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Abstract. A simple argument is given which excludes the occurrence of zero
eigenvalues of the transfer matrix in euclidean lattice gauge theories.

1. Introduction

If the transfer matrix T of a classical statistical mechanics is positive and has no
zero eigenvalue, one can associate to this theory a quantum theory where the
Hamiltonian H is defined by H= — inT. The positivity of T is implied by the
reflection positivity of the statistical mechanics; euclidean lattice gauge theories
have this property for the standard actions [1,2]. The absence of zero eigenvalues
of T in the thermodynamic limit, however, is an apparently hard problem which
remained unsolved over several years [3].

In striking contrast to the difficulties which complicate a direct proof, the
solution becomes simple if one formulates the problem in terms of the algebra of
observables of the quantum theory. This is possible for finite gauge groups and has
first been carried out in [4]. The argument follows:

The local transfer matrices TΛ implement (non-*-) automorphisms of the
algebra of local observables 31,

oelV) = ΓAAΓA-1. (1.1)

In a theory with finite range interactions these automorphisms converge to a
(non-*-) automorphism (χt of 31, which may be interpreted as time translation by
one unit in imaginary direction.

A ground state ω 0 is defined to be a state with

(i)

(ϋ)

Heisenberg fellow
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Local ground states (i.e. ground states with respect to α )̂ always exist. They are
ground states in the usual sense, corresponding to the highest eigenvalue of the
local transfer matrix. Their weak limit points for Λ/Zd fulfill the conditions (1.2),
thus also global ground states always exist.

Let ω 0 be a ground state in the sense of (1.2). In the GNS-representation π of 21
with cyclic vector Ω inducing ω0, one can define the transfer matrix T by

Tπ(A)Ω = πui(A)Ω, Ae<Ά. (1.3)

From (1.2), Tis a positive contraction with TΩ = Ω. Since αf is an automorphism of
SΆ and Ω is cyclic for 21, the range of Tis dense in the representation space f̂π, hence
T cannot have a zero eigenvalue. The inverse of T is densely defined and is given by
the formula

Γ"1π(i4)Ω = παΓ1(^)Ω, 4eSI. (1.4)

The inverse of at. i.e. the translation in negative euclidean time, has no simple
counterpart in the statistical mechanics. This might explain why this argument has
been overlooked before (as far as I know).

In the case of a continuous gauge group essentially the same argument applies,
but the unboundedness of the inverses of the local transfer matrices causes some
problems. I treat this case in Sect. 2. In Sect. 3 the equivalence of the algebraic
approach with the statistical mechanical approach is shown. In particular it is
proven that as a consequence of the DLR equations for the Gibbs state of the
statistical mechanics the associated state of the quantum system is locally normal
and is a ground state in the sense of Definition (2.17) below.

2. The Inverse of the Transfer Matrix

Consider the hypercubic lattice Έd,d^2 and a compact group G, the gauge group.
For each box Λ in Zd, B(A) denotes the set of positively oriented bonds and P(Λ)
the set of positively oriented plaquettes in Λ. The set of local configurations is

G A = Π Gb9 (2.1)

beB(A)

where for each b e B(A) Gb is a copy of G, and

Jf Λ =i? 2 (G Λ ), (2.2)
the space of square integrable functions on GΛ with respect to normalized Haar
measure, is the Hubert space of local state vectors. The algebra of local observables
in Λ is defined to be the algebra of all bounded operators in jfA:

2I(Λ) = ̂ pf Λ ) . (2.3)

If Λ1CΛ2, SίίAi) can be identified with a subalgebra of 2I(A2). Using these
identifications one can introduce the algebra of all local observables by

(2.4)
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The dynamics of the system is characterized by local transfer matrices TA e 9l(Λ)
which stem from, an euclidean action. As operator on Jδf 2(GA), 7^ has the following
integral kernel

Σ W ( P ) ) + 3 C W ( P ) ) ] + Σ x(gΦ)g\by
peP(Λ) beB(Λ)

(2.5)
where dg(p) denotes an element in the conjugacy class of the product oϊg(b) for the
bonds b in the boundary of p and where χ is a real continuous invariant function on
G of positive type.

TA is a positive operator of Hilbert-Schmidt class. It has no zero eigenvalue if
and only if in the expansion of eχ as a linear combination of simple characters each
character occurs with a positive weight. This condition is satisfied e.g. if χ is a
positive multiple of the character of a selfconjugate faithful representation of G [5].

We now want to prove that under this condition also the global transfer matrix
has no zero eigenvalue. For this purpose we try to define the imaginary time
translation αf. Since TA

 x is not bounded, in general we have to find a suitable
domain of definition for αf.

First we introduce the (non-*-) automorphism of 21 implemented by the
multiplication part of 7^:

β(A) = lim eKJ^xmp))Ae~KJ^ χ{d9ip)). (2.6)
Λ/Zd

Due to the compactness of the gauge group and the continuity of χ, β(A) exists for
all A e 91.

The convolution part of TA is also invertible, but the inverse is not bounded in
general. Let

e*=Σcξχξ (2.7)

be the expansion of ex as a linear combination of simple characters. Let Pξ(b)
denote the operator of convolution by χξ(g(b)) on ^ for b e JB(A). Then the
convolution part CΛ of TΛ is

CA= Π (ΣcξPξ(b)\, (2.8)
beB(Λ)\ξ )

with the (in general) unbounded inverse

CAA= Π (Σc^Pjb)). (2.9)

beB{\)\ξ )

Let

SΆ f(A) = [jPSΆ(A)P, (2.10)
p

where P runs over the set of projections on the finite dimensional subrepresen-
tations of the left regular representation of GΛ on J^A, and let

(2.11)
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For each bond b we define an automorphism γb on SΆf by

Vb(A) = Σ cfl xPlb)APζ{b). (2.12)

If A e 91/A) and bφB(A\ yb acts trivially on A. Therefore the limit

( (2.13)
beB(A)

exists for all AeS&p and γ is a (non-*-) automorphism of S&f.
Now we can define the imaginary time translation oct for all A e ®(αf) = β~ 1(<Άf)

by

(2.14)

Then for each A e ̂ (αf) and for Λ sufficiently large we have the relation

(2.15)

and α ^ ) is uniquely fixed by (2.15).
3f{μίj is a subalgebra of 91 with the following density property: for each Λ there

exists some Λx DA such that 9I(A) is contained in the w*-closure of ®(αί)n9l(A1),
considered as a subalgebra of the von Neumann algebra 91^). The inverse α_f of
αf has domain S(α_/) = jS(9I/) and is defined by

a.i(A) = β-1y-1β-\A). (2.16)

2{(X-i) has the same density property as ®(αt ).
A ground state of 91 with respect to α, is defined to be a locally normal1 state ω0

on 91 with

(i) ωoai(A) ωo(A),

(ii) 0 ^ ω ( ^ * α ( ^ ) ) ^ ω ( ^ * ^ )

for all A e ̂ (αf). Again, as in the case of finite gauge groups, weak limit points of
local ground states fulfill the relations in (2.17). However, it is not clear a priori that
these limit points are locally normal. Nevertheless, ground states always exist. This
will be shown in Sect. 3.

Let ω 0 be a ground state and (π, Jf, Ω) the corresponding GNS-representation
which is characterized by the relation

(Ω, π{A)Ω) = ωo(A), Ae<Ά. (2.18)

Then the transfer matrix T is defined as an operator in Jf by

. (2.19)

The density property of 3)(μ^ together with the local normality of ω 0 implies that
S){<x^Ω is dense in jf, hence T is densely defined. From (2.15) T is a positive
contraction.

1 We recall that a state ω on 51 is locally normal if for every Λ there exists some density matrix
ρΛ in jfA with ΎτρAA = ω(Λ) for all
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That T cannot have an eigenvalue zero is now obvious from the fact that its
inverse,

^ 9 (2.20)

is densely defined. We arrive at the following theorem.

Theorem. Let ω0 be a ground state o/2ί in the sense of Definition (2.17). Then the
transfer matrix has no zero eigenvalue.

3. Equivalence with the Statistical Mechanical Approach

The euclidean lattice gauge theory corresponding to the quantum system which
was introduced in Sect. 2 is defined on the hypercubic lattice Έd+1 with action
S^Σxidgip))- Euclidean fields are continuous functions / of finitely many bond

p

variables g(b). Let < > denote a Gibbs state of the system. This means that < >
satisfies the DLR equations [6,7]

</> = «/)> (3.1)

for all euclidean fields / and all finite sets of bonds L. Here mL(/) denotes the
function

mL(f) (9) = ZM'1 ί Π dg'(b)f(g^J^χ(mp\(b)=g(bhbφL, (3.2)
beL

where δ*L is the set of plaquettes which contain bonds of L in their boundary, and
where ZL(g) is fixed by the condition

mL(l)(g)=l. (3.3)

If / depends only on variables g(b) with beL, then

sup \mL(f) fo)| S const f dg\f(g)\, (3.4)
g

hence < > can be uniquely extended to i^-functions of finitely many variables.
Note that due to (3.1) < ) is automatically invariant under gauge transformations
[absence of spontaneous breakdown of gauge symmetry (cf. [8])].

A construction of a Hubert space and a positive transfer matrix is possible if the
Gibbs state < ) is translation invariant in the 0-direction and fulfills reflection
positivity at the hyperplanes x° = 0 and x° =\ in the temporal gauge (see e.g. [9]).
This condition can be described in the following way:

Let 3F denote the set of euclidean fields which are invariant under gauge
transformations at points not contained in the (x° = 0)-hyperplane. These
functions are fixed by their restrictions to the set <§t of configurations g satisfying
the temporal gauge condition g(b) = 1 for all bonds b pointing in the 0-direction. In
the following we shall identify the functions in 3F with their restriction to (SV By τn

we denote translation in ̂  by n steps in 0-direction,

(3-5)
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with gn(b)=g(b + n(l,O)), and by θ the operation

(θf)(g)=f(g*)> ge9t, (3.6)

with g\b) = g(&(by), where & denotes the reflection through the (x° = 0)-
hyperplane.

Let #+ C !F be the set of fields which depend only on bond variables g(b) with b
in the half space x°^0. Then the condition of reflection positivity at hyperplanes
(x° = 0) and (χ°=^), respectively, reads

(i) <(β/)/>£0,

(ϋ) < ( β / > / > £ 0

We recall that the physical Hubert space $ is the completion of
equipped with the scalar product (/ι + ̂ ,/+ t yί / ' ) = <(θ/ι)/>, where
Jί = {feβr+, <(#/)/> = 0}, and that the transfer matrix t is the positive
contraction in Jtf with

f (3.8)

(See e.g. [3]).
We now want to show that < > defines a ground state ω0 of the quantum

system (91, αf) of Sect. 2 such that there is a unitary operator U from the GNS-
Hilbert space ffl onto ^f such that

(i) UT=tU9
(3 9)

(ϋ) l / ( / ) / < 0 > ϋ V ' ^

for all multiplication operators /, where fi0)(g)=f(g(0)), #(ί), ieZ, denotes the
restriction of g onto the set of bonds in the (x° = z)-hyperplane, identified with Έd,
and / ( 0 ) acts by multiplication on PJJf (note that f^JίdJf).

Let A e9I(Λ). We associate to A two functions E±(A) e$F:

£+04)(g) =̂ Km (AΓAl)(^°>,g{X))/TAi(g^\g^),

Due to the finite range of interactions the limits exist and are reached already for a
finite Av Since TΛi is a Hilbert-Schmidt operator in J>fΛl with continuous integral
kernel, £+C4) and E_(A) are =έ?2-functions. For a multiplication operator /, one
has the relations

A),

£_(4f) = E_U)/(0)

We now set

ωo(A) = (E+(A)>. (3.12)

ω0 is a locally normal linear functional on 91. For the investigation of its properties
we use the following lemma.
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Lemma. Let A,BeSί(Λ), and let L be the set of bonds in {0} xΛ. Then

(i) ΘE+(A) = E-(A*)9

(ii) mL(E+(A)) = mL(E-(A))9

(iii) mL(E+(AB)) = mL(E_(A)E+(B)),

(iv) £

Proof. Let 4̂(#O5 #o) a n d B(9o-> 9o) denote the integral kernels of A and B, respecti-
vely, considered as operators on M"A. We use the abbreviations

Σ X(dgo(p)j\,
peδ*B(A) j

\beB(A)

T h e n for g e <&t9

= ί Π
° ' M(gl0ϊ)

-ί π ^

Now (i) follows from the fact that the integral kernel of A* is A*(g0, g'o) = A(g'o, g0).
(ii) is a special case of (iii) (B= 1). (iii) The mean mL has the form

mL(f)(g) = i
b L \g'{b) = g{b),bφL

Inserting for / E+(AB) and E_(A)E+(B), respectively, gives (iii). (iv) follows from
(3.10) and (2.15):

= τ1E_(A). q.e.d.

Theorem. ω 0 is a ground state of "21 with respect to at.

Proof Using (3.1), (3.7), (3.12) and the lemma, we find

hence ω 0 is a state. For A s

ω o α,μ) = <J5+(a,(,4))> = <τtE.(A)y = <E_(A)) = <E+(A)> = ωo(A),

so ω 0 is invariant under αf. Furthermore

where the 4 th equality sign follows from the lemma together with (3.1) for the set
Lί = {1} x B(A), since mLl(fh) = fmLl(h) iff does not depend on variables g(b) with
beL1. Since T is a positive contraction, ω 0 is a ground state, q.e.d.
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We now have the means to prove (3.9). Let

Uπ(A)Ω = E + (A) + Jf. (3.13)

We have

= \\π(A)Ω\\\

so U is an isometry. Moreover, for a multiplication operator / from (3.11),

Uπ(f)π(A)Ω = Uπ(fA)Ω = E+(JA) + Jί = / ( 0 ) £ + (A) + Jf =f{0) Uπ(A)Ω,

hence we have (3.9) (ii). Finally, for A e 2{<x^

thus (3.9) (i) follows from the density of π(^(αt ))ί2 in Jf. It remains to show that
jf? = ujήf. But U ffl is invariant under t and under multiplication with time zero
fields and contains (\ + JΓ\ thus &

4. Concluding Remarks

In this paper I treated only the case of a pure gauge theory. It is easy to see that the
same methods work in the case where a bounded Higgs field is coupled to the
gauge theory. For unbounded Higgs fields and for Fermi fields technical
complications may occur which have not been investigated so far.

The absence of zero eigenvalues of the transfer matrix is necessary for the
existence of a time evolution of the time zero fields. It does not imply, however, that
there is any trace of Einstein causality for this evolution. This is connected with the
open question whether the norm closure or at least the weak closure of the
quantum algebra of observables is invariant under time evolution. A clarification
of these points would be very important for a direct physical interpretation of
lattice gauge theories before the continuum limit has been performed.
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