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Abstract. It is proven that if a function / is Borel summable in some angular
region and has a non-vanishing derivative at the origin, then its reciprocal / ~1

is also Borel summable in a region which has essentially the same angular
extent.

Formal manipulations of divergent (or presumably divergent) power series are
frequently done when non-exactly solvable problems are treated through the
perturbation method, especially in quantum mechanics and in quantum field
theory. In some favourable circumstances, i.e. when the particular quantity to be
expanded perturbatively turns out to be a Borel summable function, these
manipulations can be justified by appealing to general properties of such functions.
Admittedly, for the most interesting cases, e.g. for the non-abelian gauge theories, it
is very unlikely that the Green functions (say) enjoy the required Borel
summability property [1]. In this context, it has been argued however [2], that a
proper use of renormalization group methods (especially through the freedom in
the choice of the renormalization scheme) might improve the situation, at least for
the quantities of physical interest, so that the issue seems (at least to us!) still
inconclusive1.

In any case, we believe that it is interesting to gather as many results as possible
about the general properties of Borel summable functions, which potentially may
give a firm basis to the above mentioned formal manipulations. This was precisely
the purpose of our work in [3]. In that paper however, an aspect of Borel
summability was not touched upon, namely the problem of inverting a Borel
summable function, which may be of some relevance in the renormalization
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1 To avoid a possible confusion, let us notice that we are using the expression "Borel
summable" in the full mathematical sense (and not simply to mean that the perturbation series is
formally Borel summable). This convention is not shared by all authors (for instance an explicit
distinction is made by Stevenson [2] who calls "Borel recoverable" a "Borel summable" function
in our acceptation)
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Fig. 1. The analyticity domain K(λ, R) of/(z). Also shown is an example of the integration path y
used in the proof of Eq. (10)

process and when one is dealing with power expansions in terms of a running
coupling constant [4]. The gap will be filled in the present paper, leading to a very
simple answer. Actually, it will be shown that the Borel summability of a function/
is preserved by inversion, with the only proviso that the first derivative of/does not
vanish at the origin (such a condition obviously must hold, in order to insure the
local invertibility of / at the origin). In particular, this trivially implies that the
coefficients of the asymptotic power expansion of/" 1 are obtained by inverting
formally the corresponding expansion of /. The precise theorem is stated and
proved below, within the notation of [3]. However, in order to make the present
account essentially self-contained, we first recall the definition of the relevant
classes of Borel summable functions.

Let K(λ, R) be the kidney-shaped region (Fig. 1),

K(λ,R)= U e*K(Q,R) (O^λ^i),

where K(Q,K) is the open disk Re(l/z)> l/R.

Definition. Given R,σ>0 and λ,f is said to belong to N — (λ,R,σ) if
i) /(z) is analytic in K(λ, R),

ii) /(z) admits there the asymptotic expansion

M-l

f(z)— Σ f z " + R (z), M = 0 !,...,

where the remainders i?M(z) are subjected to

\RM(z)\ £ A(λ9 R, σ)M! \σz\M Vz 6 K(λ, R),

(1)

0(z) is identified with/(z)].
The class Jf is then defined by

= Π
Q<R'<R

σ' > σ

(2)

(3)

(4)

The functions in Jf are known to be Borel summable, as a consequence of a
theorem of Nevanlinna [5]. Restricting now to (properly normalized) functions/
such that /'(O) φ 0, we have the

Theorem. Let fbea function in Jf — (λ, R, σ) with fQ = Q9f1 = l. Then there exists a
RI such that g=f~l is well defined in K(λ,R^), and a σv such that

(λ,Rι,σd (with g0 = Q, 9ι = l )
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Proof. First of all, Eqs. (2)-(4) imply that if /e Jf - (λ, R, σ\ then for any σf and R'
such that Q<R<R, σ'>σ,

\RM(z)\^AM\\σ'z\M VzeK(A,#0, M = 0,l,..., (5)

\fn\^Anlσ/n, n=l ,2 , . . . , (6)

where we have written A for A(λ, R, σ')

i) Univalence of f

In order to define /"*, one has first to show that / is univalent in K(λ,r) for
sufficiently small r.

Consider two distinct points z^ and z2 in K(λ, r), and their images uί =/(z1),
w2 =f(z2) Then, from Eq. (2) (with /0 - 0, Λ - 1),

u2-u1=z2-z1+z2

2ρ(z2)-z2

1ρ(z1), (7)

where ρ(z)~R2(z)/z2. It is an immediate consequence of the definitions that the
function ρ also belongs to Ji — (λ,R, σ). Now, Eq. (7) yields

il-r^ρίz^-ρίzOI, (8)

where we have used |zlt 2| <^ and |ρ(z2)| ̂ 2^σ/2 [Eq. (5)].|ρ(z2) — ρ(z1)| can also be
bounded from above in terms of |z2 — z t | by rewriting it as

^ιf sup ^(z)| , (9)
zeK(A,r)

where 7 is some rectifiable path of length /joining z1 to z2 in K(/l, r). According to
Theorem 4 (or 5) of [3], ρ e .yΓ — (/I, R, σ) implies the absolute boundedness of ρ' in
K(/l, r). Moreover, obvious geometrical reasons (Fig. 1) allow us to choose the
path 7 in such a way that /^|z2 — zj/cosλ. Thus, if λ<%9

2-Zί\, (10)

and

1 - 4Aσ'2r -- - r2 > 0 for r small enough . (11)
cos /t y

Therefore uίή=u2. Notice that is required (but not necessarily sufficient) to have

When Λ=f, the previous argument fails, and needs to be somewhat refined, e.g. as
follows:

- If ImZi Imz2 Ξ^ O, or if Rez l 5 Rez2 ̂ 0, the bound (10) remains valid with
I/cos λ replaced by 1.

- IflmZi •Imz2<OandRez1 Rez2^0, it is still valid with I/cos λ replaced by

1/5-



442 G. Auberson and G. Mennessier

Fig. 2. The set E0 defined in Eq. (13), when

- If Imz1 Imz2<0 and Rez1? Rez2^0, one necessarily has (say in the case
Imz^O)

ki l 2 \?2\2

Imzi > , Imz2< .
r r

Hence

Because of Eq. (12), this implies Im(w2 — w1)<0, and allows us again to infer that

The univalence of the function / restricted to K(λ, r) is thus established. As a
result, / is a homeomorphic mapping of K(λ, r) onto Ωr=f(K, (λ, r)), and /" 1 is
holomorphic in Ωr Notice also that 0 e Ωr.

ii) There Exists a Region K(λ,R}) Contained in Ωr

Let dΩr be the boundary of Ω r: dΩr=f(dK(λ, r)).
Clearly, dΩr is contained in the set

Eλ = {u\\u-z\^2Aσ'2\z\2,zedK(λ,r)} . (13)

Consider first £0, which appears as a crescent the boundary of which may be
obtained as the envelope of a family of circles (Fig. 2). It is easy to show (e.g. by
working with the variable ί/u) that E0 does not intersect the disk K(Q, R^), where
R1=r — 2Aσ/2r2. Next, by performing the rotations involved in Eq. (1), one finds
that Eλ does not intersect K^R^.

Thus dΩr, which is a Jordan curve entirely contained in Eλ, does not intersect
K(λ, R^). On the other hand, ΩrnK(λ, KJΦ0, since for z real and small enough,
|/(z)-z|^2τ4σ/2z2 implies |arg/(z)|<f. Then, as a consequence of the Jordan
theorem, the (connected!) region K(λ,Ri) is entirely contained in Ωr.
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in) Borel Summabίlίty of g =f ~1 \K(λ9 R^

Let us first define recursively the coefficients gn by the relations resulting from the
formal inversion of the series (2):

' (14)
-̂ n -̂ —\ r r

q= 1 pi + ... + Pq — n

and the remainders ΓM(u) by the formula

M-l

g(u)= £ gnu
n + ΓM(u) (ueK^RJ). (15)

One has to show that the ΓM(w)'s are bounded by expressions analogous to those of
Eq. (3). By inserting in Eq. (15) the #M's of Eq. (14) and the expression (2) of w =/(z),
one finds

lM~ιgU

m \ (16)

m = l m ' J

where R^(z) is the Mth order remainder of the function [/(z)]w. Now, according to
the Eq. (A.I) of [3], these remainders are bounded by

(zeK(λ,r)). (17)

In order to derive bounds on the coefficients gn, it is convenient to set

σ = Aσ'2 (18)

and to rewrite Eq. (6) in the weaker form:

l/Jgnlσ"- 1 , π = l , 2 , . . . . (19)

These inequalities are true because Eq. (6) together with fι = l imply Aσ'^l.
Using them in Eq. (14) yields

dl = l n-i } (20)
^ ^ I

* ~ q=i n J

where the numbers Sq

n are defined by

e#_ V n in f n f C~)\\on— 2^ Pi'P2'"'Pq'' I/1;

We then rely on the following inequalities, which are proven in the appendix:

n\
Sq

n<2— for all n=l,2, . . . and l^q^n. (22)

They lead to

n-l ff-q

Σ-τlfl.1, (23)
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which allows us to deduce recursively from Eq. (20),

"-1, n=l,2,.... (24)

Indeed, Eq. (24) is trivially true for gί9 and, if it is true for

Using now Eqs. (17) and (24) in Eq. (16), we obtain for M^2,

1 M-l

|ΓM(M)|^ — \σ'z\M Σ ml(M-m+l)\(9AσΓ
3σ m=ι

1 M-l

^T^Iσ/zlM Σ m!(M-m+l)!(9v4σ)M~1 (25)
3σ m =ι

M-l

Noticing that Σ m!(M — m+ 1)!^3(M!) and recalling Eq. (18), we arrive at

(26)

where

σ;=9XV 3. (27)

It remains to bound the right-hand side of Eq. (26) in terms of u rather than z. This
is easily achieved by observing that ueK(λ,R}) implies both

\z-u\^2Aσ'2\z\2 [since z = g(u)eK(λ,ry], (28)

and

\u\<R1=r-2Aσ/2r2 < —^ [in view of Eq. (12)] . (29)

Hence

-<2|ιι|, (30)
H /iO

and finally,

), M = 0,l,2,.... (31)

This means that

^eJV-^jRi^σ^ V σ x > σ . (32)

Therefore

flfe^ -CA,^^!), (33)

with

σ1 = 18 inf [A2(λ, r, σx)σ/3] . (34)
σ' > σ
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The proof of the theorem is completed.
Let us conclude by two remarks.
1. In the previous proof, no attempt has been made to optimize the values of

the parameters σ1 and Rίf For instance, there are numerical indications that the
factor of 3 appearing in Eq. (24) could be somewhat lowered. Also, the coefficient 2
in front of \u\ in Eq. (30) clearly can be made arbitrarily close to 1 by choosing Rλ

small enough.
2. In [3], besides ^Γ — (λ, R, σ), a larger class of Borel summable functions was

introduced, called Hf — (λ,R,σ). It turns out that no essentially new result
concerning /"* is obtained if / is taken in if — (λ,R,σ) rather than in
Jf — (λ, R, σ). This is because

W - (λ, R, σ) C Jf(λ', R, σ/sin(λ' - λ)) for all λ' > λ .

Appendix

Proof of the Inequalities

S«<2(w !/«!), n=l ,2, . . . ; l^q^n. (A.I)

We shall use the following recursive formula, which immediately follows from the
definition (21) ^+ι

Sqn^ Σ p!SΓp (2£q^n). (A.2)

a) Equation (A.I) is true for q = n, n— 1, n — 2.
Indeed, Sn

n = 1 , and for q = n - 1 Eq. (A.2) reads Sn

n~
 1 = Sn

n I \ + 2, a recurrence
easily solved to give

S;-1=2(n-l)<2w. (A.3)

One derives similarly

Sϊ"2 = 2n(π-2)<2n(n-l). (A.4)

b) Equation (A.I) is true for q=l,2, 3,

) (A.5)

(A.6)

"Σ pl(n-p)l = sumoί(n-l) terms ̂ (n-
p=l

p = 2 p = 2

= («-2)(n-2)! + sum of (n-3) terms ^2!(n-

(A.7)
n(n-l) 3

Thus

S.3<y, (A.8)

provided that n^β. But Eq. (A.8) is also true for n = 3, 4, 5 because of a).
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c) In the remaining interval 4 ̂  g rg π — 3, the proof proceeds inductively over
q. Assuming Eq. (A.I) to be true for S^ l~

1Vm^q— 1 and applying Eq. (A.2), one
obtains

'• (A.9)

Now, amongst the (n — q—l) terms of the second bracket, the largest one is
3! 0-3)!, since (4 -1)^3. Hence

so that we only need to show that the bracket of Eq. (A. 10) is not larger than 1. By
eliminating n in favor of r = n — q, the required inequality takes the form:

That Eq. (A. 11) is true is obvious if one rearranges it as

(r - 2) [q(q - 5) + r(r - 1)] + 2qr(r - 3) ̂  0 . (A.12)

Acknowledgement. We are indebted to G. Grϋnberg for raising the problem.
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