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Abstract. In the language of tensor analysis on differentiable manifolds, we
present a reduction method of integrability structures, and apply it to recover
some well-known hierarchies of integrable nonlinear evolution equations.

1. Introduction

In the recent past, starting from the basic works of Lax [1] and of Gardner et al.
[2], a lot of remarkable papers have been published which aimed at elucidating the
integrability properties of some special classes of infinite-dimensional Hamil-
tonian systems, expressed by nonlinear evolution equations (NEE's). To describe
the properties of such systems, different approaches have been followed: some of
them were global, like the inverse scattering method in its various versions [3, 4],
which for instance allows one to linearize the associated Cauchy problem and to
construct relevant classes of explicit solutions. Some others were local, aiming at
achieving an algebraic formulation of the integrability structure of those systems:
among them, of prominent importance in our opinion is the one which can be
associated with the names of GeΓfand-Dikii et al. [5], where the Hamiltonian
structures supported by such systems are obtained from the dual algebra of certain
infinite-dimensional Lie algebras, the algebras of pseudo-differential operators of
negative degree.

The approach we wish to propose here does not belong to either of the families
we have (indeed quite roughly) indicated above. It is in fact of a fairly geometrical
nature: it investigates directly the integrability structures defined on some
differentiable manifolds, and gives criteria which guarantee the reducibility of
such structures on certain regular submanifolds. As special cases, through this
approach one is able to recover the integrability structure of the more relevant
hierarchies of NEE's studied in the literature. A systematic and exhaustive
exposition of this method is given elsewhere [6]; however, it might be worthwhile
to emphasize here some of its advantages. First of all, its tensor nature ensures that
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the properties of the integrability structure are preserved by the reduction
procedure. Moreover, it shows how a number of (at a first glance) very different
hierarchies of NEE's are intimately related to each other, being just different
reductions of the same original tensor structures. Finally, it suggests a "canonical"
reduction procedure, which actually gives rise to some well known classes of
integrable NEE's, and moreover explains the "singular" nature of other integrable
systems which, though of course by themselves very interesting, are obtained
through a "non-canonical" reduction.

The purpose of this paper is twofold: to illustrate the method and to show, on
some familiar examples, how it embodies concrete and effective prescriptions. In
this spirit, the paper consists of two main parts: in the first part (Sects. 1-6) there is
a general description of the theory, the emphasis being not on the proofs of the
theorems (for which the reader is referred to [6]), but on the tools of investigation
which they provide; in the second part, we check the effectiveness of the theory, by
showing that it explains the integrability structure of the hierarchies of Ablowitz-
Kaup-Newell-Segur (AKNS) [7], Heisenberg Spin Chain (HSC) [8], Kaup-
Newell (KN) [9], Wadati-Konno-Ichikawa (WKI) [10], and "dulcis in fundo"
Korteweg-De Vries (KdV) [11].

2. Poisson-Nijenhuis Manifolds

The main objects dealt with in this paper are the Poisson-Nijenhuis manifolds.
Their definition is tersely reviewed in this section, both in global and in local form.
Both formulations turn out to be useful, either for theoretical developments or for
the applications.

Let M be a differentiable manifold (finite or infinite dimensional) modelled on a
Banach space E, and let P and JV be two tensor fields on M of type (2,0) and (1,1)
respectively. Denoting as usual by X(M) the algebra of vector fields on M and by
£*(M) the vector space of one-forms on M, we say that the tensor P: £*(M)
-*£(M) is a Poisson tensor on M if it is skewsymmetric, of constant rank and
fulfils the condition

[Pα,P/Γ| = P.{α,/?}Jl. (2.1)

This means that for any pair of one-forms α, β e X*(M), the commutator [Pα, Pβ~]
of the two vector fields Pα, Pβ e X(M) is the vector field associated to the "Poisson
bracket"1 defined as:

{α, β}P: = LPa(β) - LPβ(oc) + d<α, Pβ} , (2.2)

where Lφ{-) denotes the Lie derivative along the vector field φeX(M).
Analogously, we define AT to be a Nίjenhuίs tensor on M if it has constant rank

and "zero torsion", i.e., it fulfils the condition:

φ,ψ]=0 (2.3)

for any pair of vector fields φ,ψe X(M).

1 We make here a slight abuse of language, as in general the P oisson bracket is defined on closed
forms
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Finally, we say that the (Poisson) tensor P and the (Nijenhuis) tensor N endow
the manifold M with a "Poisson-Nijenhuis structure" (in shorthand notation: PN
structure) if they fulfil the two coupling conditions:2

NP = PN*, (2.4)

LPa(N) φ - PLφ(N*a) + PLNφ(a) = 0, (2.5)

i.e., if the product NP is again a Poisson tensor. In a strict sense, these are all the
definitions which are needed further on in the paper. However, when dealing with
the construction of a PN manifold, we face two variants of conditions (2.4), (2.5)
which naturally lead to introducing two other kinds of manifolds, called PΩ and
PQ manifolds respectively. Their definition relies upon the following remarks. Let
Q be a second Poisson tensor on M such that its Schouten bracket [13] with P is
identically zero:

[P,Q]=0, (2.6)

and assume that β, as a mapping from X*(M) to X(M), is invertible. Then, it can be
shown [6] that P and the tensor N

N:=PQ' (2.7)

endow M with a PN structure. Similarly, let Ω be a presymplectic tensor on M, i.e.,
a closed skew-symmetric tensor of type (0,2) of constant rank, and assume that the
product ΩPΩ is again a presymplectic tensor

d(ΩPΩ) = 0. (2.8)

Then, it can be shown that P and the tensor N defined as:

N: = PΩ (2.9)
endow M with a PN structure.

On the basis of these remarks, we are led to consider manifolds M endowed
either with a pair of Poisson tensors P and Q fulfilling condition (2.6) or with a pair
of tensors P and Ω fulfilling condition (2.8). Later on these manifolds will be
referred to as PQ (or "twofold Hamiltonian" [12]) manifolds, and as PΩ manifolds
respectively.

Let us now turn to the local version of the above definitions. To this end, let us
first identify the manifold M with an open set U of a Banach space ("local chart");
the tensor fields Ω, N, P will be then expressed by mappings Ω: U x £-»£*, N: U
x£->£, P: Ϊ7x £*-•£, linear with respect to the second argument. Denoting
again by φ and α arbitrary elements oϊE and £* respectively (being now identified
with fields and one-forms constant on U), and by u an arbitrary point of I/, these
mappings can be then written in the form:

(x = Ωuφ, (2.10)

φ = Nuφ, (2.11)

φ = Pua. (2.12)

2 In formula (2.4) by N* we mean the adjoint of AT defined as: <α, Nφ) = < JV*α5 φ} Vα e £*(M),
φeX(M)
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Consistently, we shall denote by:

Ω'Jίφ ψ); N'u(φ;ψ); FB(α;φ) (2.13)

the Frέchet derivatives with respect to u (at constant φ and α) of the tensor fields £2,
N9 P evaluated at the point u in the ψ direction [14,15]. In terms of the notations
(2.10H2.13), the conditions corresponding to the specific properties of the tensor
fields Ω, P, N take the form:

(Ω'u(φ;ψ), χ> + cyclic permutation = 0 (closure), (2.14)

<α, P'u{β\ Pj)> + cyclic permutation = 0, (2.15)

N'u(φ Nuψ) - N'Jxp Nuφ) + Nu(N'u(ψ φ) - N'u(φ ψ)) = 0, (2.16)

while the coupling conditions which allow one to define the PΩ and PN manifolds
become respectively:

<Fu(Ωuφ ψl Ωuχ) + (Ω'u{φ PuΩuΨ\ χ) + cyclic perm. = 0, (2.17)

(a,NuPuβ} + (β,NuPua) = Of (2.18)

9 N'u(φ; Pu*) + NJP'u(a; φ)-Fu(μ; Nuφ)) = 0. (2.19)

As for the property (2.6), since we are not going to use it explicitly in the rest of the
paper, we omit here its (rather cumbersome) local version.

Next, let us consider a change of local chart on M, that is a local
diffeomorphism f:U-+U between open sets U and ϋ of E. According to the
elementary transformation laws for vectors φ and for one-forms α, given by:

Φ=fύ'ψ; α = / B ' * . α (2.20)

it is readily seen that the representatives Ωu, Nu, Pu of the tensor fields Ω, N, P on M
obey the transformation laws:

1 , (2.21)

iVs / u ' = / ; ΛΓM, (2.22)

p-u=f: Pu-f:*, (2.23)

where /„'* is the dual of the Frechet derivative /„', defined as:

<α,/; φ> = </;* α,φ>. (2.24)

Taking into account the above local definitions and properties, one can thus define
a local PN manifold as an open set U of a Banach space £, endowed with two
mappings N: £-•£, P: £*-•£, which fulfil the "closure conditions" (2.15), (2.16),
the "coupling conditions" (2.18) and (2.19), and which, under local diffeomor-
phisms, obey the transformation laws (2.22) and (2.23) respectively. Obviously,
one can also define a local PΩ manifold in an analogous way.
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3. The Basic PN Manifold

Throughout this paper, a single example of manifold M endowed with different
PN structures will be considered, in order to recover different classes of integrable
NEE's. This manifold is modelled on a Frechet space rather than a Banach space,
in contrast with the standard assumptions of the theory. A priori, this would
require some care in dealing with it, since, as is well known, not all the results for
Banach manifolds hold for Frechet manifolds. In our case, however, a general
discussion of the difficulties arising from this extension can be avoided, as the
simple nature of our manifold will allow us to verify directly, on the example, the
validity of the construction described on a theoretical ground for Banach
manifolds.

Let then F be the Frechet space F: = C00 (R, gl*(2, <C)). As the manifold M, we
consider the affme hyperplane of F formed by the matrix-valued C00 functions
u: R->gl*(2,(C), obeying given asymptotic conditions.

In other words, the points of our manifolds will be, in the applications, 2x2
matrices whose entries are scalar C00 functions defined on the whole real axis IR
and obeying preassigned asymptotic conditions. (We notice parenthetically that,
with no essential extra-troubles, one could even consider the case of n x n matrices
whose entries are themselves matrices: this would be the so-called "non-abelian"
case [6,16]).

The vectors φ and the covectors α will be then C00 matrix-valued functions
φ :R->gl*(2,(C) and α:R->gl(2,(C) which fulfil the asymptotic conditions:

lim φ(x) = 0, lim α(x) = O,
| J C | —>• o o | J C | —>• o o

the value of the covector α on the vector φ being given by

+ 00

<α, <p> = Tr J dxoί(x)φ(x). (3.2)
— oo

On this manifold we shall consider the following four Poίsson tensors:

Pi« = α,, (3.3)

P2α = [u,α], (3.4)

P3α = αx + [w,α], (3.5)

P 4 α=[α,α], (3.6)

where, in formula (3.6), a is an arbitrary x-independent matrix.
Considered in pairs, (Pl9P2) and {P^PA) define on M two different PQ

structures which according to the literature will be denoted as chίral structure and
AKNS structure. Moreover, since P1 and P 3 are invertible, to both such structures
is naturally associated a Nijenhuis tensor (mostly denoted as "recursion operator"
[17] in the literature), given by:

Niφ: = lu, f φdx], (chiral), (3.7)
— oo

N2φ:=P4 P;1φ, (AKNS). (3.8)
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Although different, the above two structures are actually closely related (such a
relation being usually called "gauge-equivalence"). One can indeed show that all
the Poisson structures (3.3)—(3.6) can be derived, through a systematic procedure,
by a single "group-theoretical" tensor structure; here, however, we are neither
going to discuss the group theoretical origin of the tensor fields so far introduced,
referring to [6] for such derivation, nor to show explicitly that they fulfill all the
required "closure" and "coupling" conditions. As an example, we will just show
that N1 (3.7) is indeed a Nijenhuis tensor, mainly to elucidate how the local
conditions (2.14)-(2.19) can be handled in a concrete case. To this aim, we notice
first that:

N'iu(φ\ Ψ)—IΨ> ί φdx], (3.9)
— OO

whence it follows:

, ί J-ΓL f

On the other hand, we have:

Niu(N\u(φ;ψ)-N'lu(ψ;φ))

* Γ * Ί Ί Γ x Γ *' Ί Ί
u, J \ψ, J φdx' \dx\-\u, J φ, J ψdx' dx

_ - o o | _ - o o J J L - c o | _ - o o J J
X X X / X' \ X X

u, J ψdx J φdx — f ( ί ψdx' ] φdx — J φdx J ψdx
— oo — oo

x f x> \ -

+ J φ I j ψdx' j dx
— oo \ — oo /

Γ Γ x

= \uA f ψdx, j φdx

(Thus condition (2.16) is fulfilled.)

— oo \ — oo

Γ
- \u,

L
φ,

(3.11)

The validity of the remaining relations can be directly checked by the reader
through a straightforward, although tedious, calculation.

Our purpose will be now to show that a systematic investigation of the
previous PN structures will naturally lead to deriving some of the main classes of
nonlinear evolution equations (in one space dimension) solvable by the Inverse
Spectral Transform. To achieve this goal, we still need an essential tool, namely the
"theory of reduction", which will be the subject of the following section.

4. The Theory of Restriction

There are several reduction techniques for a given PΩ or PN structure [6] here we
shall confine ourselves to illustrate the simplest among them, relying on the so-
called "restriction method". The problem amounts to determine the regular
submanifolds ScM, which inherit from M a PΩ or PN structure in the same way
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as any surface embedded in a Euclidean space inherits a Riemannian structure.
However, in contrast with the Euclidean case, it is easy to show, by concrete
examples, that not any submanifold ScM can inherit the structures of M: to
guarantee such "inheritage" one has to impose simple compatibility conditions
between S and the structures of M.

To express them, let us first introduce the following notations:
3E(S,M): the algebra of the vector fields defined on S, taking values in TM,
£*(S, M): the vector space of the one-forms defined on S and taking values in

T*M,
X(S): the algebra of the vector fields tangent to S,
X(S)°: the "annihilator" of X(S)9 i.e., the set of one-forms <=£*(£, M) which

vanish on 3£(S),
X$(S): the subspace of one-forms belonging to 3E*(S,M) mapped by P into

vector fields tangent to S.
Moreover, let us introduce a parametrizatίon of S, consisting of a new manifold

M' and of a differentiable injection f:M'-*M, whose image is exactly S:

/(M0 = S, (4.1)

and whose differential df{m!)\ TmM'-*TmS is everywhere injective (technically
speaking, / is an "immersion" of M' in M [18]).

We will denote by:

df'.φ'e S(Λf)ι->φ e X(S, M) φ(/(mθ) = d/(mθ φ\m'), (4.2)

δf:ae X*(S9 M)^a' e Ϊ*(MO α̂ mO = δf{mr) α(/(mθ), (4.3)

the linear mappings induced by / between the vector fields and (respectively) the
one-forms defined on M' and those defined on S. By definition, df is an injective
mapping whose image is X(S), while δf is a surjective mapping whose kernel is

We are now able to state the following theorem, which provides sufficient
conditions in order that a given PΩ structure can be restricted on S.

Theorem 4.1 (Restriction Theorem for PΩ Manifolds). Let Mbea PΩ manifold and
S a regular submanifold of M, parametrized by (M\f: M'->M). If the following
conditions:

= X*(S,M), (4.4)

Ω(X(S)KXt(S), (4.5)

are fulfilled on S, then S inherits from M a restricted PΩ structure, which in the given
parametrization is defined on M' by the tensors:

r^df-i.p.Sf];^, (4.6)

Ω': = δf-Ω df. (4.7)

Without proving this theorem, we make a few comments in order to explain the
meaning of the conditions (4.4H4.5) and the use of the formulas (4.6), (4.7). The first
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condition ensures that the restriction of δf on X$(S) is again a surjective mapping,
hence possessing a right-inverse, δf\^S):X*(M^-^X^(S,M)9 such that:

V b ( S ) Vfo1

(S) = id|M'. (4.8)

Concretely, such a right-inverse can be constructed in the following way: first of all,
one determines the subspace X$(S) of the "constrained one-forms", by solving the
equation:

(4.9)

Then, one considers the equation:

δf •<* = <*', α'eS^Λf), (4.10)

α' being an arbitrary one-form e X*(M/), and constructs its general solution in the
standard way:

° (4.11)

where by α0 we mean a particular solution of (4.10) while X(S)° is of course, by
definition, the general solution of the associated homogeneous equation: such a
general solution can be written explicitly, in parametric form, by taking advantage
of the Lagrange-multipliers technique. Finally, one determines the Lagrange
multipliers (or possibly just some of them) by requiring that the solution (4.11) ful-
fils the constraint conditions (4.9). Furthermore, condition (4.4) also entails that
Ker^/ls^gKerP, so that the product P δf\^{S) does not depend on the choice
of the right-inverse. Thus, the definition (4.6) is well posed, and in [6] one has
shown explicitly that P is again a Poisson tensor. So the first condition ensures
that P is reducible on S. As for the second condition, we notice first that, as is well
known [19], formula (4.7) defines a pre-symplectic tensor on AT: thus, the role of
condition (4.5) is just to guarantee that P' and Ω' define again a PΩ structure on
M'. According to (2.8), this amounts to show that the product Ω'PΏ' is again a
presymplectic tensor. To this aim, let us notice that, due to (4.6), (4.7), we have

Ω'P'β' = δf (ΩP) (δf\£iS) δf) - (Ωdf), (4.12)

and that (4.5) entails:

(4.13)

Therefore, the closure property required on Ω'P'Ω' follows from the analogous
property of ΩPΩ.

However, we have to point out that condition (4.5) is only a sufficient condition,
since what is really required is that ΩP(<5/| ~ γδf)Ω be a presymplectic tensor, not
necessarily equal to ΩPΩ on X(S). So, it might happen that the reduced tensors Ω'
and P' define again a PΩ structure on M' although condition (4.5) is not fulfilled:
we shall come back to this point when discussing the applications (Sect. 10).

An analogous restriction theorem holds for PN manifolds: we give here just the
statement of this theorem, referring to [6] for the proof.

Theorem 4.2 (Restriction Theorem for PN manifolds). Let Mbea PN manifold and
S a regular submanifold of M, parametrized by (M\ f: M'-+M). If condition (4.4) is
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fulfilled on S and moreover it holds that

N(X(S))CX(S), (4.14)

then S inherits from M a reduced PN structure, defined, in the given parametrization,

by the tensors: F;^/- .p.«S/ |^ (4.15)

N'-^df-^N-df. (4.16)

To make the above theorems effective, one has to assign some criteria in order to
select regular submanifolds S which fulfil the required conditions. To go further
on this subject, one has to look somewhat deeper at the geometrical features of PN
manifolds (we shall just consider this case, since, as already remarked, any PΩ
manifold is a PN manifold as well). This will be done in the next section.

5. Some Elements of the Geometry of PN Manifolds

Let M be a PN manifold. The first essential element of the geometry of such
manifolds is the integrable distribution (in the Frobenius sense [19]) defined as:

@m = Pm(T*M), meM. (5.1)

Q)m is called the characteristic distribution of the Poisson tensor P, while its
integral manifolds are called the characteristic leaves of P.

Let then S be any one of such leaves, and let us restrict N to S (i.e., let us
consider N as acting just on the vectors φ tangent to S). Due to the coupling
condition (2.4), we have: N { m K Ά S ) , (5.2)

which implies that the leaf *S is invariant with respect to N. We can thus iterate the
action of JV on 3£(S), hence defining the two sequences of distributions given, for
each point meS, by the subspaces:

= {v>(/n)e TmS : ψ(m) = Nfoim), for some φ(m)eTmS}9 (5.3)

KeriV*: = {χ(m)e TmS :N«χ(m) = 0}. (5.4)

The first sequence fulfils the obvious inclusion relations:

ImNDlmN2D...DlmNκD..., (5.5)

while for the second one we have the reversed relations:

Ker JV C KerN2 C... C KerNκ C.... (5.6)

We shall assume that, Mm e S, there exist a finite index r{m) = ind(iV) (m), called the
(Riesz) index of the tensor N at the point m, such that for k = r(m), both sequences
(5.5) and (5.6) become stationary [20]:

ImJVM = I m Λ C 1 KerΛ^ = KeriV^ 1 . (5.7)

We shall also assume r(m) to be constant (i.e.: m-independent) on the leaf S.
Under the above assumptions one can show [6] that all the previous

distribution (5.3) and (5.4) are integrable, and that the characteristic distributions
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of JV, namely the distributions ImNr

m and Ker JV£,, intersect transversally on S,
fulfilling the relation ("Splitting Theorem", [20]):

ΓMM = ImiSrwΘKerΛrm. (5.8)

Let then S' be any integral submanifold of the distribution lmNr

m (referred to,
henceforth, as a characteristic leaf of JV on S). A simple argument shows that both S
and S' fulfil the conditions of the restriction theorem (4.2), and thus support a
reduced PN structure. Indeed the very definition of S and the skew-symmetry of P
e n t a i l : ϊj5(S) = X*(S, M) o S: char, leaf of P, (5.9)

X(S)° = KcrP. (5.10)

Thus, condition (4.4) is (by (5.9)) trivially fulfilled together with (4.14). Hence it
follows that S supports a reduced PN structure. As for S\ it suffices to remark that:

(i) The reduced Poisson tensor P' on S is kernel-free (this property being a
consequence of the reduction law (4.4) and of (5.10), which implies KerP = Ker δf);

(ii) P' and JV' fulfil the coupling condition (2.4) on S;
(iii) The Splitting Theorem (5.8) entails:

(5.11)
Indeed, (i) and (ii) imply:

Ϊ(SO = Im AT = P'(Ίm(N'*γ), (5.12)
whence:

(5.13)

Thus, the reduction condition (4.4) is an immediate consequence of (iii) once it is
noticed that χ^Ό Keτ^*γ ( 5 1 4 )

It is moreover readily seen that also the reduced tensors on S\ say P" and JV", are
both kernel-free (this being again a consequence of the Splitting Theorem), so that
the whole procedure amounts to deducing a reduced, kernel-free PN structure
from the original one (under the only condition of a finite Riesz index for JV). To
derive this reduced structure it is sufficient to perform two subsequent restrictions:
the first one will be performed on a characteristic leaf of P, the second one on a
characteristic leaf of JV (lying on the previous leaf). Of course, the procedure may
well end just at the first step: indeed, if ind(JV') = 0 there is no further restriction to
be performed.

The method of reduction outlined above is in some sense canonical, but it is not
the only possible one at all. One can easily check, through concrete examples, that
there are regular submanifolds S which, though not being characteristic manifolds
of P and JV, are nevertheless endowed with a PN structure inherited from the
ambient space M. This fact is intimately related to the existence of a further
reduction technique ("reduction by projection") which exploits the existence of the
second class of characteristic manifolds of JV, namely the integral manifolds of the
distribution Ker JVr. A description of this technique is outside the scope of the
present paper. Referring again for details to [6], we shall give here a modified
version of it, which does not explicitly require the use of the projection formalism.
The key idea of this version is very simple and amounts to show that, under
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suitable assumptions on S, it is possible to modify the given PN structure so to
obtain a novel structure which has S as a characteristic manifold and thus is
reducible on S. The main drawback of this technique is that it does not suggest any
criterion to select a priori the submanifolds S satisfying the required assumptions.
However, once such a submanifold has been somehow determined, the technique
we are going to describe turns out to be quite effective and fast in leading to the
final result. For the sake of simplicity, it is convenient to consider just the Nijenhuis
tensor (omitting the study of the Poisson tensor). This will be done in the next
section.

6. A Reduction Method for Nijenhuis Manifolds

Let M be a Nijenhuis manifold and S a regular submanifold of M. Let us assume
that:

(i) N has a finite Riesz index r, which is constant on S, so that:

VmeS. (6.1)

(ii) S is transversal to the distribution KeriV, so that:

TmM = TmS®KerN'm, VmeS. (6.2)

Under the above assumptions, S inherits from M a Nijenhuis structure which can
be constructed in the following way. First of all, one considers the canonical

projection π{m):TmM^ImN'm, meS (6.3)

associated to the decomposition (6.1), and notices that, due to (6.2), the restriction
πs(m) of π(m) on TmS is a bijection. It is then possible to consider its inverse
πjjny1: lmNr

m-+TmS and to construct the mapping Nm:TmM^TmS, rnεS,
d e f i n e d a s : ^ , ._, AT . N /jr A.

Nm: = πs(m) ^N^πim). (6.4)
One can then show that the mapping (6.4) defines a new Nijenhuis tensor on
X(S,M) for which S is a characteristic manifold. To construct the reduced
Nijenhuis structure we have just to introduce an arbitrary parametrization
(M\f\M'-+M) of S and to follow the procedure given in Theorem (4.2). The
reduced structure will be thus given by the formula:

N^df-' N-df. (6.5)

The proofs of the assertions made in this section are given in [6]: here we will just
show the effectiveness of this reduction technique by applying it to some special
cases, discussed in Sects. 10 and 11.

7. The Integrability Structure of the AKNS Hierarchy

Let M be the affine hyperplane of F = C00 (R,gl*(2, <C)) defined in Sect. 3, endowed
with the PN structure induced by the Poisson tensors:

Pα: = [α,α], (7.1)

ρα: = αx + [>,α], (7.2)
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where a is a x-independent matrix, arbitrary in principle, which however
throughout this section will be identified with the Pauli matrix σ3:

- l ) . (7.3)

As explained in Sect. 2, the pair (P, Q) induces on M a canonical Nijenhuis tensor

g ί V e n b y : N: = PQ->. (7.4)

The purpose of the present section is the reduction of the above PN structure first
on a characteristic leaf of P and then on a characteristic leaf of AT, according to the
"standard scheme" given in Sect. 5: through this twofold reduction we shall obtain
in a simple way the "integrability structure" of the AKNS hierarchy.

Let us first notice that the characteristic distribution of P is given by:

ImP = {φ E X(M): φD = 0}, (7.5)

when the subscript D stands for the diagonal part of a matrix. Its integral manifolds
are then the affϊne hyperplanes given by:

uD = C, (7.6)

when C is any constant (matrix), to be determined from the initial conditions. Let
us make the simplest choice, namely C = 0, so that:

S={u:uD = 0}. (7.7)

To determine the reduced PN structure on S we have just to choose a suitable
parametrization of S, applying then formulas (4.15) and (4.16). The most natural
choice amounts to taking as a parameter space M' the affine hyperplane of off-
diagonal matrices (matrices with zero entries on the main diagonal), and as
parametrization f:M'-^M the canonical immersion:

f:u'^u = u'. (7.8)

Since the vector fields φf e 3E(M/) and the one-forms α' e 3£*(M') are simply given by
off-diagonal matrices, we readily get:

df:φ'-+φ = φ'9 (7.9)

δ / : α - α ' = αO D, (7.10)

where the subscript OD denotes the off-diagonal part of a matrix.
Formula (7.10) follows from:

(δf - α, φ'} = <α, dfφ'} = <αD, φ') + <αOD, φ'} = <αOD, φ'}. (7.11)

The simplest choice for the right-inverse of δf is thus:

δ/" 1 :α /->α = α/. (7.12)

Applying then formulas (4.15) and (4.16) we get:

PV = d/" 1 P 5/- 1 α / =[σ 3 ,α / ], (7.13)

φ' = N/φ/ = df-ί'PQ-l'df'φ\ (7.14)
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Equation (7.14) can be obviously replaced by the equivalent system:

Qoc = df φ' o <xx + [u,oc] = φ'9

Poc = df-φ' o [σ3,α] = φ',
which yields

(aDx + [u\ αOD]) + (αOD,x + IX αo]) - φ', (7.16)

Φ'' (7.17)

Equation (7.16) in turn, splits into:
JC

<xD=- ί ίu',otOΌ]dx, (7.18a)

-\u\ J [ M ^ O O D ] ^ , (7.18b)

so that the reduced Nijenhuis tensor N' is obtained by getting rid of α 0 D from (7.17)
and (7.18b). Turning to the usual notation by components:

„_(« «); ,_(» "V *J° »Λ (7.19)
we get:

1 x

Ψi = ^Ψiχ-Q. ί (qφ2 + rφί)dx, (7.20)

J (qφ2 + rφ1)dx, (7.21)

which is the well known "recursion operator" for the AKNS hierarchy. Such
operator is invertible, hence it has Riesz index r = 0. Thus the reduction procedure
ends at the first step, as pointed out in Sect. 5.

As a final remark, we just notice that the reduction procedure given in this
section can be easily generalized to nxn matrices, replacing σ3 by a diagonal
matrix with distinct entries, and even to the so-called non-abelian case.

8. The Recursion Operator for the Heisenberg Chain

Let us consider again the manifold M of the previous example. Now, we shall think
of it as endowed with the "chiraΓ PN structure, defined by the tensors:

Pa = *x9 (8.1)

Nφ=\u, f ψdx\ (8.2)

In this case the only characteristic leaf of P is given by the whole hyperplane M
(since P is invertible); thus the only non-trivial reduction can be performed on a
characteristic leaf of N. We notice that

= 0,k = 0,l}. (8.3)
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The integral leaves are then given by:

Sc = {u:Ύruk = Ck,k= 1,2} . (8.4)

We make the special choice:

l}, (8.5)

corresponding to the integral leaf passing through the Pauli matrix σ3.
When u belongs to S9 we have:

(8.6)

Thus ImJV and KeriV are transversal on S: hence S is a characteristic leaf of AT and
ind(N)\s = L

To get the reduction of the starting PN structure on S, the most natural choice
of the parameter space M is the manifold S2 given by:

2 3 (8.7)

Identifying Tq(S2) and T*(S2) with the space of vectors which are tangent to S2 at
the point q, namely setting:

ί ψ q = 0}, (8.8a)

T, (S2): = {βeR 3 :β q=0}, (8.8b)

the parametrization (S2,f: S2->M) of the submanifold S is then given by:

/ : q ^ M = q σ, (8.9)

where σ = (σι,σ2,σ3), σt being the Pauli matrices, and the mappings df:X(S2)
^X(S,M), δf:X*(S,M)^X*(S2) take the explicit form:

df:y^>φ = y-σ, (8.10)

<5/:α->β = 2α-2( α q)q, (8.11)
where

α = 4 Σ Tφ σ j .) eω. (8.12)

Formula (8.11) follows from the very definition of δf, which entails:

- c o j

= f y-ΣTφσj)eU)dx= f 2ip αdx. (8.13)

— CD j ~ 00

The constraint (8.8a) on ψ implies:

β = <S/.α = 2α + 2q, (8.14)
and thus the constraint (8.8b) on β yields:

/ί=-2α q. (8.15)
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Let us first consider the reduction on S of the Nijenhuis tensor N given by (8.2). The
reduced tensor JV':3E(S2)->3e(iS2) is defined as:

N': = df-ι N'df, (8.16)
which yields:

Γ x Ί / x \
= df~1\u, j ψ σdx \=df~1 2ίqΛ f ψ d x l σ

= 2iqΛ f ψdx, (8.17)
— oo

where we have used the well-known relation:

= 2ί Σ &ijiAi<Pj°k = 2ιq Λ φ σ. (8.18)

To invert N\ getting in this way the recursion operator generating the Heisenberg
chain hierarchy, we notice that, from (8.17), it follows:

J (8.19)

Thanks to the constraint (8.8a), Eq. (8.19) can be explicitly (and uniquely) solved
with respect to ψ, yielding:

\ ( X ) \ ( 8 * 2 0 )
ψ =~ Yί \_^/A q ~q ( X ( ψ / Λ q)x' q d x ) \ '

Let us now turn to the reduction of the Poisson tensor P (8.1). To this aim, we
construct the right-inverse of the adjoint mapping δf, which reads:

5/" 1 :β-^2α = /l/ + μq σ + p σ, (8.21)

where λ and μ are "Lagrange multipliers" to be determined by imposing the
constraints induced by the choice of the leaf (8.5). So, by requiring:

Tr(au)x = O, (8.22)
we get:

λ = 0, μ=- f φx q)dx, (8.23)
— oo

and thus:

δftϊάs): β-2α = β σ - ( j ^ (β, q)dx) q σ (8.24)

The corresponding reduced Poisson tensor

.X ^o )—^X^o ) — uj ' r ' OJ \χg,ίs) yo.ΔJ)
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can be then evaluated explicitly, yielding:

pt/)

(8.26)

9. Integrability Structure for KN Hierarchy

The manifold M considered in the previous examples will be now thought of as
endowed with the PΩ structure, defined by the Poisson tensor P:

Pα = αje + [u,α], (9.1)

and by the symplectic tensor Ω:

Ωφ= ] φdx, (9.2)
— oo

and thus by the Nijenhuis tensor N = PΩ:

r x η
Nφ = φ+\ u, ί φdx\. (9.3)

L -co J
We shall show in this section that the above PΩ (or equivalently PN) structure can
be reduced on the submanifold

S: = {u:uD = σ3}9 (9.4)

although S is not a characteristic manifold of P and that the resulting reduced
structure is the integrability structure for KN hierarchy.

In order that P be reducible on S, it is sufficient that it fulfils the condition (4.4)
of Theorem (4.1), namely:

X$(S) + X(S)° = **(S, M). (9.5)

Since this condition entails

S(Sf)°nS$(S)cKerP, (9.6)

and since, in the case under scrutiny, P is kernel-free, we have to show that

£*(S,M) = *(S)°Θ*£(S), (9.7)

i.e., that any αe3E*(S, M) can be uniquely written in the form:

) \ yeX*(S). (9.8)

But the validity of (9.8) follows immediately from the structure of X(S)°
Indeed, we have:

)°: = {β:βOD=0}, (9.9)

*P(S) : = {y yD.* + [«OD, TOD] = 0} (9-10)
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So, we can uniquely write α = β + y, with:

X

ί ίuOΌ,aOΌ]dx;

(9.11)

= <XθΌ- ί

To get the explicit reduction of the PΩ structure (9.1), (9.2) we take advantage of the
parametrization already introduced in Sect. 7, which yields:

u = u' + σ3; φ = φ'; α' = αOD> (9.12)

where u\ α', φ' are 2 x 2 off-diagonal matrices. The restricted right-inverse of the
mapping δf is then given by:

VI*iW «'->? = «'- ί \β\^dx. (9.13)
— oo

Thus, the reduced tensor P':X*{Mr)^X{Mr) reads:

= oc'x - \u', ] [u\ a^dx + [σ3, α
7] . (9.14)

On the other hand, the symplectic tensor Ω is obviously reducible on S', its
reduction being simply given by:

Ω'φ' = δf Ω df-φ' = δf J <p'ίix= ] φ'dx. (9.15)
— oo — oo

Hence, the tensor N'=PΏ' is given by:

φ' = N'φ':φ' = φ'-lu', f L7, f φ'dx\dx 1 + Γσ3, J φ^xl. (9.16)

However, in this case, the condition (4.5) of Theorem (4.1) is not fulfilled, as we

h a V e : Ω(X(S))nX*(S) = 0. (9.17)

Thus, we cannot be sure, a priori, that the tensor N' (9.16) is a Nijenhuis tensor. On
the other hand, as already remarked in Sect. 4, condition (4.5) is only a sufficient
condition: therefore, it is again possible that the tensor Ω/PΏ/ = Ω/N/ be a
presymplectic tensor (hence ensuring N' to be Nijenhuis), but one has to check it
directly. Since Ω'P'Ω' is clearly skew-symmetric, we have just to check the closure
condition d(Ω'PΏ') = 0. For this purpose, it is convenient to write:

Ω'P'Ω'= Ω1+Ω2, (9.18)



132 F. Magri, C. Morosi, and O. Ragnisco

where

Ωiφ':= f φ'dx+ f σ3, { φ'dxldx, (9.19)
— oo — oo |_ — o o _ j

Ω2φ':=- J N2φ'dx, (9.20)
— oo

N being the Nijenhuis tensor:

Λ t y : = U f φdxλ (9.21)

associated to the integrability structure of the Heisenberg chain hierarchy.
The tensor Ω l 5 being (skew-symmetric and) constant on S, is obviously

presymplectic. As for Ω2, it is presymplectic because, as already discussed in Sect. 8,
the Nijenhuis tensor of the Heisenberg chain is "well-coupled" with the symplectic

X

operator J dx. Hence, the tensor N' (9.16) is again a Nijenhuis tensor, and,
— oo

together with P\ defines a PN structure on the submanifold S. Finally, we notice
that i\Γ = i +JV, which implies that N is a Nijenhuis tensor too, obviously well-
coupled with Ω'. The integrability structure of KN hierarchy is just given by N~1

and Ω'~ι = dx. To get their explicit expression, we use the notation by components
(7.19). We can thus write:

_ X X / X X \

φ/ = Nφ/:φ1=2 J φ^dx + lq J I q J φ2dx-r J φ^xjdx,
— oo — oo \ — oo —oo /

X X / X X

φ 2 = — 2 J φ2dx — 2r \ iq j φ2dx — r J φ^
— oo — oo \ — oo — o o

The tensor JV can be easily inverted, yielding:

φ' = N 1φ'\2φ1=[φι+q J (qφ2 + rφ1)dx)
\ -oo J x

(9.23)

(9.24)
<Λ / - • Γ

The tensor Ω'~x is clearly given by:

φ/ = Ω/-1a/\φί=(x2x,φ2 = (xίx. (9.25)

The first equation in the KN hierarchy is obtained by setting in (9.24) φ1 =qx,

Remark. The natural question now arises whether, analogously to the AKNS
structure, even the KN structure could be generalized to nxn matrices, by
replacing again σ 3 by a diagonal matrix with distinct entries. It turns out that for
the KN structure this generalization does not take place, because, although the
Poisson tensor P is always reducible, the tensor Ω'P'Ω' is no longer presymplectic.
Indeed in this case:

Ω T Ώ ' = Ω1+Ω2 + Ω3, (9.27)
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where the extra-term Ω3

Ω 3 φ : = - f \σD, ] \ u, J φdx \ d x \ d x (9.28)
— oo [_ — oo |_ — o o _J _J

is not presymplectic. Only for 2 x 2 matrices Ω3 vanishes identically, since, in this
case

0. (9.29)

Hence, as noticed in the Introduction, through this "non-canonical" reduction
procedure we have selected a somehow "singular" case.

10. The Recursion Operator for WKI Hierarchy

As an example of the reduction method for Nijenhuis manifolds described in
Sect. 6, we will get here the recursion operator associated to the so-called WKI
hierarchy.

Let M be the manifold considered in the previous sections, endowed with the
Nijenhuis tensor:

Γ * Ί>: = \ u 9 f φdx .
L -oo J

Nφ:=\u, J φdx\. (10.1)

Let S be the submanifold:

S: = {u:uD = σ3}. (10.2)

We shall show that N is reducible on S since ind(iV)|s= 1, and:

S(S, M) = £(S)ΘKer JV. (10.3)

In terms of the usual notation by components:

\ (10.4)

\ (10.5)
φj

), (10.6)

α3 α4/

the distributions ImN and KeriV, at any point u of S, are given by

(10.7)

(10.8)
One can then easily see that the two distributions Im JV and Ker JV are transversal,
as χeKeriVnlmiV implies:

4 = 0, (10.9)

0 => μ = 0. (10.10)
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Moreover, since we have:

X(S): = {φ:φι = φ4 = 0}, (10.11)

it follows from (10.8) and (10.11) that X(S) and KeriV are also transversal.
The reducibility conditions for N given in Sect. 6 are thus all satisfied.
To perform this reduction explicitly, one has first ΐo determine the projection

π:£(S,M)-»ImiV and its restriction πs:X(S)-+lmN. Since ind(iV) = l, any
φeX(S, M) can be decomposed uniquely as:

χeKerN. (10.12)

Taking into account (10.7) and (10.8), we get:

From the first two equalities in (10.13) it follows:

2λx = φ1 + φ4; 2ψί = φ1-φ4-2μx, (10.14)

which, inserted in the last 3 equalities, yield:

1 x

μ=-a J a(φ1-φ4 + qφ3 + rφ2)dx; a = (l+qry1/2. (10.15)
Z - oo

Thus, the projection π is given by
/ X \

2φ1 = φ 1 - φ 4 - [a J" a(φ1-φ4 + qφ3 + rφ2)dx) ,

ί x \
π:φ^ψ:2ψ2 = 2φ2-laq J a(φΐ-φ4-\-qφ3 + rφ2)dx I ,

/ 7 (x ( 1 0 1 6)
2ψ3 = 2φ3-I ar f a(φ1-

Its restriction πs [which one obtains by setting φί = φ4 = 0 into (10.16)] reads:

ί ? \
2ψι = — ( a J a(qφ3 + rφ2)dx I ,

\ -oo Jx

2ψ2 = 2φ2-(aq J a{qφ3 + rφ2)dx J ,

(10.17)
j α(4φ3 + rφ2)ώc) ,

2 φ 4 = ( α
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From (10.17) it follows that the inverse π'1: ImJV->3E(S) is given by:

ί X \

= 2ψ2+lq J (qψ3 + rψ2)dxj
I 7 'I 7 (10.18)

= 2ψ3+lr j

The Nijenhuis tensor N\ reduced on the submanifold S, is then given by:

u9 J πsφsdx . (10.19)

The explicit expression of N' is very involved: much simpler is the explicit
expression of its inverse, which will be easily recognized to be the recursion
operator associated to the WKI hierarchy.

We have:
N'1 1 1 (10.20)

where JVf1 is the inverse of the restriction of N on ImJV, which uniquely exists
since ind(ΛΓ)= l

To evaluate iVf1, we notice that:
X X

Ψi = 2 ί Ψi + q ί (qψ3 + rψ2)dx
ψ = NlΨ: -™x - » (10.21)

ψ3=-2 ] ψ3-r ]
— oo — oo

whence it follows:
rψ2x ~ W3x = 2(1 + qr) (rψ2 + qψ3)

+ Q+<F)x f (Tψ2 + qxp3)dx9 (10.22)
— oo

and thus:

rψ2 + qψ3=(τ ί Φψ2χ-qψ3χ)dx) (10.23)

From (10.21) and (10.23) we derive the explicit expression of iVf1, which reads:

fa x \
2Ψi=Ψ2X-[~<l ί a(rψ2x-qψ3x)dx)

Ψ = N^ψ: K1 - " ^ (10.24)
a(rψ2x-qψ3x)dx)

/

Finally, the reduced inverse N' ι is obtained by noticing that:

2φ2 = 2xp2 + \q J

( 1° 2 3 ) = ( 1 ° 2 4 ) t p 2 j c (10.25)

(10.17) _ If * _ _

j J a(qφ3 + rφ2)dx
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and, analogously:
( ? \

2φ3 = 2t/;3+lr J (qψ3 + rψ2)dx\
\ ~ c o / X

= -ψ3x (10.26)

1/ i . _ \

The operator given by (10.25), (10.26) is the recursion operator for the WKI
hierarchy.

11. A Further Example of Reduction of a Nijenhuis Structure: The KdV Hierarchy

As a final application of the reduction method, we will show in this section how the
well-known recursion operator for the Korteweg-De Vries (KdV) hierarchy can be
obtained by reducing, according to the technique displayed in Sect. 6, the
Nijenhuis tensor: pn- i

where P and Q are the Poisson tensors defined as:

βα: = αx + |>,α], (11.2)

Pα: = [α,α]. (11.3)

In formulas (11.2), u is again a point in the manifold M considered in the previous

sections and a is the constant matrix ( I. The submanifold ScMon which we

are going to reduce N is the manifold of 2 x 2 traceless Frobenius matrices, namely:

so that

In contrast with the case treated in Sect. 10, we have now ind(iV) = 2 for any uF.
Tn fίi ct

Im JV = ImP = {ψ: ψί + φ 4 = 0, ψ3 = 0} , (11.6)

2χ2}, (11.7)

so that ImJVnKeriVφ0.

On the other hand, taking into account that:

KerN2 = {χ: χ = βα, Pa e KεrN}, (11.8)

(11.9){ψψ
one gets:

{ -2XAx-x3xx = 0}, (11.10)
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which easily yield lmN2®KQrN2 = X(S, M). Thus, denoting by φ any arbitrary
element of X(S,M), the decomposition φ = ψ + χ implies:

(11.12)

From (11.12) it follows that:

2ψlx= -4<P3XX + (P2-2((P4-(PI)X, (11.13)

the projection π: X(S, M)^lmN2 is then given by:

1 1 x 1

O Z -oo 4

1 1 x

Z

(11.14)

the restriction πs:£(S)-+ImN2 reads:

( *
J φdx φ

| , (11-15)

o -_W«

so that π ^ 1 : ImJV2->3E(S) is given by:

(11.16)
To conclude, the Nijenhuis tensor JV', reduced on the submanifold of 2 x 2
Frobenius matrices (11.4) and defined as:

φF = N/φF:φF = πs1PQ~1πsφF (11.17)

is obtained by eliminating α from the equations:

φF = π-iPθL^ (11.18a)

πsφF = Qa. (11.18b)

From (11.18a) we get:

φ = 2 ( α 4 - α i ) , (11.19a)
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while (11.18b) yields:

(11.19b)

From Eqs. (11.19b) it follows:

1 x

-<£ — o o

and thus, using (11.19a):

,-i - 1 1 f

4 2 * - oo

which is the well-known recursion operator of the KdV hierarchy.

For a more general discussion, explaining in particular the origin of the

submanifold S of traceless Frobenius matrices, the reader is referred to [6].

In the previous scheme, the examples considered in Sects. 7-11 are briefly

summarized. The reduction technique described in Sect. 5 and based on the

restriction Theorem 4.2 is called "geometric", while the reduction for Nijenhuis

manifolds described in Sect. 6 is denoted as "algebraic". In the last column

("recursion operators") we give the forms of the reduced Nijenhuis tensors as they

usually appear in the literature.
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