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Abstract. We prove the absence of continuous symmetry breaking at arbitrary
temperatures for two-dimensional N-vector spin glass models with Hamilton
function

UJ

where J(ίJ) has mean 0 and variance 1, for all i,j. We comment on the role of
boundary conditions in spin glasses and on their critical behaviour in high
dimensions.

1. Introduction

Introducing random signs into long-range interactions, such as exchange
couplings between magnetic ions, tends to shorten their effective range (competing
interactions may cancel each other statistically). Examples for this phenomenon
are the existence of the free energy in magnetic systems with interactions of mean
zero which are square summable, but not absolutely summable [1-3] and the
absence of phase transitions in low-dimensional systems with interactions of
moderately long range [4-8].

Consider, for example, a Hamilton function of the form

H=-ΣJ(i,j)\i-jΓdSrS}, (1)

where the couplings J(iJ) are independent, identically distributed random
variables with mean 0 and variance one, and the S/s may be Ising- or iV-vector
spins. Then the thermodynamic limit of the free energy of this system exists if α > \.
This is in contrast to the condition α > 1 required in magnets with deterministic,
e.g. purely ferromagnetic, exchange couplings. Furthermore, in one dimension
there is no phase transition if α > 1, in the sense that the spin flip symmetry of the
Hamiltonian remains unbroken at all temperatures [8]. We comment on this
result below (Sect. 3). For a stronger notion of absence of transitions which
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requires more stringent hypotheses see [4, 5]. We recall that the one-dimensional
Ising ferromagnet exhibits a transition for 1 < α ^ 2 [9,10], but has no transitions,
in the strongest possible sense (analyticity of the free energy at all temperatures) for

For models of N-vector spins in two dimensions (with deterministic exchange
couplings), it is known that the continuous (O(JV)-)symmetry is unbroken at all
temperatures if α^2, but the models with ferromagnetic couplings exhibit a
transition accompanied by spontaneous symmetry breaking if 1 < cc < 2, [13]. For
two-dimensional models with continuous symmetry and random exchange
couplings of mean 0, Picco [6, 7] has applied the probabilistic energy estimates of
[1, 4], combined with the use of relative entropy as in [12], to prove the absence of
symmetry breaking at all temperatures, for α^f.

As in the one-dimensional models, one may actually improve this condition to
α ^ l by estimating the relative entropy directly. This is proven in the following
section. Our paper is basically just a comment on references [6] and [8] and is
based on ideas already appearing in [8] and [12]. The main point we wish to make
is that it is possible to provide a simple proof for the absence of continuous
symmetry breaking in two dimensions, even if the couplings are random and of
very long range, by a straightforward, but careful use of sign cancellations in the
exchange interactions.

In Sect. 3 we comment on the notions of "absence of phase transitions" and
"boundary conditions" in random magnets and speculate on possible transitions
in spin glass models with interactions of very long range.

2. Proof of the Main Result

For simplicity we discuss the XY spin glass, i.e. we consider two-component
rotator spins. The extension to general JV-vector models will turn out to be
obvious. In our proof we shall rely heavily on [12, 14] for many of the detailed
estimates.

The Hamilton function of the XY spin glass is, formally, given by

H=-Σϊ(i,j)co*(θι-Θ}, (2)

where

J(Uj) = J(hj)\i-jΓ2«. (3)

Theorem. For aϊ>l,theθ (2)-symmetry of the X Y spin glass introduced in (2) and (3)
remains unbroken at all temperatures, provided the expectation of J(i,j) vanishes
and the support of the distribution of J(i, j) is bounded.

Remark. At the end of this section we show how to include couplings, J(i, j), with
Gaussian distribution, or other distributions of unbounded support.

Proof Choose an arbitrary extremal Gibbs state ω of the XY spin glass, and
consider the relative entropy, S(ω\ωt), of a state ωt obtained from ω by rotating all
the spins inside a disk, Db of radius Z through an angle d and rotating the spins in a
large annulus, AL, of inner radius I and outer radius L by an angle that interpolates
linearly between θ and 0 as the site varies from the inner to the outer boundary of
AL. For details concerning this construction see [14, 12].
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We denote by Rt the rotation of the spin at site i and set Rij = RiR[ί. Let
γij^trRφ i.e. γtj is the cosine of the difference of the rotation angles at ί and at 7.
We note that ytj = 1 if z and j are contained in Dh or if i and 7 are contained in the
complement of DtuAL. Moreover,

0 , const | i -7 | 2 (L-0" 2 )

if i or j are in AL. For more details see [14].
Using the duplicate system trick of [12] we see that the relative entropy is

bounded by

where

S(ω\ωd = 2J8 ω g (1 - yjHh j) cos^ - θή. (5)

From this we conclude, using standard measure-theoretic arguments, that it is
enough to prove estimates on the expectation value oϊS(ω\ωt) which are uniform in
/, provided L ̂ > / is chosen appropriately. For, it clearly follows from such estimates
that for almost every configuration {J(i,j)} there exists a sequence {/„}*= 1
diverging to + 00 such that

ff (6)

for some finite constant C depending on {J(i, j)}. Hence, for almost all {J(i, 7)},
S(ω\ωln) is bounded uniformly in w, and this implies that the state ω^ obtained
from ω by rotating all spins through an angle 9 is absolutely continuous with
respect to ω (see [12, 15]).

Let E denote the expectation over {J(iJ)}. In order to prove a uniform
bound on

ΈS(ω\ωd,

it is enough to estimate the contribution to S(ω\ωt) of the tail interactions with
\i— j\>R, for some conveniently chosen, sufficiently large constant #. The
contribution of the short range interactions, corresponding to \i—j\^R, can be
estimated as in [12,14] [since the distribution of J(i, j) has bounded support]. Put
differently, for every value of β and every s > 0, we may choose R so large that

sup β\J(Uj)\<ε. (7)
\ί-J\>R

Without loss of generality we may require (7) for arbitrary i,j9 assuming we have
already dealt with the short range interactions; (\i—j\^R). We now estimate

= 2βΣ(l-γiJ)Έ[J(i,j)ω(cos(θi-θjm. (8)

We denote by ωtj the state obtained from ω by deleting the term J(i9 j) c o s ^ — θj)
from the Hamiltonian. Then

EΓJO nω(cos(θ -θm-ΈΪJa nωii{cos(θi"θj)exp{βhκj)cos{θi~gj)

(9)
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(For comparison, note that in [8] infinitely many terms J(ί ,/(σ^ were removed
from the Hamiltonian H at once, a procedure which does not appear to work in the
present situation.)

Next, we expand the exponentials on the right side of (9) in J(i, j), making use of
(7). This yields

ro = O I \k=l

Choosing ε so small that eε - 1 < 1 we observe that all series on the right side of (10)
are absolutely convergent, and that the right side of (10) can be estimated by

with c ^ l , |c2|<;2. Hence, using (8)-(10) and the fact that ΈJ(i,j) = 0, we get

-yij)\i-jr4a. (Π)
Uj

At this point we can use the estimates in [14] to prove convergence of the right side
^ l . D

Next, we sketch how to extend the result just proven to a class of models with
random exchange couplings J(ίJ) that are not necessarily bounded. We suppose
that

J(ίJ) = J(ίJ)\ί-j\-(2+ε\ (12)

for some ε>0, where the J(z,y)'s are i.i.d. random variables with distribution
dρ(J(ί,j)) which we require to have the following properties.

1) dρ is even in J(iJ).
2)ΈJ(ίJ)2^J(UJ)2dρ(J(Uj))=L
3) Let Bfj denote the characteristic function of the set {J(ίJ):\J(ίJ)\^\ί-j\δ},

and let Gfj be the characteristic function of the complement. We require that

Prob Bfj=ΊEBfj^ const | i -/ |~ 4 , (13)

for some δ e (0, ε).
These conditions obviously hold if dρ is the Gaussian with mean 0 and variance

1. In this case

We now estimate the term in ES(ω|ω,) indexed by the pair i,j [see (8)].

+ΈlBfjJ(i,j)ω(cos(θt-θjff]. (14)

Since δ < ε, the first term on the right side of (14) can be analyzed as above. In order
to bound the second term we first note that \ω{cos(θi — 0j))|:gl, and then use the
Cauchy-Schwarz inequality which yields
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by (12) and (13). Hence we may again refer to the estimates in [14] which imply that

uniformly in /, if L is chosen sufficiently large, depending on /.

Remarks. 1) For general AT-vector spin glasses or models with a more general,
nonabelian, connected symmetry group, G, the same results hold. To see this it
suffices to choose one-parameter subgroups of G to which one can apply the above
arguments verbatim.

2) The methods and results of [8] and of the present paper extend to analogous
spin glass models with quantum mechanical spins in a straightforward manner.
The basic ideas of the proofs remain unchanged, but one must use the quantum
mechanical notion of relative entropy and, in (9), Araki's Gibbs condition to
express ω in terms of ω^. For details see [15], and for similar uses of Araki's basic
results see also [12].

3. Transitions and Absence of Transitions in Spin Glasses

We wish to start this section with a comment on one-dimensional spin glasses,
more specifically on the uniqueness of the Gibbs state of such systems. The
Hamiltonian of the system we propose to consider is given by

)σjσj, (15)

where

ϊ(i,J) = J(UB-JΓa, « > 1 , (16)

and ΈJ(i,j) = 0, ΈJ(ίJ)2 = 1, for all ίj. For definiteness we suppose that the spins,
σb are bounded random variables, but our arguments can be extended to more
general models, in particular to quantum mechanical spin glasses. Furthermore,
we assume that J(i,j) is bounded, but the general case may be disposed of as
explained in Sect. 2.

We now consider a system, with the above features, confined to the region

for some /=1,2,3, The spins outside A are distributed by some boundary
conditions (b.α), i.e. according to some probability measure db(σ\AC). For a fixed
configuration σ\ΛC the interaction, W^σ ĉ), of the spins in A with σ\ΛC is given by

W(σ\ΛC,σ\Λ)=- Σ KUΪ)σfi, (IV)
iΛieΛ

The Gibbs state, ωUρ, of the system in A with b.c. b at inverse temperature β is given
by the measure

Zβ,l πpl-β(H(σ\A)+ W(σ\Λ<, σ\Λ)J] Π dλ(σ}db(σ\ΛC), (18)
JeΛ

where dλ is the a priori distribution of the spin.
We now propose to show that the expectation value (over {J(i,j)}) of the

relative entropy of two states ωhb and ωhh, remains bounded, uniformly in A, Ίϊdb
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and dV are measures which do not depend on the exchange couplings {J(i,j)}.
Clearly

l l . (19)

Let ωι o be the state for which W= W(σ\ΛC) is set equal to zero. Then (19) yields

ES(ω J ω ^ O = E(I + Π) { ί ω ^

by Jensen's inequality. Here ' '.

and

We estimate I by using

! β w K β W i ( 2 1 )

(Estimates on II may be obtained in a very similar way.) Let db" denote either db or
dV. If (21) is inserted into (20) and, subsequently, all exponentials are expanded
into Taylor series, one obtains an upper bound on ΈS(ωub\ωlfb>) in terms of a
series over terms of the form

1 \ i Ί

ml ) kl J

with m^ 1. Under our hypotheses on J(i,j), [(16) and boundedness of J(ί, /)], one
verifies easily that the sum over n, m and k of (22) converges for arbitrary finite β.
This proves that the expectation of the relative entropy is bounded uniformly in /
and in db, db'. As a consequence the thermodynamic limits of all equilibrium states
constructed with {J(i,j)}-independent b.c. are absolutely continuous with respect to
each other.1

While it is possible to have db, db' depend on {J(Uj)} in suitable ways without
invalidating the above conclusion, some restrictions on that dependence are
necessary for our arguments to go through, since

sup W(σ\Ac, σ\Λ)^oo, as /->oo ,
σ\Λc

{/(ί,/)}-almost surely, for α<3/2 [8].
One may then ask whether the above result is satisfactory, since we have not

ruled out that one may find further equilibrium states by choosing sample-
dependent, (i.e. { J(ί, /)}-dependent) b.c. As an answer to this question we argue that
b.c. in statistical mechanics represent an idealized description of part of the
experimental set-up that serves to measure properties of a statistical system in
thermal equilibrium. But the experimental set-up is usually independent, statisti-
cally, of the sample on which the experiment is done. Hence, in our example, one
would find the same Gibbs state, as the thermodynamic limit is approached, in
almost every experiment, i.e. there are almost surely no transitions in those one-

1 This general method of proving uniqueness was introduced by Araki [15]
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dimensional spin glasses that can be observed experimentally. The relevant
question then is whether the state constructed by means of sample-independent
b.c. is extremal, or whether, for large β, it may exhibit some kind oΐlong range order
or divergent relaxation times. The results of ref. [8] show that if the state were not
extremal that would not have anything to do with spontaneous breaking of the
σ-> — σ symmetry. Moreover, for α >§, the unique state is extremal [4,5] (as can be
shown by improved relative entropy arguments), but that remains open for

As argued by Kotliar et al. [16] one does expect transitions if the interactions
are of very long range, in the sense that l/2<α<l.

More challenging problems concerning the absence of transitions in spin glass
models are encountered in two or more dimensions. It is a reasonable conjecture
that the Ising spin glass with nearest-neighbor interactions, J(i9j), with
EJ (i, j) = 0, ΈJ (Ϊ, j)2 = 1, does not exhibit any equilibrium transitions at arbitrary
temperatures and zero magnetic field, in dimension 2. (In dimension 3, recent
numerical experiments suggest a transition [20].) An easier problem would be to
prove that a spin glass with Hamiltonian

H= - ΣJ(i,j)σpj, J(i,j)=J(iJ)\i-j\-*d,

E J ( Ϊ , j) = 0, EJ(i, j)2 = 1, J (i, j) bounded i.i.d.

random variables, has a high-temperature phase with unique Gibbs state and
correlations which have cluster properties, provided OL>\. This might follow from
improved high-temperature expansions or Dobrushin-type uniqueness theorems,
but the details have not been worked out, yet.

There do not appear to exist any mathematically rigorous results on the
question of whether there are equilibrium phase transitions in spin glass models
and what the main features of such transitions would be. We wish to suggest that
one might try to extend Israel's general theory [17] to duplicate systems of spin
glasses with random interactions which could permit one to show that, for α=^ ,
there are distributions of exchange interactions such that the corresponding spin
glass model has long range order at low temperatures. (We have, however, no
precise results in this direction.) Another, more concrete line of attack would
consist in analyzing the behaviour of spin glasses in high dimensions. In the formal
d->oo limit, the spin-spin correlation is given by

ω{σxσy) = Ά(-βJ + b);y\ for small β, (23)

where J is the operator on /2(Zd) with matrix elements equal to the exchange
couplings, J(iJ), and a and b are constants depending on the a priori distribution
of σ, ; βb~x ~d~ι. Thus, as d->oo and for small /?, ω(σxσy) formally approaches a
limit proportional to the Green function of the tight binding Hamiltonian,
h = — βJ, with off-diagonal disorder. One may expect, therefore, that, in high
dimensions and for small β, the spin glass- and the localization problem are
related. We argue that the Griffiths singularities [18] in β of the spin glass models
are related to the low-energy regime near the lower band edge of the tight binding
model, where the spectrum of βJ is pure point, and ( — βj + b + zΌ)"/ still exhibits
exponential decay in \x—y\ with probability 1, [19]. Furthermore, the lower
mobility edge of the tight binding Hamiltonian might be related to some
transition encountered in a high-dimensional spin glass, as β is increased. Since the
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localization length in the tight binding model appears to tend to oo continuously at
the mobility edge (with an exponent v=j9 for large d), some transitions in a high-
dimensional spin glass, as β is increased, may be expected to be continuous, as well.
However, Eq. (23) is actually valid at best for small β, (where one has real
analyticity in β), so the above conjectures must be taken with some caution.
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