equations

Standard analytic inverse function theorems guarantee that these maps can be
inverted if they are 1 — 1. Assume there exists 71 and I2 in W(r2,ξk — δ—l; {Ik}),
with

I1-\ (I1

9φ) = I2 H (I2,φ)> (A.2)

There is a path γ9 contained in W(rk, ξk — δ—l; {/*}), joining I1 to I2 consisting of N
pieces, yj9 along which only the j t h coordinate of / varies, and the length of y} is
\Ij — I21. Then the fundamental theorem of calculus implies

(A.3)

But if sup £|(<?2S/3<τ!>;δ/;-)|^(l/2) on W{rl,ξk-δ-\; {Ik}), for all j , this last

sum is bounded by (1/2) Σ | / j - - / j | , implying I1=I2. Thus, the first equation

in (A.I) is invertible as Γ = I + Ξ{I,φ) on the image of W{r2,ξk-δ-l\ {Ik}). If
sup\{dS/dφi)(I\φ)\<cιpk + ί/k0 for all U the range of the map must contain
W(r%, ξk — δ—l; {Ik})9 and hence £"(/, φ) is analytic on this domain.

To invert the second equation in (A.I) assume there are φι and φ1 in W(rl, ξk —
(5-1; {Ik}) such that

φ1+^7(Γ,φ1) = φ2+^7(Γ,φ2). (A.4)

Pick, y, a path contained in W{rk,ξk -δ—l; {Ik}), joining φ1 to </>2, and consisting of
N pieces, γj9 along which only one component of φ varies. As before y,- may be picked
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so that the length of jj is \φ) — φ]\, and applying the fundamental theorem of

calculus just as above we find that the map is 1 — 1 if sup £ \(d2S/dΓidφj)\ ̂  (1/2) for
i

ally on W(rk, ξk — δ — l; {/*}). Thus, the second equation in (A.I) can be inverted as

φ = φ' + Δ(Γ,φ'\ (A.5)

with A (/', φ') analytic on the range of the original map. If sup | (dS/dΓj\ < (1/2) for allj
(with the supremum running over W(r\,ξk — δ—l; {/fe})), Δ(/ ;,φ')must be analytic
at least on W{r2

k,ξk-δ-2; {Ik}).

Appendix B. The Proof of Lemma 7.1

Using the random walk expansion of [2] we write

Π \ (B.I)
/eL / \seΩ /

On the right-hand side of (A.I), An = 1 - Mn and Ω is a random walk on the
lattice L = {1,...,JV}, i.e. a set of pairs {OΊ, J2)> >0*Λ+i)}> i, e{l,...,N}. Each of
the pairs is referred to as a step, s, with \Ω | the number of steps in the walk, and Ω:
i-+j means i ^ i , ik + ί=j. Finally Ms = Mipij+i = ( 1 -S i j t j + ί )M l j i j + i , \s\ = \ij+ί-ij\,

and n(j,Ω) is the number of times; appears as the first element in some step in Ω.

The second bound on the right hand side of (7.14) follows by estimating the sum
on the right hand side of (B.I) exactly as was done in proving Lemma 2.6 in [7], so we
don't repeat that here.

The other bound in (7.14) follows by noting that if N = \Ω |, and L= ]Γ |s|, there
seΩ

is exactly one walk with M = 0, and its contribution to the sum is Ajfiis. Every walk
which contributes to (B.I) must have L ^ |i—j\. Furthermore, since any walk with a
step of zero length gives no contribution to the sum (Mn = 0), there are at most 2L2N

walks with fixed L. We bound factors of | An | " 1 by (1 - c) ~ \ and factors of JJ \ Ms |

by cN if L(Ω) g I , or by c^e~κL(Ω) if L(Ω) > I , where I is defined in (7.14* Thus,

+ Σ Σ (l-cΓ(N+1)cN

ie-
κL2L2N, (B.2)

and the first bound on the right hand side of (7.14) follows by summing the geometric
series.
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