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Abstract. The relationships between topological charge quantization,
Lagrangians and various cohomology theories are studied. A very general
criterion for charge quantization is developed and applied to various physical
models. The relationship between cohomology and homotopy is discussed.

1. Introduction

Topology and geometry have been playing an important role in our current
theoretical understanding of quantum field theories. One of the most interesting
applications of topology has been the quantization of certain coupling constants.
In this article we present a very general framework under which one can
understand coupling constant quantization. Firstly, to argue that the correct
framework for analyzing topological quantization is the mathematical discipline
known as Cech cohomology. Secondly, to develop the ideas of Cech cohomology
by using familiar examples from physics.

We will see that Dirac's magnetic charge quantization condition [1], the
quantization of the coupling constant [2] in the Wess-Zumino Lagrangian [3], the
quantization [4] of the mass term in three dimensional Yang-Mills theory [5], and
the Bagger-Witten gravitational constant quantization [6] can all be formulated
within the same framework.

The mathematical formalism we will discuss is standard mathematics [7]
which is unfamiliar to most physicists. In this paper we stress the relationship of this
abstract mathematical formalism to the Lagrangian mechanics of physicists. We
will see that the origin of the quantization conditions is closely related to a famous
theorem from classical mechanics that states that two Lagrangians which differ by
a total derivative lead to equivalent dynamics. Generalizing some ideas of Wu and
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Yang [8] we will show how certain quantization conditions arise in arbitrary
dimensional manifolds. We will show that it is not very difficult to obtain a
quantization condition, and that quantization conditions do not have to arise
from group theoretic considerations. All our considerations will exploit well
established results in cohomology theory.

Many of the results of this article have been previously derived by using other
methods, mostly homotopy theory. In this article we will contrast homotopy with
cohomology theory. We will see that there are situations where the homotopy
arguments cannot be used but the cohomology arguments are applicable. If the
homotopy arguments are applicable then the cohomology arguments are also
applicable but the converse is not true.

We will not be explicit as to whether we are in Euclidean space or in
Minkowski space. The topological term is always chosen such that it contributes a
complex phase to the path integral.

This paper is organized in the following way. In Sect. 2 we discuss the familiar
Dirac quantization condition by modifying some ideas of Wu and Yang [8]. In
Sect. 3 we generalize the ideas of Wu and Yang to two dimensional field theories. In
Sect. 4 we introduce Cech cohomology and demonstrate that the ideas presented
in Sects. 2 and 3 can be incorporated into this framework. In Sect. 5 we return to
physics. We finish the article by contrasting homotopy and cohomology in Sect. 6.

2. Dirac's Quantization Condition Revisited

In this section, the familiar Dirac quantization condition is derived in a manner
illustrating Cech cohomological concepts. We will use a generalization of some
ideas of Wu and Yang [8], The methods of this section extend to higher
dimensional cases.

Consider the motion of a point particle on a two dimensional sphere with a
magnetic monopole residing at the center of the sphere. The classical Lagrangian
for this system is

_ _
L~ 2\dt) + 4e2*»v* + A* dt '

The term of interest for us is the coupling of the vector potential to the velocity of
the particle. This is the only term of topological interest and for the remaining part
of this section we will completely disregard the kinetic energy terms. We would like
to view this term as the line integral of the one form A = Aμdxμ along the trajectory
Γ of the particle:

U. (2.2)

This would be fine except for the fact that it is impossible to find an everywhere
non-singular vector potential over the entire sphere. Wu and Yang [8] pointed out
how to modify the Lagrangian to take this into account. Cover the sphere with a
collection of open sets °tt = {Ua}. On each open set choose a vector potential one
form AΛ. The subscript α on Aa is not a Lorentz index and refers to the open cover:
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Fig. 2.1. The worldline of the particle which begins at / and ends at F traverses two distinct
coordinate patches. The point P is in the intersection of the two patches

Aa = Aaμdxμ. Consider the situation depicted in Fig. 2.1 where one has a trajectory
Γ that goes through a non-empty overlap UΛr\Uβ. Let P be a point in the
intersection. Naively one would write the vector potential contribution to the
action as (remember that we are concentrating only on the term of possible
topological interest)

I — ί A + f A . (2.3)
p α /

The problem with this definition is that it depends on the choice of the point P. To
see this, consider another point Q in the overlap, construct IQ and compute the
difference IQ — IP:

I _/ — — j L4 — A ). (2.4)
p

We require knowledge of the gauge transformation on the overlap to evaluate
Eq. (2.4). On each overlap it is necessary to specify a gauge transformation ψaβ

satisfying
d\paβ = AΛ — Ao. (2.5)

Note that —ψ
transformation:

j = φ/te Equation (2.4) is entirely determined by the gauge

(2.6)

In particular the quantity I~
More explicitly, / is given by

is independent of the choice of point

F

Q

(2.7)

This is the correct form of the action which was given by Wu and Yang. It seems
to be a bit mysterious but its significance is more discernible by thinking about
quantum mechanics. According to the Feynman path integral formulation of
quantum mechanics [9], the effect of a vector potential on propagation is to
multiply the amplitudes by the exponential of Eq. (2.7). This is simply seen to be the
amplitude for propagation in patch Uβ, followed by a gauge transformation and
terminating with the amplitude to propagate in the new gauge in patch C/α.
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Fig. 2.2. A third coordinate patch is introduced. The points P and jR do not have to be in the triple
intersection

We now depart from the discussion of Wu and Yang and we ask the question,
"What happens in a triple overlap?". The situation is depicted in Fig. 2.2. Let us
temporarily forget Ur The action is given by Eq. (2.7). Remember that the value of
the action is independent of the location of β. Let us rewrite this term in such a way
that contribution to the line integral from the part of the trajectory between P and
R is expressed in terms of Ay only. By using the gauge transformation law for the
vector potential the action may be rewritten as:

(2.8)

This equation is reminiscent of the Wu-Yang prescription. It is of the form line
integral, gauge transformation, line integral, gauge transformation, line integral,
and a left-over piece. It is important to note that the left-over piece contains the
only reference to the point Q. The other pieces are just the Wu-Yang prescription
for going from patch Uβ to patch Uy and ending in patch (7α. We will see that the
left-over piece contains all the information required to obtain Dirac's quantization
condition.

The first piece of information we need is that the gauge transformations must
satisfy a consistency condition on triple overlaps. Consider the following three
equations:

^4 A =dw (2.9)

Add all three equations to obtain the result

To proceed further we need a special condition on the cover we chose for the
sphere. It is possible to choose a cover such that each Uδ is diffeomorphic to an
open ball, and each non-empty finite multiple intersection is also diffeomorphic to
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an open ball [7]. This means that the Poincare lemma is valid in each multiple
intersection. In particular, we reach the conclusion that on UΛr>UβnUγ one has

= c.*y, (2.11)

where cΛβy is a constant over the entire triple overlap. Therefore Eq. (2.8) is
independent of Q as required.

There is an important lesson that this exercise teaches us. The classical action is
ambiguous up to a constant. A priori, one could use the Wu-Yang prescription to
write an expression involving patches I7α and Uβ only, or write an expression
involving patches t/α, Uβ, I7r The difference between these two expressions is a
constant which does not affect the classical equations of motion.

This classical ambiguity leads to quantum mechanical inconsistencies unless
certain conditions are imposed on the collection of all {cΛβγ}. The best way to see
this is through path integral quantization. Consider the contribution of a
trajectory Γ to the non-relativistic propagator:

exp ίi] A
\r

(2.12)

The only ambiguity arises in how one decides to evaluate the vector potential line
integral. There is an ambiguous phase factor of exp(ίcaβy). Such a potential
ambiguity exists at each non-empty triple intersection of patches on the sphere.
The only way to avoid this mishap is to require that each phase factor be equal to
one. In other words one has to choose all caβy to be 2π x (integer). Later we will see
that this statement contains topological information about the manifold. It states
that if the manifold's second cohomology class contains the integers then a
consistent quantum theory requires an appropriate coupling constant to be
quantized. In fact, the collection {caβy} defines a two cocycle.

We now turn to the relationship of the {cΛβy} to Dirac's charge quantization
condition. Assume we integrate the magnetic field over the sphere. We would like
to write this surface integral as a sum of integrals over each of the coordinate
patches:

ί/=Σί F. (2.13)

This is not correct since one has overcounted contributions from the overlaps. Let
us subdivide the manifold into regions VΛ as depicted in Fig. 2.3. Since on each VΛ

Fig. 23. The subdivision of the patches Γ7α and Uβ into non-overlapping subsets VΛ and Vβ
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Fig. 2.4. The subdivision of a triple region into three non-overlapping subsets. Note that a
preferred point Q is introduced at the junction

the potential Aa is well defined, we are allowed to use Stokes' theorem and perform
the following manipulations:

J F = ίdAa= J Aa. (2.14)
Va VΛ SVoi

Along the common border of VΛ and Vβ there is a contribution to the total magnetic
flux through these two patches which may be expressed as the line integral of the
difference of the two vector potentials along the edge EΛβ, see Fig. 2.3. One can now
use the gauge transformation \pΛβ and Stokes' theorem to conclude that

f (AΛ-Aβ)= J vw
E*β &Eaβ

(2 15)

This contribution only depends on the value of the gauge transformation at the
endpoints of EΛβ. We are not finished because we have to worry about what
happens at triple intersections, see Fig. 2.4. Note that there is a contribution to the
total flux through the three patches which is given by

Each ψ arises from the corresponding edge. With a little work one can see that the
total magnetic flux is given by

ί7— V r/ *-Ίχβγ ? (2.17)

where the sum is over all triple overlaps with Vaβ7 = Ua n Uβ n U7 nS2. We conclude
that the total flux is given by

f 17 *•> _ \~* „. /o 1 Q\J r =2π 2* nΛβy, (2.1δ)

caβy = 2πnaβy. (2.19)

where the integer n is given by
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This is Dirac's quantization condition. We shall see that this condition generalizes
in higher dimensions. Note that the quantization arose because of consistency
conditions on triple overlaps of the different coordinate patches. There is a
connection between the ambiguity in the classical action and the total flux through
the sphere. In the case of a sphere, the construction given above is not necessary
since one can cover the sphere with two coordinate patches, see Wu and Yang [8].
The above construction is valid for any manifold.

In this example, one finds that no further conditions are imposed by looking at
quadruple or higher overlaps. This is not true in two dimensional field theories as
we will see in the next section.

3. A Field Theory Example

In this section we generalize the construction of Wu and Yang to the field theory
case. We will see that there is a topological quantization that occurs which is
closely related to the quantization of the Wess-Zumino term. Assume that
spacetime is a manifold S of dimension two with no spatial boundary. Possible
examples are S2, R x S1, or T2 = S1 x S1. The classical field is given by a map

φ:S^M. (3.1)

The manifold M can be very general. We are just working with the generalized
nonlinear sigma model. There will be various contributions to the Lagrangian but
we will study only a very special type of term. Assume that there is a contribution to
the Lagrangian which can be associated with a two form on M. More explicitly,
assume that there is a term in the Lagrangian of the form

/ . W Λ A Λ . (3.2)

The contribution to the action may be rewritten as

dφ\ (3.3)
φ(S)

where φ(S) is just the image of spacetime S under the field φ, and where T is given
by

dφ». (3.4)

This is analogous to what we did with the line integral of the vector potential in the
previous section. For our purposes one should always think of such a contribution
to the Lagrangian as being a differential form on the field manifold M and not as a
differential form on the spacetime manifold S.

The situation is more complicated. In general the differential two form T is not
globally defined on M. This means that one is going to have to subdivide the image
of spacetime φ(S) into distinct patches just as in the electromagnetic case. We will
do better by subdividing all of M into patches by choosing an open cover ̂  = { l/α}
of M. A mathematical theorem [7] says that we can choose the cover in such a way
that every non-empty finite intersection is diffeomorphic to an open ball in R"
where n is the dimension of M. Assume that there is a collection of locally defined
differential two forms {TJ, where Γα is the Lagrangian one has to use in patch C7α.
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Fig. 3.1. The evolution of a manifold with its spatial topology being a circle. The world sheet lies in
two distinct patches. It is subdivided into regions RΛ and Rβ with the edge being EΛβ

Thus far we are mimicking the electromagnetic situation. The key to a future
quantization condition is the following assumption. On a non-empty overlap Ua

n Uβ one assumes that the respective Lagrangians differ by the differential of a one
form Jα/J

TΛ-Tβ = dJΛβ. (3.5)

We will see that such a strong restriction imposes conditions on the manifold M.
The standard Wess-Zumino term is actually of this type. The transformation

properties of the Wess-Zumino term may be found in [10]. Remember that we
have chosen a cover of the manifold in such a way that the Poincare lemma is
always valid locally. Such covers are not usually chosen by physicists and one has
to worry about global topological considerations, see for example Wu and Yang
[8].

It is possible to generalize the Wu-Yang construction to this situation. For
simplicity, let us assume that the image of spacetime φ(S) lies entirely in the patches
C/α and Uβ as depicted in Fig. 3.1. By mimicking the construction of Sect. 1 one can
show that

ί TΛ- f
Rβ

(3.6)

is independent of where one chooses the boundary EΛβ. This is the generalization of
Eq. (2.7). This prescription is actually incomplete. We will have to do a further
modification to reach a satisfactory answer within the domain of classical field
theory.

We have to worry about what happens in triple overlaps. The situation is
depicted in Fig. 3.2. We will see that the introduction of the triple overlap
introduces some EΛβ dependence and a modification of Eq. (3.6) is required. The
modification is obtained by applying the ideas of Wu and Yang one more time. By
using the conditions on the overlaps one can rewrite Eq. (3.6) as

ST.- ί
K« £αv

ί T7- ί Jyβ +
Rγ Eγβ

Tβ- f (3.7)

The form of the above is reminiscent of Eq. (2.8). There is an ambiguity in the
classical action when one looks at triple overlaps. The above appears to depend on
EΛβ. In Sect. 1 we found that the ambiguity was a constant. In the present case we
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Fig. 3.2. The generalization of Fig. 2.2 to one higher dimension. Note that Ra and Rβ have been
subdivided into three regions R'a, R'β, and Rr Also note the new edges

Fig. 33. Integration region for studying the dependence of the action on the choice of edge

will have to work a little harder. Consider the following three equations:

Tβ-Ty=dJβy, (3.8)

By adding all three equations we conclude that

+ Jβy + Jya) = Q (3.9)

This is enough information to verify the independence of the action on Eaβ.
Consider a nearby loop E'Λβ. It is clear from Fig. 3.3 that

\(J-\-J-\-J):=\ ( « / + « / + « / ) (3 10)

In the above we used the information contained in Eq. (3.9) and Stokes' theorem.
Since the Poincare lemma is valid in the triple overlaps there exist distinct

functions Kaβy such that

dK β =J +J + J (3.11)

on the respective overlaps. The term involving Eaβ may be rewritten as

J dK^=^ KΛβy = 0. (3.12)

This vanishes since Eaβ is boundaryless.
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Fig. 3.4. The appearance of Y-junctions when one subdivides a two dimensional integration region
into three distinct non-overlapping sets

The triple overlaps analogous to the one dimensional case introduce no
ambiguities into the two dimensional field theory. This is unlike the electromagnet-
ic example of Wu and Yang. We will see that a more careful analysis of triple
overlaps requires some modifications of the Wu-Yang procedure. We must
analyze a new feature of two dimensional field theories which is not present in the
one dimensional example. A suitable modification of the Wu-Yang procedure will
lead to conditions on quadruple overlaps.

The new feature of the two dimensional field theory is the existence of Y
junctions when one subdivides the image of S, see Fig. 3.4. The Wu-Yang
prescription can be generalized in a simple manner to incorporate the physics of
the Y junctions. Assume that there are only two coordinate patches as in Fig. 3.5a.
The Wu-Yang prescription is applicable. We now analyze what happens when one
introduces a third patch Uy as in Fig. 3.5b. Note there are two Y junctions in the
figure. The Wu-Yang prescription may be rewritten as:

ί Ta- J Jaβ- j Jaβ+ ί Tβ- J
K'α Fl F2 R'β Eβ

Jβy+ ί Ty- ί
R'y Ey

It is clear that the correct way to define the action in the case of Y junctions is

J T.- ί Jaβ+ ί Tt- ί J..+ ί T.- ί Jyx-Kxβy(P).
Eβy

(3.14)

We have used the notation of Fig. 3.4. One can verify that a small movement of the
Y junction such as in Fig. 3.6 leaves the value of the action invariant. This is the
modification of the Wu-Yang prescription that is required.

Let us now see what happens when one introduces a fourth patch, Uδ, as in
Fig. 3.7. Equation (3.13) may be rewritten as

ί τa+ ί τβ+ ί τ7+ ί T,- ί Jαa- ί j,,- ί j*
R'oc R'β Rγ R'δ EΛδ Eβό Eγό

- ̂ (62) - KΛ* (63)

βyS(P) + Ky
(3.15)
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Fig. 35a. A schematic representation of Fig. 3.1. b Required subdivision of Fig. 3.5a when one
introduces a third coordinate patch Uy (not depicted). The integration regions Ra and Rβ have
been subdivided into three regions R'a, R'β, and R'γ. The latter being the circular region with
boundary EΛy and E7β. The edge EΛβ has been subdivided into F2, E'aβ and F t (going from top to
bottom). The two Y-junctions are at the points P^ and P2 and do not include the edge E'Λβ

Fig. 3.6. A small movement of the Y-junction

The last line is a constant (independent of P). This may be derived by adding cyclic
permutations of Eq. (3.11). We learn that just as in the electromagnetic case the
classical action is defined up to an additive constant. A path integral quantization
immediately tells us that a consistent quantum theory is only possible if

Kaβy(P) + Kβyδ(P) + KyδΛ(P) + Kδ (3.16)
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Fig. 3.7. Introduction of a fourth coordinate patch into Fig. 3.4. The jR regions have been sub
divided into Rf regions

where the π's are integers. Conditions have to be imposed on quadruple overlaps.
Namely, one has to be able to choose a collection of integers naβyδ on any good
cover of the manifold.

Finally, we mention that there is an analogue of the magnetic field in this
problem. Consider the three forms {dTa}. This collection defines a global three
form ^ as may be seen by noting that on an overlap dT(X = dTβ. Therefore, one can
define ^ as the differential of Tα on each coordinate patch. If one calculates the
"flux" by integrating ^ over a boundaryless three dimensional region then one
discovers that the total flux is given by the sum of 2πnaβγδ over the patches that
intersect the region of interest.

We have seen that the two dimensional field theory is very similar to the
electromagnetic example except that certain modifications must take place. These
ideas can be generalized to arbitrary dimensionality for spacetime. If spacetime is a
d dimensional manifold then one has to impose conditions on (d + 2)-fold overlaps
to understand the quantum theory.

It is possible to discuss the higher dimensional cases using the methods
described in this section. This becomes extremely tedious. There is a very useful
way of cataloguing all this information using a branch of mathematics called Cech
cohomology. The next section introduces the ideas of Cech cohomology using these
examples as a motivation.

4. Cech Cohomology

Cech cohomology is the correct language for formulating the examples presented
in the two previous sections. The machinery of Cech cohomology provides a
means of cataloguing the necessary information required to extract the physics. In
this section we will explain the relationship of Cech cohomology to the topology of
the manifold, and we will also explain the cataloguing procedure. We will not
present Cech cohomology in its most abstract setting. The general theory will be
stripped down to a level sufficient to attack and solve the problems addressed in
this paper. We assume the reader is familiar with the elementary aspects of
simplicial homology [11, 12]. Namely, the concept of simplices, the existence of
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t/o

Fig. 4.1. Triangulation of a circle with vertices v0, vl9 and v2

triangulations of a manifold, the notion of a chain (the formal sum of simplices),
and the concept of the boundary of a chain. A brief example is provided below.

For our purposes, simplicial homology is the study of the triangulations of a
manifold. Simplices are generalizations of triangles. For example, a zero-simplex is
a point, a one-simplex is a segment, a two-simplex is a triangle, a three-simplex is a
tetrahedron, etc. The allowed triangulations of a manifold are determined by the
topology of the manifold. Small deformations of the manifold will not change the
triangulation. A triangulation of the circle is presented in Fig. 4.1. Note that there
are three vertices v0, vl9 and v29 and three one-simplices V^VQ, v2vi9 and v0υ2. There
are no two simplices since the circle does not include its interior. A simplicial zero
chain is a formal linear combination of vertices with integral coefficients. For
example, consider the zero-chain vQ + l2vi — 496v2. Likewise a simplicial one
chain is a linear combination of the one-simplices. For example, consider the one-
chain 2v1v0 + 5v2v1 — I3v0v1. The simplices are oriented. This is expressed by the
definition that v0v1 = —V^VQ. The simplicial boundary of the one-simplex V^VQ is
given by d(υ1v0) = v1 — v0, where d denotes the boundary operator. A cycle is a
chain c with no boundary dc = 0. A boundary b is a chain which is the boundary of
another chain b = dc'. The boundary operation satisfies 32 = 0.

It is clear that the topology of the manifold will determine the allowed
triangulations and that there are many possible triangulations. What is remark-
able is that there are certain invariants which are independent of the
triangulations. These invariants are the homology groups. The homology groups
are equivalence classes just like the homotopy groups. Two chains c± and c2 are
homologous if they differ by a boundary, c1 — c2 = dc/ for some c'. Geometrically
this means that one can fill up the region between the chains as illustrated in the
annulus example of Fig. 4.2. In other words, there are no holes in between the
chains. Naively, the homology groups count holes in a manifold. They also count
more complicated objects such as twistings as may be seen by studying the
example of a project!ve space. Let ZΛ

p be the set of all p-cycles in a triangulation of a
manifold M. The triangle is used as a reminder that these are defined by
triangulations. Let B* be the set of all p-chains which are boundaries. Note that
since d2 = 0 one has BpCZ*. Both these objects are abelian groups under addition.
The equivalence classes under homology are given by looking at the quotient
HΔ

p(M} = ZΔ

p/BΔ

p. HΔ(M) is called the p-th sίmplicίal homology group of the
manifold. It is a triangulation invariant and thus it is determined by the topology.
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Fig. 4.2. Annular region bounded by chains c^ and c2

Fig. 43. A good cover for a circle. The three open sets are depicted externally for visualization
purposes only

It is worthwhile to point out at this stage some differences between simplicial
homology and homotopy. It can be shown that if M is a manifold of dimension n,
then Hp(M) vanish for p>n. In other words, there are no nontrivial chains of
dimension exceeding the dimension of the manifold. This is not true in homotopy.
For example, the Hopf fibration [7-13] which is responsible for ordinary
monopoles shows that π3(S2) = Z. Homotopy is not a statement about there being a
nontrivial three sphere in the two sphere. It is a statement about maps from the three
sphere into the two sphere. Homology is the one that tells us that there are no
nontrivial three dimensional chains in the two sphere. We will see that the
topological charge quantization condition may be stated without reference to
homotopy.

We will formulate Cech homology in a way that the connection to simplicial
homology will be explicit. In all the manifolds we will consider it is always possible
to choose an open cover (% = {Ua} such that each open set and each non-empty
finite intersection is diffeomorphic to an open ball in Rw [7]. We will refer to these
covers as good covers. At this stage we have already tailored Cech theory to the
some specifics we require. Figure 4.3 illustrates such a cover for a circle. Note that
a good cover for a circle requires at least three open sets. A major benefit of a good
cover is that on each intersection the Poincare lemma holds.

On each non-empty finite intersection define objects Uaβ, UΛβγ, Uaβγδ, etc. by

(4.1)
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Fig. 4.4 a. An open set and its associated vertex, b Two intersecting open sets and the associated
segment, c Triply overlapping sets and the associated triangle

We define a formal orientation by requiring that Uaβ = — Uβa, and likewise for the
other objects. This good cover of the manifold defines a simplicial triangulation of
the manifold. This is illustrated in Fig. 4.4. In each open set Ua we choose a point in
the interior, see Fig. 4.4 a. These points define the vertices of the triangulation. To
each non-empty intersection we associate a one simplex, see Fig. 4.4 b. To each
non-empty triple intersection we associate a two simplex, see Fig. 4.4 c. It is clear
that the combinatorics of a good cover defines a simplicial triangulation of the
manifold.

By analogy one can define a Cech homology theory for the cover. The p-chains
CP(W) are defined as formal linear combinations with integer coefficients of the
"p-simplices" {UΛoaι...Λ }. The ̂  is used to remind one that there is a dependence
on the cover. One can define a boundary operation d by dUΛβ = UΛ— Uβ9 and so
forth for the higher chains. The p-cycles Zp(<%) are the p-chains whose boundary is
zero. The p-boundaries Bp(tfί) are the p-chains which are the boundary of a (p + 1)-
chain. One can show that d2 = 0. It follows that BP(W) C Zp(<%). One can define the
p-th homology group by = Zp(W)/Bp(

(%). Since a good cover determines a
triangulation, we must have that HP(M) = HP(M). The homology group
is independent of the cover.

We motivated Cech homology by showing that it was related to simplicial
homology. It is clear that the entire Cech homology machinery can be developed
without ever referring to simplicial homology. It is not necessary to use a good
cover. A good cover is the easiest way to see the relation to simplicial homology.
Let us temporarily forget about the existence of simplicial homology. The allowed
open covers for a manifold are determined by topological considerations. The
Cech homology theory is determined by the combinatorial properties of the cover.
Namely which cycles are not boundaries, etc. Therefore Cech homology contains
topological information. It is a theorem that the Cech homology groups are
independent of the cover1 one chooses [7]. There is a second theorem that asserts
that the Cech homology groups are the same as the simplicial homology groups
[7].

1 To obtain Cech homology groups which are independent of the cover one must take a direct
limit, see [7]. If the cover is a good cover then the direct limit is not necessary
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Our main interest is not Cech homology theory but Cech cohomology theory.
We will actually be dealing with cohomology with coefficients in a pre-sheaf but all
this fancy language just obscures the main ideas. For our purposes, Cech
cohomology provides a systematic way of cataloguing information and a
systematic way of dealing with singular field configurations by avoiding the
singularities. We will see how the ideas discussed in the two previous sections may
be discussed in the language of Cech cohomology.

A p-chain with values in q-forms is an assignment of a nonsingular q-form to
each p-chain. As an example consider the problem discussed in Sect. 2. In that case
we assigned to each open set Ua a vector potential Aa. The collection {Aa} is a zero
cochain with values in one forms. We required that on I7β the vector potential AΛ

be nonsingular. Aa may be singular somewhere outside of I7α. This singularity is
the famous Dirac string singularity. The collection of gauge transformation {ψaβ}
defines a one cochain with values in the zero forms. In the two dimensional
example of Sect. 3, we assigned to each open set a two form. Therefore the
collection {TJ defines a zero cochain with values in the two forms. Likewise, the
collection of the transition functions {JΛβ} defines a one cochain with values in the
one forms.

We introduce some notational conventions. The p-cochains with values in the
q-forms will be denoted by C7(̂ , Ωq). This notation explicitly shows the
dependence on the good cover tfl. The set of all Cp(<%, Ωq) is related to the singular
differential forms on the manifold. Note that the definition of Cp(<%, Ωq) requires
the forms to be nonsingular only on the associated chain. They can do whatever
they want outside the chain. These objects are a subset of the singular differential
forms on a manifold. It is clear from the examples of Sect. 2 and 3 that these are the
objects which are of central importance to the question of topological charge
quantization.

Let us try to answer the following question, "When does a zero cochain define a
global differential form?" Consider a zero cochain {λa} e C°(Φ, Ωq). The zero
cochain specifies a q-form on each open set in the cover. Assume UΛβ φ 0, then on
the overlap UΛβ one must have λOL — λβ = 0. If not then λΛ will not extend to λβ. One
can define a global differential q-form Λ*lobal y an(j onjy y |^__^} vanishes
identically. Note that the collection {λa - λβ} defines an element in C1 (Φ, Ωq). This
already gives us an inkling on what Cech theory will do for us. It will in certain
situations allow us to piece local information into global information. We will see
that Cech cohomology provides a systematic way for determining when local
information can be pieced into less local information.

The coboundary operator δ is an operation between p-chains and
(p + l)-chains:

δ:CP(W, Ωq)-+Cp+1 (% Ωq). (4.2)

It is defined as follows for small values of p:

(4.3)

, (4.4)

•5 {Cxβy} = {Cxβy + Cβy, + Cydx + CSaβ} . (4.5)
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The generalization to larger values of p is straightforward. One can show that the
coboundary operator satisfies <52 = 0. For completeness but not central to this
exposition is the fact that the coboundary operator is the transpose of the
boundary operator of Cech homology theory. This may be seen by noticing that a
cochain is a linear operation from the space of chains into the space of local
differential forms and therefore one can define a transpose to the boundary
operation. The nilpotency of δ allows us to define a cohomology theory. We define
the p-cocycles Zf(Φ, Ωq) as those elements of Cp(%, Ωq) that are annihilated by δ.
A p-cocycle z is said to be exact if one can find a (p — l)-cochain y such that z = δy.
The p-coboundaries Bp

δ (<%, Ωq) are the image of Cp~ 1 (W, Ωq) under δ. One has that
Bp

δ(<%, Ωq)cZp

δ(<%, Ωq). This allows us to define cohomology classes
Hp

δ (91, Ωq) = Zp

δ(W, Ωq)/Bp

δ(qi, Ωq). Warning: these are not the objects that we will
refer to as Cech cohomology classes! In fact we will see that these H$(W, Ωq) are
mostly trivial. This will play a central role in our discussion.

To see that the Hp

δ(9l, Ωq) are trivial it is necessary to introduce a partition of
unity. A partition of unity is a collection of functions {pa}, one function associated
with each open set, satisfying the following properties:

2. ΣΛpΛ=l

3. pa has compact support in Ua.

Assume that { JΆβ} is in Z£( ,̂ Ωq\ i.e., d {JΛβ} = 0. It is a remarkable fact that every
p-cocycle with p > 0 is exact. To see how this comes about let us study our example
with (5J = 0. The cocycle condition on J states that

{J«β + Jβy + Jy«}=Q. (4.6)

Define a one cochain K by

y . (4.7)

Compute the coboundary of this cochain

+ Jyβ)Py\ = Σ^Py = {Jtf} - (4.8)

In the above we used cocycle condition (4.6) and the antisymmetry in the indices. In
fact we have explicitly demonstrated that J is exact.

This construction generalizes to an arbitrary p-cocycle {Jαoαι...α } with p>0.
We can construct a (p-l)-chain K such that J = δK. Define K by

(4.9)

It is a straightforward exercise to verify that J = δK. Since for p > 1 we have that
every p-cocycle is exact, the corresponding cohomology groups H$(%, Ωq) must
vanish. This theorem is similar to the Poincare lemma for the exterior derivative.
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We will occasionally refer to it as the Poincare lemma for the δ operation. The
proof of this lemma does not depend on fy being a good cover.

The only case that remains is the case of /? = 0. We already discussed this
situation. The zero cocycles are the global differential forms. There are no zero
boundaries, therefore #°(̂ ? Ωq) = Ωq(M). One can use the following convenient
device to provide a unified picture. Notice that a p-cochain has (p-i-1) indices. A
global differential form should contain zero indices since it is defined independent
of the cover. The global differential forms Ωq(M) may be identified with
C"1^, Ωq). Given a zero cocycle one can use (4.9) to "write down" the global
differential form. Notice that there is no δ operation from C"1^, Ωq) to
C°(*, Ωq). The corresponding operation is just the restriction of the global
differential form to the open sets of the cover.

The machinery we have just presented is just a means of piecing together local
information. For example, when can one piece together information on triple
overlaps to construct quantities on the larger double overlaps? When one is given
a two cocycle.

The final piece of formalism we need is the tic-tac-toe box [7]. We will be
studying the so called double chain complexes. Note that the objects we have been
discussing Cp(%, Ωq) are indexed by two integers. It is very convenient to arrange
these in a table. We follow the conventions of Bott and Tu [7]. Unfortunately the
index p is the column number and the index q is the row number. Note that there
are two commuting operators that act on the entries in the box. Horizontally one
has the coboundary operator δ. Vertically one has the exterior derivative d. The
leftmost column and the bottom row are used only for identification purposes.

Ω3

Ω2

Ω1

Ω°

d ί

δ ->

Ω3) Cl(

Ω2) C1*

Ω1) C x(

Ω°) CH

Ω3) C2(

Ω2) C2(

Ω1) C2(

if, Ω3)

^,Ω2)

^Ω1)

Ω3)

Ω2)

Ω1)

(4.10)

C° C1

The abstract discussion of the tic-tac-toe boxes might not be very compre-
hensible at a first reading. It is suggested that the reader follow the examples that
follow the abstract discussion. These examples are just the examples of Sects. 2 and 3
using the tic-tac-toe boxes as an accounting device.

The corresponding δ-cohomology for each of the entries in the above box is
given by the box directly below:

(4.11)

Ω3

Ω2

Ω1

Ω°

d t
δ ->

Ω3(M)

Ω2(M)
Ω^M)

Ω°(M)

C°

0
0

0
0

C1

0

0

0

0

C2

0
0
0

0

C3
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Let us look at the action of d for a second:

, Ωq+ί). (4.12)

Since d2 = 0 one can define a cohomology theory with respect to d acting on the
Cp(fli, Ωq). This operation moves us vertically. We can define the corresponding
cohomology groups. The closed local differential forms ZJ(Φ, Ωq) are those
elements of Cp(ύlί, Ωq) that are annihilated by d. The exact forms Wά(^U, Ωq) are the
image of Cp(^, Ω*"1) under d. We can define cohomology groups by

q) = Z%(<%, Ωq)/B%(<%, Ωq). Most of these cohomology groups will vanish:
l, Ωq) = 0 for q = Q. Each non-empty multiple intersection of open sets is

diffeomorphic to an open ball, and therefore the Poincare lemma is valid. Every
local closed q-form, q > 0, is locally exact. The exactness stops at the bottom row
where the closed zero forms Z5(<$f, Ω°) are given by locally constant functions
according to the Poincare lemma. Let us denote these objects by Cp(ύiί, R). To be
more explicit we note an element of Cp(tfl, R) is a collection {cαoβl_βp}, where each
element in the collection is a real number. The d-cohomology of the tic-tac-toe box
may be represented by the following diagram:

Ω3

Ω2

Ω1

Ω°

d T
s -»

0

0

0
C°(aU, R) <

C°

0
0

0

"l(qi, R) <

C1

0

0
0

C2(*, R) <

C2

0
0

0

C13^, R)

C3

(4.13)

For computational purposes it is convenient to write down an extended
tic-tac-toe box. We will see the utility later. The external row and the external
column next to the bars may be labelled by the index — 1.

Ω3 Ω3(M)

Ω2 Ω2(M)

Ω1 Ωl(M)
Ω° Ω°(M)

</

ί
T

Ω3) C1^, Ω3)

Ω2) C1^, Ω2)

Ω1) CH*, Ω1)

Ω3)

Ω2)

Ω1)

,Q3)
,Ω2)

.O1)

(^r, R) C1^, R) C2(*, R) C3(*, R)

C° C1 C2 C3

(4.14)

The corresponding Poincare lemmas may not be used on the external entries.
As far as the external column is concerned not every closed global differential form
is exact. This means that the external column has a non-trivial d-cohomology. This
cohomology is the standard cohomology of differential forms which is called
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DeRham cohomology and it will be denoted by H^R(M). The situation is more
subtle on the external row. The objects of the bottom row are locally constant
cochains. If c e Cp(^, R) is a locally constant cocycle, then applying the
prescription of the δ Poincare lemma would lead to a cochain which was not
locally constant. Remember that one has to multiply the cocycle by the
corresponding partition of unity element. Since the ρα are not constant, the
constructed element will not be locally constant and thus is not in Cp~l(W, R).
The conclusion is that the external row has a nontrivial <5-cohomology just like the
external column. The cohomology of the external row is called the Cech
cohomology of the manifold (with real coefficients), and it will be denoted by
HP

C(M, R). There is a theorem [7] that states that the Cech cohomology classes are
independent of the cover and only depend on the manifold.2 We will eventually
show that the DeRham cohomology and the Cech cohomology are isomorphic.
Before addressing this important question we turn to a demonstration of the utility
of the tic-tac-toe boxes.

Consider the example of the magnetic monopole. It will not be necessary to
assume that the electrically charged particle moves on the surface of a sphere. The
configuration space for the trajectory of the particle may be any compact manifold
without boundary. In the box below we have included the vector potentials and the
transition functions,

Ω3

Ω2

Ω1

Ω°

d t
δ ->

{A,}

{ψ«β}

c° c1 c2 c3

(4.15)

Let us apply the d and the δ operations to the elements in the above box. We
can operate again with d and δ and get zero since these operators are nilpotent.
Notice that one of the entries is the gauge transformation law.

Ω3

Ω2

Ω1

Ω°

d T
δ -»

0

{dAa} 0

{A,} δ{A} = {dψ]

{ψ,β}

C° C1

\ o
δ {ψxβ} 0

C2 C3

(4.16)

A precise statement of the theorem requires the notion of a direct limit, see [7]
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Define quantities Fα by Fα = dAa, and caβy by δ {ιpΛβ} = {cΛβ7}. The above box thus
becomes:

(4.17)

We immediately learn that the Fa is d-closed and it is also a zero (5-cocycle. The
means that Fα defines a closed global differential form F, the electro-magnetic field
strength two form.

The other piece of information we learn from the tic-tac-toe box involves the
{cΛβy}. These objects are d-closed and they define a two cocycle. Since locally closed
zero form is given by a constant, the {cΛβy} must define a two cocycle in C2(<^, R).
All this information is shown in the box below.

Ω
3

Ω
2

Ω
1

Ω°

d 1

δ ->

0

{F,} 0

{A,} δ{A} = {dψ} 0

(VM> ω o

c° c
1
 c

2
 c

3

Ω3

Ω2

Ω1

Ω°

d

δ

0

F

T
— >

0
{JFJ 0

{AΛ} δ{A} = {dψ} 0
•fl/) r \C c 0

{c } 0

c° c1 c2 c3

(4.18)

The main conclusion is that given a collection of vector potentials {AΆ} and
transition functions {φα/?}, the gauge transformation law δA = φ, one can construct
a closed global two form F and a locally constant two cocycle c. F is a
representative of the second DeRham cohomology class. The two cocycle c is a
representative of the second Cech cohomology class of the manifold. Later we will
see that there is an isomorphism between the DeRham classes and the Cech classes.
Remember that the total magnetic flux through the manifold was determined by
the {cΆβγ}. There several notes of interest. The total magnetic flux through the
sphere was determined by conditions on triple overlaps. Quantum mechanics
imposes a further condition on the cocycle {cαβγ}. The c's must be 2π x (integer).
This imposes a severe restriction on the cohomology classes. The integers TL are a
subset of the real numbers JR. One can define objects {nα/?y} to be integer valued
cochains instead of real valued cochains. The set of the integer valued p-cochains
will be denoted by Cp(<%, ΊL). It is clear that (7(̂ , Έ) is a subset of CP(W, R). Since
the δ Poincare lemma does not apply to real valued cochains then it certainly does
not apply to the integer valued cochains. Therefore, there will be non-trivial
cohomology in Cp(^, TE). These cohomology classes are called Cech cohomology
classes with integer coefficients and they will be denoted by #£(M, Έ). Quantum
mechanics requires that the cocycle (cαjSy/(2π)} must be integral. The existence of
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such a cocycle is determined by whether or not the manifold in question admits
integral cocycles in its second Cech cohomology class, i.e., ΈcHc(M, Z). The
existence of such integral cocycles is determined by the topology of the manifold.
The magnetic flux will be quantized if the manifold admits a second cohomology
class with integer coefficients that contains the integers.

The situation becomes more interesting when one looks at the two dimensional
example. In the tic-tac-toe box below we have included the Lagrangian and its
gauge transformation properties.

Ω4

Ω3

Ω2

% *•» (4.19)

d
δ C° c4

First we record the consequence of multiple d and δ operations. This is show
the box below:

Ω4

Ω3

Ω2

Ω1

Ω°

d t
δ ->

0
TO o
{T,} δ{Ta} = {dJa

{J*β}

c° c1

β} o
δ{J} 0

c2 c3 c4

(4.20)

One of the pieces of information we have is that δJ is closed, dδJ = 0. This follows
from the commutativity of the two operations. The tic-tac-toe box automatically
takes this into account. Since δ J is closed and since the cohomology is trivial, there
must exist a K e C2(^, Ω°) such that J is its differential. This is illustrated in the
box below

Ω4

Ω3

Ω2

Ω1

Ω°

d ΐ
δ -*

0

TO o
{ΓJ δ{Ta} = {dJa

{Jxβ}

C° C1

β} o
δ{J} 0

{K}

c2 c3 c4

(4.21)
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Applying the d and δ information to the box above we find:

301

Ω4

Ω3

Ω2

Ω1

Ω°

d T
δ ->

0
{dT.} 0
{ΓJ δ{Tx} = {dJa

{J«β

C° C1

β} o
<5{J}
/ t^\1 /

C2

0

δ{K}

C3

0

C4

(4.22)

We learn that δK is a closed three-cocycle. This cocycle is represented by constant
cocycle {cΛβyδ} = δK. The other piece of information we need to know is that {dTΛ}
defines a closed global differential form .̂ This is all depicted in the box below.

Ω4

Ω3

Ω2

Ω1

Ω°

d
δ

0

9

T
-»

0
{dTa} 0

{TJ 5{TJ = {dJβ

{Jaβ}

C° C1

#} °
δ{J}

{£}

C2

0
5{K}

\C<zβγδ}

C3

0

0

C4

(4.23)

Just as in the electromagnetic case, the Lagrangian and its gauge transfor-
mation law determines a closed global differential form and a locally constant
cocycle. It is also clear from previous discussions that the integral of ̂  over a
boundaryless three dimensional region will be given by the sum of the cΛβyδ that
belong to a covering of the region. A consistent quantum theory requires that the
cochain be integral. The quantum mechanical theory can only be defined on a
manifold whose third Cech cohomology class with integer coefficients contains the
integers.

We have seen that the tic-tac-toe boxes and the ideas of Cech cohomology are
the correct way to phrase the ideas of Sect. 2 and 3. It is clear that these ideas
generalize to higher dimensional situations. We now turn to some more
mathematics and in Sect. 5 we return to physics.

We will now illustrate how one shows the equivalence of DeRham cohomology
and Cech cohomology. We work out the simplest non-trivial case since all the
more complicated cases use the same techniques. Assume one is interested in the
second DeRham cohomology class of the manifold. Let F be a representative of
this class. Note that F is closed. This is shown below.
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Ω3 0

Ω2 F

Ωl

Ω°

d t
δ -»

(4.24)

C° C1 C2 C3

We can move F to the inside of the box by defining Fα to be the restriction of F to
UΛ. Notice that the global nature of F is explicit.

Ω3 0

Ω2 F

Ω1

Ω°

t

0

(4.25)

C° C1 C2 C3

Next we use the fact that the Poincare lemma can be used inside the box to define
objects Ax.

Ω3 0

Ω2 F

Ω1

Ω°

d t

0

0

C° C1 C2 C3

(4.26)

We apply δ twice to obtain:

Ω3 0

Ω2 F

Ω1

d

δ
t

— > C° C1 C2 C3

(4.27)
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We can use the exactness of d inside the box to find objects ψaβ such that
} = δ{AΛ}. This is shown below.

Ω3

Ω2

Ω1

Ω°

d

δ

Applying δ twice we find:

Ω3

Ω2

Ω1

Ω°

d
δ

0
F

t
-»

0
{FJ 0

μj δ{A} o
ίvw)

c° c1 c2 c3

0
F

T
— >

0
{FJ 0

μj δ{A] 0

{Vα,} ^{V) 0

c° c1 c2 c3

(4.28)

(4.29)

We conclude that δψ is a constant two cocycle {cΛβy} in C2 (% R). The two cocycle
defines an element in H^(M, R). Summarizing, we have shown that given an
element in the DeRham cohomology class one can construct a element in the Cech
class by zig-zagging through the box.

One can use the same type of tricks to show that given an element of the Cech
cohomology class one can construct an element of the DeRham class. The only
thing that remains is to show the one to one nature. For example, this requires
showing that something which is zero in DeRham cohomology leads to something
which is zero in Cech cohomology. The zero element in DeRham cohomology may
be represented by an exact global differential form. One now uses this differential
form to start a zig-zag pattern through the box and deduce the existence of a b such
that c = δb. One can also prove the converse in a similar fashion.

In conclusion, we have illustrated how one proves the isomorphism between
DeRham cohomology and Cech cohomology. We emphasize that every DeRham
cohomology class can be represented as a Cech cohomology class, and every Cech
cohomology class can be represented as a DeRham cohomology class.

There is something that one learns by looking at the zig-zag patterns used in
proving the equivalence of the cohomology theories. The cohomology representa-
tive determines the local Lagrangians {TJ, the gauge functions {Jαβ} and the
transformation law δ{T} = {dJ}. We had previously shown the converse in our
discussion of the examples of Sects. 2 and 3.

We finish this section with a discussion of the relationship of Cech cohomology
with integer coefficients to Cech cohomology (with real coefficients). The
relationship is given by something called the universal coefficient theorem [7; 14].
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We will not prove this theorem but we will apply it to the case at hand. Remember
that if V- and W are vector spaces then one can define the tensor product V ® W. If s
is a scalar then in an obvious notation one has (sv) (g) w = v ® (sw) = s(v ® w). For
our purposes, the following imprecise form3 of the universal coefficient theorem
illustrates what we have to know:

Hg(M, Έ) ® R=Hg(M, R). (4.30)

As we will see, the integer cohomology classes contain more information than the
real cohomology classes. This can be seen by making use of two pieces of
information. Firstly, one has the following important lemma:

Z Π ®R=0. (4.31)

To prove this one notices that if rΦO and if keZn then k®r = k®n(r/n)
= n(k® (r/nj) = (nk) (x) (r/ή) = 0 (x) (r/n) = 0. Secondly, one needs a theorem [15]
that states that the integer classes are of the form

Hg(M,Z) = Z0. 0Z0Zlll0 0Zlιr (4.32)

The ΊLn pieces are called torsion pieces or finite pieces. When one tensors with the
reals one loses all the torsion pieces according to the lemma. Therefore, the real
cohomology classes are obtained from the integer cohomology classes by
throwing out all torsion pieces and replacing the integers by the reals.

As a bonus to our entire discussion, a torsionless element oΐH%(M, Έ) can be
represented as a differential form. The integral of such a differential form over any
boundaryless region will always give an integer. Torsion elements cannot be
represented as differential forms.

5. The Physics in Cech Cohomology

From the viewpoint of a physicist, the fundamental object in a dynamical theory is
the Lagrangian. The ideas discussed in this paper are descendants of the familiar
theorem in classical mechanics on the non-uniqueness of the Lagrangian by the
inclusion of total time derivatives. Spacetime will be a manifold S of dimension d
with no "spatial" boundary. Possible examples are R x Sd~1 or Sd or R x Td~1,
etc. The fields will live in a manifold M of dimension n which we assume is compact
and without boundary.

We are interested in theories whose Lagrangian may be split into two parts

L = L0 + T. (5.1)

The first term, L0, is a well defined Lagrangian by itself. It can be a kinetic energy
term with interactions. It is worthwhile noting that L0 is typically a density and not
a differential form. In other words, under a change of variables in spacetime, L0

changes by the absolute value of the Jacobian and not the Jacobian itself.
The second term T will be referred to as the topological term or the topological

Lagrangian. It has several distinct features that lead to new properties of the

3 Technically, Hg(M, Έ) is a module and not a vector space
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theory. It is actually a differential form and thus it changes by the Jacobian of the
spacetime coordinate transformation. More importantly, it must be interpretable
as the pull back to S of a differential form on M. The interesting properties arise
when one does not require T to be globally defined. One exploits the non-
uniqueness theorem of the Lagrangian by considering a family of topological
Lagrangians {Γα}. One Tα for each open set is a cover for the manifold. The local
topological Lagrangians are required to agree on overlaps up to a total derivative.
This means that on each non-empty overlap UΛβ one gives a transition form Jαj8

such that

Ta-Tβ = dJxβ (5.2)

in the overlap. In the language of Cech cohomology, the topological term is a
cochain in C°(Φ, Ωd\ where d is the dimension of spacetime. The collection of
transition functions is an element of C1 (̂ , Ωd~1). These objects are related by the
condition that

δ{Ta} = {dJΛβ}. (5.3)

The objects thus defined depend on the choice of a good cover.
It is possible to generalize the Wu-Yang construction to the d dimensional case.

One has to consider the generalizations of Y junctions and appropriate terms must
be introduced into the action. The appropriate terms can all be picked up from the
tic-tac-toe box. One starts zig-zagging to the right and down. One will need all
terms of the form Cp(<^, Ωd~p\ where 0<p<d to construct the generalized Wu-
Yang action. As in the examples we discussed in detail one finds that there is an
ambiguity in the classical action when one looks at what happens in (d + 2)-fold
multiple overlaps. This ambiguity is given by a locally constant cocycle [c] in
Cd+1 (91, β°). This cocycle defines a cohomology class in Hd

c

+1 (M, R). There will
be a Wu-Yang ambiguity in the action if HC+ l (M, R) contains the reals.

Quantum mechanics imposes a constraint on the theory. The cocycle in
Cd+1 (#, β°) must be 2π times integers in order to have a well defined path integral.
This means that HC+ 1 (M, Z) must contain the integers.

If we zig-zag up and to the left beginning from the Γ's then we can construct a
closed global differential form ^ which defines an element in Hd

D^(M). Since the
Cech and the DeRham cohomology theories are isomorphic, the topological
information contained in {c} is the same as the one contained in ̂ . The total "^
flux" through a boundaryless d -f 1 dimensional submanifold is given by the sum of
the c's that belong to a cover of the submanifold. In the quantum theory, these c's
have to be 2π times integers and therefore we conclude that the total flux must be
2π times an integer.

The universal coefficient theorem leads to an insight on the relationship of the
classical theory to the quantum theory. The real Cech cohomology group
Hd

c

+ ί (M, R) can be constructed if one knows the integer cohomology group
HC+ l (M, Z). If the integer cohomology group is pure torsion then the real
cohomology group vanishes. This means that there is no ambiguity in the classical
action. More precisely, an ambiguity at the d + 2 overlap level will be the δ of
something and can thus be absorbed into redefinition of what happens at the d +1
overlap level. The quantum theory in this case is also very dull since the flux
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through any d+l dimensional closed surface will be zero. If the integer
cohomology group Hd

c

+1 (M, Z) contains the integers, then the real cohomology
group HC+ 1 (M, R) will contain the reals. If there is an ambiguity in the definition
of the action in the classical theory then there will automatically be a flux
quantization condition in the quantum theory.

The ambiguity in the classical action can be regarded as a cocycle representing
an element of Hd

c

+1 (M, R). When Hd

c

+1 (M, R) φ 0, this ambiguity is interesting.
Quantum mechanics requires that the cocycle also represents an element in
Hd

c

+1(M, Z). This requirement restricts the allowed class of Lagrangians due to
the quantization of the associated flux.4

The formulation of the physics in terms of the local Lagrangians is a bit
unsatisfactory since one has to choose a cover of the manifold and the Lagrangians
in some sense are determined by the cover. It is more aesthetically satisfactory to
formulate the theory by stating that the fundamental concept is the existence of a
non-trivial class in Hd

D

+

R

i(M). Such a class is represented by a global closed
differential form <&. Given a good cover ,̂ ̂  may be locally represented by forms
Ta such that & = dTa. We are now back at the Lagrangian level.

In the previous section we showed that three viewpoints are equivalent. One
could begin with an element of Hd

D^1(M) and by the use of the tic-tac-toe box
construct the Lagrangian, the transition functions, the additional information
required in the Wu-Yang procedure, and the Cech cohomology class. Equivalently
one could begin with the Cech cohomology class and construct all the above by
using the tic-tac-toe box. Finally, one could take the local Lagrangians, the
transition functions, the transformation law and with the aid of the tic-tac-toe box
construct the remaining objects and the cohomology classes. The choice of a
starting point is a personal preference.

The cohomological viewpoint leads to quantization conditions for many
theories. The Wess-Zumino topological Lagrangian [3] is a special case of the
general theory. Wess-Zumino type Lagrangians play a special role since they are
derived by using group theoretical considerations and are usually associated with
some homogeneous space G/H, where G and H are Lie groups. If the (d+l)
cohomology group of the homogeneous space contains the integers then there will
be a Wess-Zumino term with quantized coupling. The strength of the cohomolog-
ical theory presented in this paper lies in the fact that topological Lagrangians exist
even in manifolds that have no obvious connection to group theory. Note that if
the dimension of M is one more than the dimension of spacetime S then there will
automatically be a topological quantization condition since Hd

D

+

R

l(M) = JSϋ by
Poincare duality [7].

The famous three dimensional mass term for Yang-Mills theories [5] has a
quantized coupling constant [4]. The quantization condition can be derived by
using Cech cohomology. The situation in this case is analogous to the magnetic
monopole discussion of Sect. 2. Spacetime S is a suitable three dimensional
manifold. Let M be a compact manifold of dimension greater than or equal to four.
Assume there is a Yang-Mills connection defined on it. We will view S as being
embedded in M. The four form ^ = F Λ F represents an element in the fourth

4 I would like to thank the referee for suggesting this clear paragraph
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DeRham cohomology class of the manifold. If this class is nontrivial then the
associated three dimensional local Lagrangians will have a quantized coupling
constant.

In fact, it is even possible to get a quantized mass term in the abelian case if the
topology is complicated enough. Assume S has the topology of S2 x S1, and
assume that M is S2 x S2 with a magnetic monopole in each of the S2 factors. This
manifold has a nontrivial fourth cohomology class which can be represented by
the four form which is the wedge product of the respective electromagnetic field
two forms on each of the two spheres.

The higher dimensional analog of the above is easily constructed. Assume S is
an odd dimensional manifold and M is a manifold of dimension greater than equal
to d 4- 1. Assume there is a Yang-Mills connection on M. If we think of S as being
embedded in M then it is easy to construct the global differential form that leads to
the local Lagrangian. Consider the (d+ l)/2-fold wedge product

# = F Λ Λ f . (5.4)

This represents an element of the d+1 cohomology class of the manifold. If this
class is nontrivial then the associated d dimensional Lagrangian will have a
quantized coefficient. Note that the example of Sect. 2 is just the d = 1 case of the
above discussion, and the three dimensional Yang-Mills mass term is the d = 3
case. In eleven dimensions one would have an interaction which includes terms of
the type AF5 where the wedge product is understood.

One can also get a charge quantization in antisymmetric tensor field theories.
Assume spacetime S is a manifold of dimension d = 2k+l. Let si be a fc-form and
let 3F = d<$#. This antisymmetric tensor field theory has a mass term given by
<stf Λ OF. This theory has an abelian gauge in variance and the mass term changes by
a total derivative under this gauge invariance. By complicating the topology
enough this term can be quantized. Here is one of many possible examples. Assume
d = 4j—l then si is a (2/ — 1) form and 3F is a 2j form. Assume S is given by
S2 xS2 x ••• xS2 xS1 and M is the 2j-fold Cartesian product of two spheres.
Assume there is a magnetic monopole in each of the two spheres in M. Let F be the
total electromagnetic field two form. Define 3F by 3F = Fj. This object is closed and
thus represents a cohomology class. The 4/ form we need for charge quantization is
just ^2. This 4y cohomology class is nontrivial.

The ideas of Rabinovici et al. [16] can also be seen from the Cech
cohomological viewpoint.

The Bagger-Witten quantization condition [6] for the gravitational constant
in certain supergravity theories can also be phrased in the language of Cech
cohomology. In this situation one can draw tic-tac-toe boxes for the Kahler
potential. We will not discuss this example in detail.

6. Cohomology versus Homotopy

In this section we show that cohomology is the more important concept in the
question of topological quantization. We will construct examples where the
homotopy criteria fails but where there is a charge quantization. We first review
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Witten's quantization argument [2]. In his seminal paper on the Wess-Zumino
Lagrangian, Witten described how homotopy could be used to argue for coupling
constant quantization. Witten assumes that spacetime S is a d-sphere Sd. The
sphere is mapped into the manifold M by the field φ. If nd(M) vanishes then it is
possible to extend the map ψ to the interior of a d +1 dimensional disk Dd+1 whose
boundary is the image of spacetime. If πd+1(M) contains the integers then there
must exist a generating sphere for the homotopy group. There will be an
obstruction to large motions of the disk and therefore an ambiguity to how one
extends the map φ. Since there is a homotopically non-trivial Sd+1 then by
DeRham's theorem there must exist a closed differential form ω such that

I ω = l . (6.1)
gd+i

Witten argues that a suitable Lagrangian is

2π J ω (6.2)
j)d+ι

or an integral multiple of the above. Firstly the above is independent of small
fluctuations of the disk since ω is closed. Secondly, the above only depends on the
boundary of the disk since ω is locally exact. Thirdly, there are two classes of disks
one can choose. The ambiguity in the integrals (6.2) for the two choices is 2π times
an integer. Therefore the quantum mechanics is well defined when one puts (6.2)
into the path integral.

The Cech cohomology arguments of the previous sections show that one can
be less restrictive than the above. In other words, the cohomology argument is
more general and it is always applicable. The homotopy argument can only be
used in certain restrictive situations. It is not necessary to make assumptions about
πd(M). We will construct some examples which have a non-trivial πd(M) yet there
is charge quantization.

Consider the electromagnetic example of Sect. 2 but choose the trajectory to lie
in the two torus M = Γ2. In this case one has that π1(T2) = ZφZ, but π2(T2) = 0.
The homotopy argument would not apply in this case and therefore one could not
conclude anything about charge quantization. On the other hand, Hc(M, Z) = 2£
and we conclude that magnetic flux is quantized.

In a related paper [17], Witten used some homology arguments to work out
the relationship homotopy spheres and the homology cycles required for the
integration. This was required to determine the correct normalization for the
topological Lagrangian. Since we are not worrying about normalization in this
paper, we will not need such arguments.

Consider a two dimensional field theory with M = S2. It is known that
π2(S2)=Z and π3(S2)=Z. The latter is responsible for the Hopf fibration [7, 13].
The homotopy argument is not applicable in this case. The cohomology argument
immediately tells us that there is no topological Lagrangian since the third
cohomology class of any two dimensional manifold vanishes. Since
S2 = SO(3)/SO(2) it is clear that the such a non-linear sigma model would not
contain a Wess-Zumino term. Consider the following non-linear sigma model:

S2 x S1 = (SO(3)/SO(2)) x SO(2). (6.2)
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The homotopy argument is not applicable yet the cohomology argument says
there will be a quantization condition. It is interesting that there is no topological
Lagrangian associated with either the S2 or the S1 but there is one associated with
the product manifold S2 x S1.

In general there is no relationship between the cohomology groups and the
homotopy groups. In certain cases there is a relationship between the homology
groups and the homotopy groups, see p. 225 of [7].
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