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Abstract. We prove that the three-dimensional Ising model in a random
magnetic field exhibits long-range order at zero temperature and small
disorder. Hence the lower critical dimension for this model is two (or less) and
not three as has been suggested by some.

1. Introduction

Consider the Ising model in a random magnetic field. With spins 6;= + 1 foriina
rectangle A CZ*, the Hamiltonian is

H+(A)= 2 %(I_O'io'j)_ 2 %hiai- (1.1)

{i,j>:iedorjed ied

Here we take plus boundary conditions, o;=1 for i¢ A; {i,j) denotes a nearest
neighbor pair; and h; is a random magnetic field. We suppose that the h; are
independent random variables, each Gaussian with mean zero and variance
Chiy=¢.

We present a rigorous proof that in dimension d = 3, this model exhibits long-
range order at zero temperature and small disorder e. Specifically, we prove that
with probability 1 —exp(—O(e~?)), uniformly in 4, 6,=1 in the ground state of
H*(A). This resolves the controversy over the value of the lower critical dimension
for the random-field Ising model, at least at T=0. The lower critical dimension, d,,
is the dimension above which long-range ferromagnetic order can exist. Our result
establishes that d; <2, ruling out d, =3, which was argued for by some authors. The
behavior of the model in two dimensions remains an open question, although it is
generally believed that there is no long-range order at any temperature, including
T=0. If this is so, then d;=2 at zero temperature. In one dimension, Berretti [1]
has shown that there is no long-range order at T=0.
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Imry and Ma [2] originally argued that d,=2 as follows. In a region of linear
dimension L, the typical fluctuation of magnetic field energy should be of the order
of LY2, while the energy of a domain wall surrounding the region is of the order of
L1, (A domain wall or contour is defined to be a connected (d — 1)-dimensional
hypersurface separating a region of plus spins from a region of minus spins.) Thus
field fluctuations should destroy any long-range order in d>2; also in d=2 by
considering all possible L. It seemed reasonable to believe d, = 2, though as pointed
out in [3], other mechanisms might destroy order in higher dimensions.

Other arguments were subsequently put forward for d;= 3. Chief among these
is the correspondence between random systems in d dimensions and the corre-
sponding pure systems in d —2 dimensions. Since d,=1 is the nonrandom Ising
model, we would have d;=3 in the random version. The correspondence was
derived by Parisi and Sourlas [4, 5] using supersymmetry; nonperturbative [6, 7]
and rigorous [8] versions were subsequently given. These authors considered
scalar field theories rather than Ising models. The Parisi-Sourlas correspondence
is exact only in the case of unique solutions to the classical equations of motion, as
was pointed out in [5]. This excludes the case of most interest for the Ising model at
low temperature, since the desired interaction potential is nonconvex. Neverthe-
less, the correspondence may be of relevance in a disordered phase, where it would
be reasonable to assume a convex potential.

Arguments based on the roughness of the interface were put forward for d,=3
[9,10] and for d,=2 [11-13]. For comprehensive reviews of theoretical, numer-
ical, and experimental work on the lower critical dimension of the random-field
Ising model, see [3].

Chalker [16] and Fisher et al. [14] give important extensions of the Imry-Ma
argument which will be important in our proof. In an approximation in which
there are no contours (domain walls) within contours, they proved that the model
is ordered for d > 2. This entails considering all possible contours surrounding the
origin, and proving that with large probability, none of them encloses a net field
exceeding the surface area. They used coarse-grained contours to take advantage
of the fact that many contours enclose essentially the same volume. We will need
coarse-grained contours also, for the same reason: There are too many contours to
allow for treating each one independently.

One could argue that the assumption of no contours within contours is
essentially what one is attempting to prove. But in fact one obtains that contours of
a certain size are rare, assuming only that smaller contours are rare and that they
can be neglected. The idea that one can work inductively from smaller to larger
contours will be an important ingredient in our proof. Recently Krey [18] has
argued that contours within contours play a role in shifting d, to 3, in contrast to
our results.

Frohlich and Imbrie [15] and Berretti [1] have considered the random-field
Ising model at large disorder. They prove that in any dimension, if the disorder is
large enough, then there is no long-range order. The results of [15] are uniform as
T—0. Thus the present paper establishes the existence of a zero temperature
transition from long-range order to absence of long-range order, as the disorder is
increased.
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It is worth remarking that with minor modifications our proof should be valid
in any dimension d > 2. Also, the choice of a Gaussian distribution for the magnetic
fields is inessential. Any continuous, symmetric distribution with Gaussian fall-off
would be easy to handle, and other distributions could probably be treated with
some additional work. We are also optimistic about obtaining a proof valid for
small temperatures, not just T=0. Such a proof would combine the expansion
methods of [15] with the methods of the present paper.

Results. In stating our main results, we use the following notation. We let Pr(E)
denote the probability of the event E, with respect to the measure

du(h)= TT [(2ne?)~12e"12%qn] . (1.2)
ieZ?

If F is a function of the magnetic fields, we let F denote its expectation with respect
to this measure. Let 6™"(4 ") denote the spin configuration of minimum energy
H*(A). This is unique, with probability 1, because any two energies are linearly
independent functions of {A;};. ,, and the probability that they are equal is zero.
Let A denote a rectangular parallelepiped centered at the origin 0 € Z3, and let 4,
denote the cube of (2n+ 1)3 sites centered at the origin. Let 7 be any small constant,
say n=1/4. We state two theorems: the main theorem on long-range order, then a
theorem on the decay of du(h)-correlations between ground state spins. We assume
throughout that ¢ is small.

Theorem 1.1 (Long-Range Order). There exists a constant C>0 such that for any
ieZ? and any A,

Pr(c™(A*)= —1)<exp(—C/e?). (1.3)

Consequently,
e™(At)=1—2exp(—C/e?), (1.9
oM (A )eT™(AY) 21 —4exp(—C/e?). (1.5)

By the FKG inequality, the sequence {6™(A,)} is decreasing in n. Hence the
limit
lim o™(A,]) =g (1.6)

exists for each ie Z?3, with probability 1. Furthermore, the bounds (1.3)~(1.5) of
Theorem 1.1 hold for ¢™" as well. Our methods also give us constructive control
over the rate of approach to the infinite volume limit. This will be discussed in more
detail in Sect. 6.

Theorem 1.2 (Decay of Correlations). There exists a constant C >0 such that for
any i,jeZ?,

|GG — PR < exp(— Cli—jI! ~7/e?) (17

In the last theorem we could as well replace n' " with nexp[ — c(loglogn)?],
cO>0, n=li—]|
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Main Ideas. We need to estimate the probability that I, a contour enclosing the
origin, appears as an outer contour in the ground state configuration ¢™*(A*). (An
outer contour is one that is not surrounded by other contours.) Suppose that I is
an outer contour of the configuration ¢™"(A4 7). Let V(I') denote the volume
enclosed by I'. The leading term in the expansion for H*(V(I')) in the ground state
is

Irl+ > 3h. (1.8)

ieV(I)
This is what one would obtain if there were no contours y surrounded by I'. Taking
(1.8) to be exact for the moment, we see that I' can only occur if (1.8) is less than any

comparison energy in V(y). In particular (1.8) must be less than Y —3h,, the
ieV(I)

energy H*(V(IN)) of the configuration with no contours whatsoever in V(I'), not
even I'. We find that in the approximation of no contours within contours, I' can
occur only if

Irl+ > m=0. (1.9

ieV(I')

As in the Imry-Ma argument, the probability that this happens is less than

I? .
exp|:— Z_EEIITJ'(—Fﬂ] gexp[— S%dlam(r)} <1 (1.10)

in three dimensions. Even though there are exp(c|I'|) contours of area |I'], it can be
shown [14] that with large probability, (1.9) is not satisfied for any I
We intend to use a similar strategy, but making no approximations for the
ground state energy in V(I'). One exact formula could be derived by adding to (1.8)
a term
Z[H‘(V(V))— 2 %h,-} (1.11)
y ieV(y)
where y runs over the outermost of the contours surrounded by I in the ground
state in V(I'). Here H™ (V(y)) is evaluated at the ground state configuration
o™V (y)”), with minus boundary conditions since ¢= —1 between I' and y.
Unfortunately (1.15) is not useful because of the nonlocal dependence on the A,’s in
each term. In order to say whether or not y is in the ground state, one must know
the magnetic fields throughout V(I'), even if y is small. Hence the statistical
analysis leading to the bound (1.10) cannot be made because of uncontrollable
dependence amongst the random variables.
To understand our local expansion, consider the simplest correction to (1.8)
arising from the smallest possible contours:
r(—h). (1.12)

v:y[=6, V() V)
Here
0, if y is not in the ground state in B(y)
with minus boundary conditions,
yl— > h;, otherwise,

ieV(y)

r(—h)= (1.13)
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and B(y) is a cube of diameter 8 centered at y. The random variable r,(—h) is
defined in terms of a local ground state in B(y), hence it depends on the magnetic
fields only in a small neighborhood of y. We obtain the true ground state in V(I
through successive local ground states in larger and larger regions. If larger
contours y” occur in the ground state, then in representing their effect, r,,, we have
to subtract the terms erroneously included in (1.12). This amounts to a comparison
of the ground state energy in V() with the energy of some other configuration
involving smaller contours only — see definitions (3.1)«3.3). We assume by
induction that we have good control over such comparisons, and attempt to prove
the required estimate for I" also.

The complete expansion for the ground state energy in V(I') contains, in
addition to the terms in (1.8), a sum of the local random variables r.(— h) for all y
inside I'. The comparison energy involves a sum of random variables r,(h). Hence
the difference energy involves symmetrized variables r,(h) —r,(—h). Locality and
symmetry permits us to estimate these contributions in a manner analogous to the
field terms.

In order to avoid uncontrollable sums of r,’s, we have to work with aggregate
variables incorporating the effect of all contours of specified diameter, area, and
volume that lie within a fixed cube B. Then in order to estimate the aggregate
variables, we use coarse-grained contours as in [14]. Difficulties arise in arranging
for the aggregate variables not to feel the contour I" which is supposed to enclose
all contributing contours.

In the next section we define some generalized contours and introduce locally
favored contours. We also prove some lemmas on the geometrical relationship
between these contours, and on their relation to the true ground state. In the third
section we introduce the expansion for the ground state energy, and prove that it
can be rewritten in terms of aggregate variables. The fourth section is devoted to
the inductive estimates for these variables. In Sect. 5 we prove some entropy
estimates that were assumed in the previous section. In the final section, we prove
Theorems 1.1 and 1.2, using the results of Sects. 2-5.

2. Contours and Local Ground States

In this section we establish some basic definitions for use in the remainder of the
paper. We introduce generalized contours which need not be connected in the
usual sense. The generalized notion of connectedness is tailored to the requirement
of our induction. We also introduce the concept of a favored contour, or a contour
present in a local ground state configuration. Favored contours are central to the
construction as we approximate the true ground state through local ground states
in successively larger regions.

Throughout Sects.2-5 we fix a large rectangle ACZ3 and restrict to
configurations with =1 in A° (plus boundary conditions) or with 6= —1 in A°
(minus boundary conditions).

The distance between sites i,j € Z* is given by

[i—jl =m51x i, =Jal - 2.1)
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J>2k+l
4
2

: g k+2

B(7)

Fig. 1. The box that the contour y belongs to

Fig. 2. The volume enclosed by 7, and the volume V(I

Consider a subset V'CZ?3, and consider spin configurations ¢ in ¥V with 6=1in
(VnA)-. The contours of the configuration in ¥ are the connected components of
the set of all plaquettes of the dual lattice separating a nearest neighbor pair of sites
,jy with g,0;=—1.

The components of ¥ may have several boundary components. However we
will never have to consider configurations with contours surrounding a compo-
nent of V°.

Let y be any union of contours. Then we define k(y) by the inequalities

%0 < diam(y) <220+, k(y)eZ. 22)

We associate to each contour y a cube B(y) of diameter 2**3 containing y. The

center of B(y) is chosen to be a fixed point near y. We take the point of 2*Z3
maximizing dist(y, dB()), and if there are several then we choose the first one (say
in a lexicographic ordering of Z3). We have that dist(y, dB(y))>2*** (see Fig. 1).
We label such boxes by the site x € 2Z* at the center and by the scale of y, for
example B(y) =B, , for k(y)=k. We write y— B, , if B(y)= B, ,, and say y belongs

to By .
If I is any union of disjoint contours, we define V(I"), the volume enclosed by I,
to be the collection of sites with ¢;= — 1 in an associated spin configuration. The

associated spin configuration is defined in the obvious way by putting =1 at co
and changing the sign of ¢ across each component of I'. We use |- | to denote the
cardinality of a set, thus |I'| is the area of I" and |V(I')| is the number of sites en-
closed by I (see Fig. 2).
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We will also need a slightly smaller volume,
V(I')={ie V(I'): all nearest neighbors of i are in V(I')}.

The outer contours in a region V are the contours I" such that V(I')¢ V(I™) for
any other contour I'" in V.

So far all contours have been connected. We now join to each outer contour
some of the contours it encloses. Fix I, an outer contour in V. Consider the outer
contoursin ¥(I}); denote them by y,, a=1,2, ... . We say that y, is connected to Vg if

dist(B(y,), B(y,)) < 2mintk0=:-kp)*3 "We say that y, is connected to I, if

dist(B(y,), [[) S 2k0=%3  or if |y,|=22NT0~No)

_ 2. V(D)
N =2+ [glogzﬁr], (2.3)

where we define

and where N is an integer constant to be determined later. Here [x] denotes the
largest integer less than or equal to x, for x>0, [x]=0 otherwise. We define I to
be the union of I; and all y, connected directly or indirectly to I, via the above
relations. We repeat the process for I, adding all y, connected directly or indirectly
to I using the above relations with I, replaced by I7. [There can be some new
outer contours added because N(I7) can be less than N(Iy).] This defines I, and
we continue in this fashion to define I3, I, etc. until N(I) stabilizes. The result is
I'(Ip), and is called the external contour associated with the outer contour I,
We apply this process to each outer contour in V. Due to the holes punched in
V(Iy), there may be some contours I’ left with V(I')CV, = V\U V(I'(Iy,,)). (Here

{I, .} are the outer contours in V.) We repeat the above constructions with ¥
replaced by V;. We obtain more external contours I'(I) and a residual volume V.
Eventually the process stops and all of the contours y in V are either part of an
external contour or else V(y) C 7(I') for some external contour I'. In the latter case
they are called internal contours (see Fig. 3).

v

Fig. 3. External and internal contours in V. Shaded regions denote V(y) for external contours .
Dashed contours are internal contours
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We remark that no external contour I' has internal contours in V(I)
surrounding components of V(I')°. Thus V(I) satisfies the condition we assumed
for V.

If Iy belongs to B, , then we say that the external contour I'(I;) belongs to By ,
and we write I'(I5)—> By .

In all these constructions we have been assuming o =1 in (VnA)°; they can of
course be repeated for the case o= —1 in (VnA)". The choice of boundary
condition will always be understood or explicitly stated.

The ground state configuration in a region ¥ with plus boundary conditions is
the configuration minimizing

H*(V)= > %(1 _Uiaj)_ 2. %hiai (2.5)
(ijy:ieVorjeV ieV
under the constraint o = 1 in (VN A)“. If there is more than one minimum we choose
arbitrarily one minimizing the number of sites with ;= — 1 (the choice can depend
only on V and on hlV).

An external contour I' is said to be favored in V* if it is an external contour of
the ground state configuration in ¥V with plus boundary conditions. We have
analogous definitions when V has minus boundary conditions.

An external contour I' is said to be favored (+) if it is favored in B(I")*. It is
favored (—) if it is favored in B(I') ~. The notion of favored depends only on I" and
on hB(I). Thus it is a local definition depending only a local ground state. Our
statistical analysis depends on a reduction to such local notions. Locality makes
the corresponding random variables almost independent.

An external contour I' is said to be maximal (S V™) if it is favored (+), if
V(I')C V, and if no other favored (+ ) external contour I’ satisfies V(I) SV ()L V.
We say I' is maximal (¢ V *) if itis favored (+), if V(I') & V and if no other favored
(+) external contour I"’ satisfies V(I')G V(I'")G V. Such a I" has V(I') contained in,
but not equal to, V. Similarly we have external contours that are maximal (CV ™)
or maximal (& ¥ 7). Note that these maximality notions are defined in terms of all
conceivable favored (+) external contours, not just those in any particular
configuration.

We conclude this section with two lemmas on the structure of favored and

maximal external contours (see also Fig. 4).

Fig. 4. A possible collection of favored (+ ) external contours in ¥, with y,,y, maximal (S ¥ *). The
pairs on the right cannot depict favored (+) external contours; they are not nested
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Lemma 2.1. The favored (+ ) external contours are nested, in the sense that any pair
of favored (+) external contours (y,,y,) satisfies one of the following conditions:
(i) 71072=0 and V(3,)nV(y,) =0,
(i) V(y)CV (o) or V() CV(yy1).

Lemma 2.2. Let V=A or V=V(I') for I' any favored (—) external contour. The
external contours favored in V™" are the external contours that are maximal (SV ™).

Proof of Lemma 2.1. We may as well assume that k(y,) = k(y,). Suppose that these
contours are not nested. Then dist(y,, y,)=0, and since

dist(y,, B(y,)*) > 2K+ 1 > 2k00* 1 5 diam(y,),

we have that V(y,)CB(y,). In order to arrive at a contradiction, we prove that
7, is not in fact an external contour of the ground state configurations in B(y,)*.
Let us represent a configuration in B(y,)* by specifying the subset
S={ie B(y,),0,= —1}. Denote the ground state configuration in B(y,)™ by Sy
(y, is supposed to be an external contour of this configuration). Let S(y,) be the set
of all sites i € V(y,) with 6,= —1 in the ground state configuration in B(y,)". We
claim that the configuration S,,;,US(y,) has lower energy than the configuration
S mia- Supposing this to be true, we note that any i e V(y,) with a nearest neighbor
j€ V(y,) must be in S(y,). If y,, 7, are not nested, then at least one such site is in
V(y,)* with a nearest neighbor in V(y,) (see Fig.5). This means that the
corresponding plaquette in y, would not be part of the contours of S,,;,US(y,).
Hence y, could not have been an external contour of the ground state in B(y,), and
we have the desired contradiction.

It remains for us to show that S,;,US(y,) has lower energy than S, ;. We need
to label the portions of contour involved in this comparison. We divide
08 min\0S(y,) into two sections: A4 which is the part in S(y,), and C which is the part
in S(y,) —see Fig. 6. Similarly we divide 0S(y;)\0S,,;, into two parts: B which is the
part in S,,;,, and D which is the part in S ;.. Finally we divide 0S,,,,ndS(y,) into
two parts: E which is the partin S ;,US(y,) and F which is the rest. [We say that a
plaquette is in Wif both of the sites separated by the plaquette are in W. We have

B(»,)

Fig. 5. Thesiteiisin V(y,)nV(y,) and is adjacent to ¥(y,)¢ and to V(y,) . It shows that plaquette p
could not have been part of y,
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Smin 77 S(n)

Fig. 6. The sections of contours bounding S,;, and S(y,)

that AUC=20S,,;,,\08(y,) because any plaquette in 3S,,;, which is neither in S(y,)
nor in S(y,)° must be in 3S(y,). Similarly we have BUD = 0S(y)\0S min-]
We define the energy of the configuration S (normalized to zero for S =0) to be

5(S)=,ZS h;+10S]. (2.6)

We claim that
E(SminUS(71)) — E(Smin) =E(S(71)) — ES(1)N S min) —2IE|. @7
This is easily verified from the equalities
ESminWSO))= X h;+1A4|+|F|+|D|,

i€SminUS(y1)

ESmin)=_ 2 hi+|4|+|F|+|C|+|E],

i€Smin

¢S())= ¥ h+|Bl+|F|+|D|+|E|,

ieS(vy)
ESGINSm)= X h+|Bl+|F|+[C].
i€8(71)"Smin
Recall that S(y,) is the collection of minus sites in V(y,) in the ground state

configuration in B(y,)*. It must also be the collection of minus sites in the ground
state configuration in S(y,)*, since any preferred configuration could be extended
to all of B(y,), achieving the same gain in energy or the same reduction in the
number of minus sites. Therefore,

E(S(1)) 2 E(S(1)NSmin)» (2.8)

S(y,) being the configuration of lowest energy in S(y;). As argued above,
S(y1) ¢ Spin (non-nestedness of y;,y,) so that these two configurations are distinct.
Therefore we must have strict inequality, because equality would mean that
S(y)NS,, would have been selected as ground state configuration due to its
smaller number of minus sites.

Combining this information with (2.7), we obtain

éa(sminus('yl)) < g(smin) s (29)

which completes the proof of the lemma. [J
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Proof of Lemma 2.2. The proof is based on the same type of argument as was used
in the proof of Lemma 2.1. Namely, if S, is the ground state configuration in V,*,
and S, CV, is the ground state configuration in ¥;*, then S, CS,. This statement
can be proven in the same manner that we proved that &(S,;,US(y1)) <E(Smin)
above.

We remark that any external contour y favored in V' satisfies (B(y)nA)CV.
This is clear if V=A. If V=V(I') for some favored (—) contour I' then
dist(B(y), I') > 2**3 (otherwise part of y would have been incorporated into I').
Hence B(y)CV in the second case. We remark also that all contours satisfy
V(I')C A, hence in both cases V< A.

Let y be an external contour favored in V', and let us prove that it is favored
(+),ie. favored in (B(y)nA)*. If S(V) is the ground state configurationin V* and
S(y) is the ground state configuration in (B(y)nA)*, then S(y)CS(V). Fur-
thermore, any component of S(V) that is contained in B(y)n A is contained in S(y).
In particular, the two configurations agree in V(y,) (where y,, is the outer contour
for y) and at sites bordering V(y,). Thus S(y) is obtained by removing from S(V)
some components of minus sites that do not intersect or border on V(y,). Such an
operation cannot change the fact that y is an external contour. Hence y is favored
(+)

Next we show that if y is maximal (C V' *) then it is favored in ¥ *. As before we
have that S(y) CS(V). Suppose there is a site i€ S(V), i € V(p)’, i adjacent to V(y).
Consider the component C of S(V) containing i. C contains also a site in V(y)
adjacent to i, because sites in V(y) bordering on V(p)° are in S(y). We have that
CCV(y) for some external contour 9’ favored in ¥ *. By our analysis above, y” is
favored (+). By Lemma 2.1, y and y” are nested. However, since V(y)nV(y) %0,
V()N V(y)° £0, this is only possible if V() & V(7). See Fig. 7. This contradicts the
fact that y is maximal (S V™). Hence no such site i exists.

We have learned that g,=1 for ie V(y)° adjacent to V(y). Hence any
component of S(V) intersecting V(y,) is contained in S(y). [Here y, is the outer
contour for y.] Thus the two configurations agree in V(y,) and at sites adjacent to
V(y,)- The only way that y could fail to be an external contour of the ground state
configuration in V% is if y, were an internal contour. In other words, we would
have V()& V(y”) for some external contour y” favored in ¥V *. But as before, this

Fig. 7. The existence of a component C of minus spins in the ground state configuration in V'*
demonstrates that y is not maximal (CV'*)
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would imply that y” is favored (+), contradicting maximality of y. Thus y is
actually favored in V' *.

To complete the proof of the lemma, we have to show that if y is favored in V'*,
then y is maximal (S V' *). We have already shown that y is favored (+). If y were
not maximal (S V™), then we would have V(y) ¢ V(y) with y" maximal (< V*). We
have just shown that y” is favored in V*. But then y could not be an external
contour of the ground state configuration in ¥V'* — external contours have dis-
joint enclosed volumes. Hence y must actually be maximal (CV*). O

3. An Expansion for the Ground State Energy

This section is devoted to a definition of some random variables that depend on the
magnetic fields in a local fashion, and to a proof that the ground state energy can be
expanded in terms of these variables.

Define for V<A

(V) =inf B (V)+ 3 3h;. 3.1)

mm

The second term normalizes this ground state energy to zero in the case that the
minimizing configuration has no contours. Next we define

E*N)= ¥  Hp(V®) (32)

y maximal (&

and

.- {0, if 7 is not favored (+), (33)

Hypio(V()—E*(V(7)), otherwise.
We have the following interpretation of E* (V).
Proposition 3.1. E*(V)— Z Lh; is the energy H* (V) of a spin configuration in V

with plus boundary condltzons obtained as follows. In each V(y) yamaximal (GV™)
external contour, we put ¢ =0c""(V(y)*), where a™*(V(y)*) is the ground state
configuration in V(y) with plus boundary conditions. Elsewhere we put 6=1. As a
consequence, we have

r,<0. (3.4)

Proof. We remark that the spin configuration of the proposition is well defined
because volumes enclosed by maximal (G V' *) external contours do not intersect
(Lemma 2.1). Furthermore, the maximal (& V' ") external contours do not intersect
(Lemma 2.1). Hence H * (V) splits into a sum of H*(V(y))’s and the energy of the
spin configuration above is equal to

inf H*(V(y))— 2 3
ymaximal (¢V *) alV(y) ieV,i¢V(y)
fory maximal (gV +)
= ¥  HL(V)-3 h
ymaximal (gV ) ieV

=E* (V)= 3 3. (3.5)
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We have used the definitions (3.1), (3.2).

The inequality (3.4) follows because H,5 (V) — Y 1h; is the minimum energy;
ieV
the energy of the configuration in the proposition must be at least as large. Hence
Hoo(V)SET (V). O

Proposition 3.1 allows us to interpret r, as the amount that the energy can be
lowered in ¥ (y) by extending the ensemble of allowed configurations to include .
Next we derive telescoping expansions for H (V), E*(V) in terms of the r.’s.

Proposition 3.2. The following expansions hold for V= A or V=V (') with I favored

(+):
Hy V)= X 1, (3.6)
y:V(9EV
E*WM= X ry. 3.7
VeV

Proof. If V=V(I') with I favored (+), then these two statements are equivalent, by
(3.3), since the two expansions differ by = H 1, (V(I'))—E*(V(I'). If 8V is not
favored (+), then r,, =0 and the expansions agree. But if 0V is not favored (+),
then V=4 and maximal (¢V™") is equivalent to maximal (CV*). Hence by
Lemma 2.2 the configuration of Proposition 3.1 is actually the ground state
configuration in V' *. [Here we use the fact that if y is favored (+), then y is favored
in V(y)* and so ¢™(V(y)*)=c™*(V*)!V(y).] Hence in this case H.; (V)
=E™*(V), and (3.6), (3.7) are equivalent in all cases. Thus it is sufficient to prove
(3.7), assuming (3.6) for smaller ¥’s. Note that if V' is so small that there is no
favored (+) y with V(y) GV, then (3.2) and (3.7) agree since there are no external
contours contributing to either sum.
By (3.2) and (3.6) we have
E*(V)= > > . (3.8

ymaximal (§¥ +) y: VGOV () |

Comparing this with (3.7), we note that every favored (+ )y with V(") ¢ V satisfies
V(y)CV(y) for some y which is maximal (¢ V™). By Lemma 2.1, the external
contours which are maximal (G V) have nonintersecting V(y)’s. Therefore the
maximal (& V") external contour y surrounding each favored (+) y’ is unique. If y’
is not favored (+), then r,, =0 and it does not contribute. This proves (3.7) and the
proposition. [

We now derive a formula relating r, to r.,’s with ¥(y") € V(y). This formula will
be the basis for inductive estimates on the r,’s. Let us consider the case that y is
favored (+), since otherwise r,=0.

The ground state configuration in ¥(y)* must have y as external contour [any
improvement in ¥ (y)* could be transferred to B(y)*, since y is favored in B(y)*].
To see what happens inside V(y), look at the slightly smaller volume 7(y). Clearly
o;=—1in V(y)\V (y); otherwise y would not be the external contour of the ground
state in V(y)*. Thus ¥(y) has minus boundary conditions. By the minus boundary
condition version of Lemma 2.2, the ground state configuration in ¥(y) ™ has for its
external contours the ones that are maximal ( 7(y) ).
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We need to perform all the constructions of this section for minus boundary

conditions also. It is necessary to change > 4h;to Y —2h;in(3.1) and elsewhere.
ieV ieV

By symmetry, changing the boundary condition is equivalent to reversing the sign
of the h;s. Thus we have instead of the definition (3.3) an equality

_ o, if y is not favored (—),
(k)= {H;i,m))—E-(V(y», otherwise. )
Here h is understood to represent all the ks on which r, depends.

Having described the ground state in V(y), we have the following formula for
the ground state energy:

inf H*(V(y)=y|+ > ih+ > inf H™(V(y))
alV(y) ieV(y),i¢V(y) y’ maximal (SV () ") o[V ()
for y’ maximal (SV (y)~)
=P+ X s+ 2 Hy(VR). (3.10)
ieV(y) vy’ maximal (SV(y) 7)

We have used Lemma 2.1 to conclude that the maximal (C¥(y)”) external
contours are nonintersecting and have nonintersecting enclosed volumes. From
(3.10) we obtain

Hopw(VO) =W+ ¥ i+ )Y Hoin(V(Y)) - (3.11)

ieV(y) v’ maximal (C I7(y)‘)

Applying Proposition 3.2 and (3.3), we obtain

0, if yis not favored (+),
=+ ¥ ht >  rd=-h— >  rdh), (3.12)
V) yVO)EPO) YVGIEV )
if y is favored (+).

Notice that we have almost a sum of symmetrized random variables
r,(h)—r,(—h). Since these variables have mean zero, like the h;’s it should be
unlikely for them to exceed |y| in magnitude (the Imry-Ma argument). As this is
clearly a necessary condition for r,<0, we see that r, is usually zero. This is
essentially how our argument goes. However, we need to work with aggregates of
the r,’s to obtain good estimates.

Define
> r,, if the number of such favored (4) y is in [v,2v),
r — J 7= By, x:|ylela, 2a),
kaw,vx V()| elw, 2w)
0, otherwise, (3.13)
5rk,a,w,v,x(h) = rk,a,w, v,x(h) - rk,a,w, v,x( - h) . (314)

Here a=2", w=2!, v=2F for some m, |, peZ. Now we define

W+ 3 B 3% 0runan(h), ifyis favored (+). (3.15)

ieV(y) k,a,w,v,x

0, if  is not favored (+),
e i y (+)
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The star indicates the following restrictions: w<23™®~No' k<k(y), and
[By,\V (p)|<w. We define, in analogy with (3.13)

cy(h),

7= Bi, x:|7|€la, 2a), |V (y) e[w, 2w)
Cr.awv.xM)=1 if the number of such favored (+) y is in [v,2v),

0, otherwise. (3.16)

The following proposition shows that c,(h) is a useful approximation to r,(h).
Proposition 3.3. If y is favored (+), then
rW=ch)— > r.h). 3.17)

YISV |
Here *c indicates the complementary restrictions:
V() Z22V¥O=N0or  IBGV\V () Zw()-
Here w(y) is defined by |V (y")| € [w(y"), 2w(y")). As a consequence, we have
¢,(W<r,(h) <0,
ko, (W Z T4, (N =0

Proof. Consider the terms r,(h) that should appearin (3.12): all y’ with V() S V(7).
Clearly exactly one of the following conditions are satisfied:

V() elw,2w) with w<23®O=No.p(y)| > 230V ~No),

By Lemma 2.1 if y”is favored (+), then either V(y") CV(y) or V(") C V(y)‘. Since no
external contours y” with V(y)CV(y)* and |V(y")| € [w,2w) can belong to B, ,’s
contributing to (3.15), all y’ contributing to (3.15) satisfy V(y) € V(y). Furthermore,
if V(y)=V(y), then y’=9 so that

(3.18)

2
wzw2’3;CIV(?)|2’3IVI"2IVIZz%%) 2 2301~ No), (3.19)
[We have used the elementary inequality |y|=6|V(y)|**.] Thus y’=y does not
occur in (3.15); all y” contributing to (3.15) satisfy V(y") ¢ V(). With this condition
satisfied, we have k(y)<k(y) automatically, and we need only notice that the
conditions on B(y") in (3.15) and (3.17) are complementary. Thus we have shown
that each 7’ contributing to (3.12) contributes to exactly one of the sums in (3.15),
(3.17
1\}ext we consider the terms r,(—h) that should appear in (3.12): all y’
with V(y’)C 7(y). All nonzero terms should appear in (3.15) as there are no
others in (3.17). Any outer contour 7, in the ground state in ¥(y)~ with
dist(B(y,),y) <2¥9*3 would have been joined with y, by our construction of
external contours. [We are assuming that y is favored (+); this implies that it is
favored in V()*.] Hence we can assume there are no such outer contours in the
ground state in ¥(y)”. By Lemma 2.2 there are no such maximal (¥ (y)")
external contours. The existence of any favored (—) external contour y, with
dist(B(y,), y) < 2500 *3 would imply the existence of a maximal (C ¥(y) ) contour
even closer to y. Hence there are no such favored (—) external contours. Thus the
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limitation on B, , in (3.15) does not remove desired r,(—h) terms; all y’
contributing to (3 12) belong to a B, S V(y).

In an analogous fashion we show that the limitation w <23¥®~No) jp (3, 15)
does not remove desired r,.( — h) terms. Any outer contour y, in the ground state in
V(y)~ with |yy| =220V =N 9 would have been joined with y. Hence there are no such
outer contours in the ground state in ¥(y)~. If y" is favored (=), V(3)CV(y),
V()| € [w,2w), then

wE V@ISV (o)l S [pol*? <23 =No), (3.20)

where y, is the outer contour of the maximal (C ¥(y) ~) external contour enclosing
y’. [We have again used Lemma 2.2 to deduce that y, is in the ground state in
V(y)~.] Thus all y’ contributing to (3.12) are included in (3.15).

Lastly, we need to show that every r,.(—h) contributing to (3.15) is present in
(3.12) also, i.e. we must show that V(y )C 7(y). We need the following lemma,
similar to ones used to prove Lemmas 2.1 and 2.2.

Lemma 3.4. Let S, be the set of plus spins in the ground state configuration in V,",
and let S, CV, be the set of plus spins in the ground state configuration in S7 . Then
Sl C S2.

Proof. We could prove the lemma directly, but it is simpler to reduce to the
situation considered in the proof of Lemma 2.1. First change all signs, so that
h— —h, S, is the set of minus spins in the ground state in V,~, and S, is the set of
minus spins in the ground state in S;. Next define

V,=V,u{i:i has a nearest neighbor in V,},

and put ;= — o0 in ¥,\V,. This enforces 6;= — 1 in 7,\V;, so that §,u(V,\V,)is the
set of minus spins in the ground state in V. (Actually it is a ground state
maximizing, rather than minimizing, the number of minus spins.) The argument in
the proof of Lemma 2.2 shows that the configuration S;uUS,u(V,\V,) has an
energy less than the energy of S,u(¥,\V,), unless S, CS,. As S,u(¥,\V,) is the
ground state, this cannot happen, and we have S;CS,. [

In the situation at hand, we take ¥, = B(y)nA and S, to be the set of plus spins
in the ground state in V(") . This of course implies that S, is the set of plus spins in
the ground statein S; . Since V(y") ¢ V(y)° and k(y") < k(y), we have that V(y") C B(y).
Furthermore, V(y’) is always contained in A, so we have S; CV, and the lemma

Fig. 8. Sites in the shaded region are in S; and in S%. Hence 7',y are as pictured on the right
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applies. Suppose that V(y")¢ V(y). We have also V(y")¢ V(y), and in addition
V(y)¢ V(7)) because otherwise we would have w(y)=23®®»~No) a5 in (3.19).
Therefore there is at least one site in V(y)nV(y’) that is adjacent to ¥ (y)° and to
V(y') (see Fig. 8). Being adjacent to V(y")° means it is in S;, and being adjacent to
V(y)° meansitis in S3. This contradicts Lemma 3.4, which says that S, CS,. Hence
VO)EV(©).

This completes the proof of (3.17). The inequalities (3.18) follow immediately,
because r,(h)<0. [

4. Probability Estimates for the Induction Step

In this section we formulate an induction hypothesis on the distribution of the
random variables ¢; , , ,..(h). This is used to estimate the distribution of sums of
random variables o7, , ., , (h). Finally we verify the induction hypothesis,
assuming some entropy estimates from Sect. 5.

Proposition 4.1. Let

2
3
There exists a constant c,>0 such that for any R=0,

Pr(ci,a,,1,:(h) < —R) =exp % - Mexp [—co(logN(a, W))z]} YY)

ETvYwW

N(a,w)z2+[ 1og2%] <N.

We will work using an induction on N. Note that by (3.18), the estimate (4.1)
holds for r , ., (k) and for ory , , , .(h); we have

ck,a, w, v,x(h) é rk,a, w,v, x(h) é 5rk,a, w,v, x(h) . (42)

Furthermore, since 6ry , ,, . ,(h) is symmetric, we have the same estimate for the
probability that o7, , ,, , (h)>R.

Let x;€2*Z* i=1,...,n be such that |x;—x;|>2*"* for all i=". Then since r,
depends only on hlB(y), and since B, ,NB, .. =0, the or, , .., . (h)s are
independent random variables. In order to estimate the probability distribution of

n
2 0Ty a,w,v,xp WE WOTK with the moment generating functional for 07y 4,y

ISeﬁne

fis)=1e?2(y)dy, (4.3)
where A(y) is the probability density for o7, , ,, , ., that is,
Ry
Rj; j'l(y)dy = Pr(ark,a,w, v, X, € (Rla RZ)) . (44)

;;;;;

2
Pr(érk,a,w,v,xi =+ 0) é 2 €Xp { - ';iz%exp[_ CO(logN(a’ W))Z]}

gexp<—8£22"/2) <1. 4.5
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We use ¢ to denote constants that may depend on c¢,. All other constants
Ny, ¢, cy, ... can be chosen independently of ¢,. The second inequality follows from

a* _ chy)? . '

—= > cdiam(y)=c2*, 4.6

w 2Ty =¢dmz @0
N(a,w) <log2 +c=<log, diam(y)+c=Zk+c. 4.7

We prove (4.6) by noting that the maximum |V(y)], given [y} and diam(y), is
achieved at a cylinder-like shape with |V (y)|~ L? diam(y), L being approximately
the radius of the cylinder. We have |y|=cL diam(y) so that |y|?/|V(y)| = c diam(y).
For (4.7) we need only note that |V (y)| <|y| diam(y).

From (4.5) we see that 1(y) is dominated by a delta function at y =0, hence the
need to be careful about endpoints in (4.4).

For convenience we define

B=B(v,a,w)=¢*vwexp[cy(logN(a, w))*]. 4.8)
Lemma 4.2, Let s be real. For |s| <2va/B,
SIS 1+e" 00725, 4.9)
and for any s,
|fi(s)| <exp(s*B/4). (4.10)

Proof. By symmetry, we can take s=0. If s<2va/B, then
i —1l= | (e —DA()dy
<2 (€= 1)A(y)dy
0+
dva .8
< — 1 e?@BA(y)dy,
B o
by integration by parts, where
A= § A(0)AY =Pr (07 g, w,,%> ) (4.11)
y
Hence we have

|f(S)—1|< j’ 2vay/B —-(y+va)2/de

[=]

4 ©
<e 0BV ( 3By
B %

- (vay2/ €V4 —(va)2/2B
<e (va)?/ B =172 <e (va)?/2B (4.12)

The last inequality holds because by (4.5), a*>/B> 1. This proves (4.9).
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The bound (4.12) extends immediately to complex s, |s|<2va/B. Hence
Cauchy’s theorem implies that

VO] §C<%>ze"‘”“’2’ 2B, |sI<va/B. (4.13)
Furthermore we have f(0)=1, and by symmetry f;(0)=0. Hence for s<va/B,
fi(s)S14cs? (%)2 e~ (/2B L ps?Bl4 (4.14)
provided
c way e (aP2B<q

But this is true because a®/B> 1. This proves (4.10) for |s| <va/B.
Next consider s> va/B. We have

fUs)S1+2s | e A(y)dy
ot
<1+2s Of Ve Ut va)z/de
0

§ 1+ 2s T es28/4e—svue~(y~s8/2+va)2/de
0
é 1 + csBl/Ze—svaes2B/4 é 1 + e—(va)z/ZBeszB/ct . (415)
We have used a=>1, and
B=<v2*exp[co(logN(a, w))*]=ev2C ™ < ((va)?/B)®, (4.16)

which follows from (4.7), (4.5). (Here 7 is a fixed small positive number, say n=1/4.)
Now the right-hand side of (4.15) is bounded by e**¥/4, since

2
(11— 2% Zexp [(‘:g —2e“““)2/23] >1. (4.17)

This completes the proof. O

Lemma 4.2 gives us the information we need to estimate the distribution of
sums of 67 , .., .(h)’s. The bound (4.9) gives rise to an exponentially decaying
distribution, while (4.10) yields a Gaussian falloff which is better for large values of
the sum. These two behaviors reflect corresponding behaviors in (4.1): Exponential
for small R, Gaussian for large R. There is a third domain of very rapid, Gaussian
falloff for the distributions of sums of ér, , ,, , .(h)’s for very small values of the
sum. This behavior (reflecting the central limit theorem for these random
variables) arises from an improvement of the bound in (4.9) to
exp[s? exp(—¢c2¥/2/£2)], see (4.14). However, we prove in the following lemma only
what will be needed for the induction step.
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Lemma 4.3. If x; € 2¥Z3, |x;—x;|=2**3, then for R=0,

Pf( i 0Ty a,w, v, 3,1 < — R> <exp[—R?*/(nB)], (4.18)
i=1
u — (va)?/2B 2va
Pr{ 3 0rgw.v.x(h<—R| =exp| ne - ?R . 4.19)
i=1

Proof. Let F(s) denote the moment generating functional as in (4.3) for A, the
density for 3 6r; , ., .(h). As these are independent random variables, this
density is a convolution of 1,(y)’s, so by Lemma 4.2,

n expne” C¥*2B] " |s|<2va/B,
= i <
F(s) il:[1 OE {exp (ns*B/4), any s. (4.20)

This yields

n —R~
Pr <i§1 5rk,a,w,v,x,-(h) < _R> = _J' lF(J’)dY

—R-

e R | e ™iy)dyse **F(—s).

IIA

Putting s=2va/B and using the first bound in (4.20), we obtain (4.19). If we take
s=2R/(nB) and use the second bound in (4.20), we obtain (4.18). [J

Corollary 4.4. There is a constant ¢, >0 such that for arbitrary {x;} and R=0,

Pr( i 5rk,a,w,v,x,-(h) < _R>
i=1

2

<c, exp[ exp[ —co(logN(a, w))z]] , (4.21)

c et nmvw

Pr< > Oawwx () < —R) <c,exp [ne—fz"”/ﬁz— %Wz-ﬂkk]. (4.22)
i=1

The same estimates hold for Pr(}.6ry 4 .y, x(h)>R).

Proof. The sites {x;} can be divided into at most 83 subsets, each of which satisfies
the condition in Lemma 4.3. In order for the event i 0T, a,w,v, x{(#) < — R to hold,
at least one subset S must satisfy ZS 5rk,a’w,v,xl_(h)l<: 1—R/83. Each subset satisfies

|S| < n/83, hence by Lemma 4.3 the probability is bounded as in (4.21), with ¢, = 83.
Similarly, (4.22) follows using (4.5) and

va va a .
B2y P [—co(logN(a, w))*12 W 27T, (4.23)

The other estimates hold by symmetry. [
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Lemma 4.5. There is a ¢, >0 such that for any R=0,

n R2
Pr <=Z1 h<— R) <exp ( - ) , (4.24)

c, ne?

and similarly for Pr( > hi>R>.
i=1

Proof. As we have chosen a Gaussian distribution for each h;, the sum has
probability density (27ne®)~/* exp(—y?*/(2ne?)), and (4.24) follows easily. [

Let us now consider a particular random variable ¢; ; .5 x(h). From (3.16),
(3.15) we see that for each k, a, w, v there is a certain subset of 2*Z>NB; ; of sites x
with 7y 4., . contributing to ¢; ; ;. 5z Denote this subset by V; ,(7), where
7={y,} is the collection of favored (+) external contours y;— B, , with |y;| € [a, 2a),
[V(y,)| € [w, 2w). [These are just the y’s contributing to (3.16).] We have

Vew(?) = VKE)? Veow(?)

where V; ,,(y) is the set of all x such that |B, ,\V(y)| <w. Let us define also V(7)

= V(y). Note that w<2%=|B, ,|/8%, so that an x can satisfy this condition for
YE€Y
at most one y € j; there is no overlap of ér’s contributing to different c,’s in (3.16).

The subset ¥, ,,(y) is a generalization of the notion of coarse-grained contours
introduced in [14]. If we put w=|B, ,|/2, then ¥} ,(y) would be essentially the same
as the volume enclosed by y after coarse-graining as in [14] on the scale 2**3. For
smaller w, more of the structure of y is preserved in ¥ ,,(y). The corresponding
increase in entropy will be balanced by improved probability estimates for small w.

It is not sufficient to apply Corollary 4.4 to the ¥; ,(7)’s introduced above;
some additional coarse-graining is needed. For this we use the same procedure as
in [14], rescaled to 2¥Z>. Specifically we introduce

V;c,w,j(’f) = yke)? I/Iv‘:,w,j(’))) s
Kc,w,j(y) = U Ck,j(y) k) (425)

YeWi,w,j(v)

Wi, 0=y € 2L e, (1) Vi ()| > 327} .
Here ¢, j(y) is the cube consisting of all sites x € 273 with
x, €[y,—32"",y,+32¢"),  p=1,2,3.
To handle the field terms, we introduce

vin=U vy,

Y€V

V,(V) = %’} )Co,j(Y) s

yeW;(y

W) ={ye2Z>:|c, (NNV()|>2%}.

Note that ¥, o)=V,w(7), Vo(=V(7)- Also the sets Vi, (y), y€7 are
nonoverlapping, as are the sets Vi(y), ye 7.
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These definitions lead to the following expansion for c; ; 5.5:(h). The
collection of favored (+) external contours 7 is determined by k, a, w, v, X, and h. If
[71¢ [V, 2V), then ¢ ; 4.5 x(h) =0. Otherwise, we have

N@a,w)

ChawsxM)=2 I+ X [ R D hi:|
yey J=1 [ieV;- 1\ ieV,(M\Vj-1()
+ X ht+ >
ieV N, w)(¥) k<k w<max23(N()-No)
ved
N(a,w)—3k
) Z Z Z 5rk,a,w,v,x(h)
a,v j=1 XV, w, ;(M\Vi, w, j-1(?)
- Z 5rk,a, w, v,x(h)J - Z 5rk,a, w, v,x(h)}
xeVi,w,j-1\Vk,w, j(¥) xeVk,w, N, w) - 3k(P)
N(a,w) . B N(a,w)— 3k + _
j=1 k,w,a,v j=1

(4.26)

In the last line we have defined 4, H}, Hy, 4f, Ay by the corresponding
expressions above. If N(d, w)—3k <1, then we define 4, to be the whole sum,

AN= Z 6rk,a,w,v,x(h)> AJ+=AJ_=0

x€Vi, w(?)

The following lemma will be extremely important in controlling the deterio-
ration of our main estimate (Proposition 4.1) as the size of contours increases.

Lemma 4.6. All pairs (a, w) contributing to c; ; ; 5 :(h) in (4.25) satisfy

N(a,w)<2N(a,w). 4.27)

In particular, Proposition 4.1 (the induction hypothesis) can be applied to such
(a,w).

Each time an induction step is performed, our estimate (Proposition 4.1)
deteriorates; basically the exponent in (4.1) acquires some inverse powers of k. The
estimate (4.27) helps by making iterations sparse — only log;, log, % induction

steps are used in estimating ¢, , ., .- Hence the total factor of deterioration,
represented by the factor exp[ —c, (log N(a, w))*] in (4.1), is no worse than 27y
small. Ultimately the sparsity of iterations was achieved by our construction of
external contours, whereby large contours within an outer contour were joined
with the outer contour.

Proof of Lemma 4.6. Recalling that N(a,w)=2+ [32— log, l:—:l, a=cw?’, we have

5 w .
21EN@W <0 = < ewlB L 2NV@W~No, (4.28)
a
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The last inequality follows from the condition w<max 23®¥®~No) in (4.26); the
YEY

external contour y has |y| € [a, 24), |V ()| € [w, 2w). Choosing N, appropriately, we
have a bound 2V@" on (4.28), which yields (4.27). [

Noting that 4 =va, we can estimate the probability that ¢; ; ; ;. :(h) < —R by
N(@, w) ==
3 [Pr(EI}?:Hj" <— v‘“f) +Pr<5|y H > V‘”R)J
j=1 a a
1
+Pr(5|)7:HN< - Z(Vd+R)>

N@, W) -3k ) ja+R
+ wav{ S [Pr<3y:A"+<_—cj2k5)

=1

va+ R _ va+R
+P <E|y 4; > e >J+Pr<3y:AN> cT)} (4.29)

This works because

N@,w) 2 1 N@,w -k 2 1 < 430
J';l c]2+4+kw2av jgl Q]27+J{_5_ =7 ( )

so that at least one of the above events must occur if the H, 4 terms in (4.26) are to
be less than — A4 —R. Note that there are at most ck® choices of w, a, v, given k,
because w<23%*, a< 2%, v<2?* This yields (4.30).

In order to estimate (4.16) we need bounds on the volumes of difference regions
Vi_ 1(M\V;(7), etc., and some entropy estimates. The following two propositions
will be proven in Sect. 5.

Proposition 4.7. There is a constant c; such that for any j contributing to
Ck,a,w, 5,21,

Vie s GN\V@DILL VOVV;- () S cs27a, (4.31)

Veow,i= 1O\, D Vi, NV, j- 1 (DI S 32w P5a. (4.32)

Proposition 4.8. Let § vary over all possible collections of external contours that
could contribute to cz ; .5 5(h) in (3.16) for some h, that is,

7={yi=Bi »i=1,..., u with pe[v,20),ly,l € [a,2a), |V(y)| € [W, 2W)} .

The number of resulting Vi(7)’s is less than exp(¢j2”*/va). The number of resulting
Viow, f(7)'s is less than eXp(c(H_k)z 2y~ 235).

The estimates involving V(7)’s are similar to ones proven in [14], the only
difference being that we have more complicated contours.

Note that Proposition 4.7 allows us to estimate the “final volumes” Vy; 4,(7)
and ¥y v, v, w - 3x(7)- We have

N(a,w)

Vrva @ISV + Z VNV 1D Scvw+c2YEFa<cww,  (4.33)
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because 2¥@ ™) < ¢(w/a@)*® < cw/a. Similarly,

N(a,w)— 3k
Ve, w, v, ) - 3x(P) = Vi, (D] + ,21 WVeow, i0\Vi w, j— 1 (DI
=
<27 3k 4 2N@ W) =3k, = 28355 < 00 7 3Ky (4.34)

Let us use these propositions and Lemma 4.5 to bound the H-terms in (4.29) by
2N(a, w) Lo Sup exp[cj2~ 2va—(va+ R)*/(cj*2/vag?)]
<jsN@,w)
+exp[ceN(a, w)2~ 2V@"5q — (va+ R)?/(cvwe?)] . (4.35)

For each term in (4.35) the second (energy) term in the exponential is much larger
than the first (entropy) term. For example, we have

N(@,w)2~ 2N@Wy3< 27 3N@M255 < cva?/w . (4.36)

The largest term is the last, because

j295a < c23NEI 25 < e (4.37)
Hence (4.35) is bounded by exp[ —(va+ R)?/(cvwe?)], using
2N(a, w)+ 1 Zexp(c2¥) <exp(cva?/w). (4.38)

Next consider a A-term with j <22 in (4.29), estimating it using (4.32) and the
geometric mean of (4.21) and (4.22):

va+ R ; ; Z2K/2/g2
Pr <Ely A< — X(%g—) <c,exp l:c(j+k)2_2’w_2/3ﬁd+c321w_2/3\7de"”2k/ e
_ @ ,opfPa+RY) (Va+R)?
ce*w cj?k? cj?k®

-(c,¢58220w ™ 239avw) "L exp[ —co(log N(a, w))*] .
(4.39)

The third term in the exponential dominates the first, because w'/?<ca'/?

<ca2~?"™; all factors j or k can be compensated with 272/ or 2™, Similarly the
third term dominates the second; we use also j22/ < ¢°2*/*/*”, Finally, as in (4.37) we
can bound

420w 2Bvayw S N(@, w)*2N@ W~ 3k li3y5q < 2 7 3k iww !By < ciw
in the last term. (We use v <23%/w<22k)) This yields the following estimate:
- — R 2

(4.39)<Zc, exp [ - (—% k=1%exp[ —co(logN(a, w))z] . (4.40)
If j=2%2, then we use (4.21) only, yielding the bound (4.39) with only the first
and last terms in the exponential. The last term dominates the first because its
power of 27/ is lower; its extra factors w'/3v ! are bounded below by j~*. We still
have the bound (4.40), as it was derived using the last term in the exponential only.
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Next we consider the last term in (4.29), and let us suppose N(d, w) < 2¥/2. It can
be bounded as in (4.39):

Pr (EW (x> vi:f) <c,exp [c(j + k)27 w2353 4 2~ ke ~e2
- [ R 2
_ 68‘2’w 9tk (vcz];R) B (vi;:s ) (c,ce?2~ Fw) !
-exp[ —co(logN(a, w))z]] . (4.41)

Here j=max {0, N(a, w)—3k}. The third term in the exponential dominates the
first, as before. It dominates the second, because w/a< 23N ™2 < cexp(c2¥/2).
Thus from the last term we obtain an estimate as in the right-hand side of (4.40). We
use yw=<23,

Finally we suppose N(d, w) = 2%2, and take only the first and last terms in the
exponential in (4.41). Energy beats entropy because

(]' + k)2~2jw— 2/3 < CN((i, W)z— 2N(a, w))6k

<cN(@@, w2~V (afw)2% < ck (W),

and we again obtain (4.40) as an upper bound.
We have proven the following estimate on (4.29):

(Va+R)*
o —R)< e yey—
Pr(ck,a,w,v,x(h)< R)=exp|: cevw + k,w,ztz:.v,jzc1
va+R)? _
€Xp [— (cg—zﬂf))—k 10 exp[_CO(IOgN(a’ W))Z]]
~ (Pa+R?*
< 5 _vern) 10
<ck exp[ er N(a,w)
-exp[ —co(log2N(d, v‘v)/3)21]- (4.42)

Here we have used Lemma4.6 and the bounds w,a,v<c2%*, j<N(a,w),
k <cN(a, w). This last bound follows from 2* <w and the restriction w < 23¥®~No)
in (4.26). Putting L=1ogN(d, w), logZ= — 4, we have

2eN(a, w)'° exp[co(log2N(a, w)/3)*]
<expleoL? —2¢o8L+cod* + 10L +log2c] <exp(c,L?),

for ¢, a sufficiently large constant. (Note that L>4.) Hence (4.42) is bounded by
— 2(va+ R)?
ek exp [ - %)—exp[~co(logN(d, W))Z]] ,

and the bound (4.1) easily follows. This completes the induction step in the proof of
Proposition 4.1.
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5. Entropy Estimates

This section is devoted to proving Propositions 4.7 and 4.8. We begin with a lemma
estimating the areas of our coarse-grained contours.

Lemma 5.1. For any external contour ¥,
oW, (= 2™y, (5.1
(O DS 2722 (52)
Here W(y), Wi, (7) are regarded as subsets of 2Z>, 27**Z, respectively.

Proof. The bound (5.1) was proven in [14]. It is essentially a special case (w =~ 2%¥) of
the estimate

0V, WS cw ™2, (5:3)

which we now prove. If (x, x") € 0V, (y), then |B, \V(p)|<w, |B; . \V(p)|=w, or
vice versa. This implies that U=B,; ,UB, . has the property that w=<|U\V(y)|
<w+323%*3) Pytting R=U\V(y), we have that [0R|=cw?3. We claim that
|[ynOR| = cw?’? also. If we translate plaquettes of 9RNy parallel to themselves to
0U, we find that a nontrivial fraction of plaquettes of 0RNOU are covered.
Otherwise we would have |U\V(y)| approaching |U|, violating the inequality
above. This implies that [0RNy| = c|0RNOU|, which yields the claim.

Only a few sets U share portions of y. This implies (5.3). To obtain (5.2), recall
that W, ,, i(y) is obtained from ¥, ,(y) by the standard coarse-graining procedure,
rescaled to the 2*-lattice. Hence we can combine (5.1) and (5.3) to obtain

[OWs v, DI S 273V, (IS 272w 23]yl

The proof is completed by summing over yej. O

Proof of Proposition 4.7. We prove only (4.32), since (4.31) is similar (see [14]).
Suppose that ye ¥, ,, {7\Vi.w.j-1(7), y€2**/Z>. Then the cube ¢, ;(y) contains a
pair of nearest neighbor cubes ¢ ;_;(x), ¢ ;- 1(x") with

$2307D< Vi, w0 (e, j— 1)Uy - (X)) £323070,

for some ye7.

As above, this implies that a section of 0¥, ,,(y) of size ¢2%/ lies in these cubes. As
in (5.3), each bond in 9V, ,(y) yields a section of y of size w*>. Since
Veow, )Nk, ()| =2%, we have

'Vlvc,w,j(‘y)\vl'c,w,j— 1(?)] §023j2—2jw_2/3|'}’| s

and the second half of (4.32) follows by summing over y € j. The first half is proven
similarly. [

Proof of Proposition 4.8. We again concentrate on the estimates for regions
Vi, w, (7), the estimates for V(7) being simpler. We show that the number of possible
Vi, (7)’s, as y varies over external contours belonging to By , with |y| €[4, 2a),
|V (p)| € [W, 2W), is less than exp(c(j + k)2~ 2iw~2/33). This implies the bound in the
proposition, because ¥; ,,, (7) is a disjoint union of less than 27 ¥}, (7)’s as above.
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A basic element of this proof is the following bound. Let n(P, D) be the number
of possible collections of contours built from P plaquettes and such that there
P

exists a walk {x;}, <;<p of length D= 3 2|x;—x;_,| connecting the centers of the
plaquettes to a fixed point x,. Thenl=1

n(P,D)<(cD/P)*. (5.4)
To prove this, consider the number of P-step walks of total length D. We have to
partition D into D= i d; with d;eZ, d,;=1. The number of such partitions is

i=1
—_ P
<D p 1) <(cD/P)?. Given {d;}, the number of walks is bounded by [T (cd;)® in
i=1

three dimensions. Constraining the sum of the ds to be D, the product is
maximized when the factors are equal. Hence it is bounded by (cD/P)3*. This yields
(5.4).

We now estimate the number of poss1ble Wi w.i(y)’s, or equivalently, the
number of possible collections of contours in 2"“23( that could be oW ,, i(¥).
Recall our construction of external contours. Starting with an outer contour
I'y— B; 5, we added outer contours y, in V(I,), either because y, is connected to a Vs
with dist(B(yy), I5) < 2K+ 3 through a chain of pairs (y’,y”) with dist(B(y"), B(y"))
< omink@).kGI* 3 or because |p,|=2?® T ~No) This produced I, and if N(I})
<N(Iy), then we continued with I, [, etc.

As a preliminary step, we choose one plaquette in 2¥*JZ3 which s to be within a
distance 2¥*J of I,. There are less than ¢23* < ca® possibilities. Next we choose the
integers N(I}), 1=0,1,2,.... These are a decreasmg sequence, with N(I3)<ck
<cloga. We also choose those I such that I, {\I is to lie within a distance 2**/ of
OW,,, (7). Denote these integers [, <!, < .... There are at most 2°'°¢% choices of
{N(I})}, and similarly for the choices of {I,}. Hence all these initial choices can be
subsumed in a factor @ <exp(c(j+ k)2~ 2w~ 2/33). We are using the fact that

22jw2/3 é 22j+ 2k é 22N(&,W) é C(W/d)4/3 é ca—2/3 é ca. (55)

We will connect the plaquettes of dW; ,, ;(y) to the chosen plaquette through a
tree graph of steps connecting centers of plaquettes. First we describe the trunk
{t;},i=1,2, ..., which is a walk of some of the plaquettes, starting at t,, the center
of the chosen plaquette. Then we describe the branches, which are walks starting at
the t;’s. '

The first few steps connect ¢, to some plaquettes within 2**/ of I} , ,\I;. We
break I, .,\[}, into components as follows: Contours 7,7, in I; ,;\I;, are
connected if

dist(B(y,), B(yy)) S 2mintk(ra ko) +3

When [, =0, we exclude the components that would be connected to I;,. For each
remaining component, we choose one plaquette within a distance 2**/, if this is
possible. By construction, each component should have area at least 22V ~No),
Hence there are no more than

C|E0+ 1\E0(2_ 2N < el q127 2N
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components. These are supposed to lie in V(I} ), which is connected, hence the
plaquettes can be walked with a distance less than c|V(I},)|. By (5.4), rescaled to the
lattice 2¥*JZ3, the number of such walks is less than

|I-l'o+ 1|2_2N(r10) |Eo|

<exp(cN([})2~*NIw)g). (5.6)

We continue choosing the next sections of the trunk {¢;}. We choose plaquettes
near components of each I; , \\I; , p=1,2, ... The number of choices for the ut
section is bounded as above by exp(c¢N(I;,)2~>""a). Hence the total number of
possible trunks is bounded by

exp <Z cN(E,L)z‘Z”‘“ﬂd) <exp(cN(y)2™*"0a), (5.7)
u

since N(I;,+1) SN(I},)—1, N(I;)= N(y). Finally, we note that by (5.5), 2N(y)+c
>2j+%log,w, so that (5.7) is bounded by exp(c(j + k)2~ 2w~ 23q).

Having estimated the entropy for positions of the large contours in V(I;), we
can proceed to choose the rest of 6W; ,, (). The trunk has been constructed so
that at most a distance c[y| is required to connect the rest of oW, ,, () to it. This is
because every plaquette in W, ,, ,(y) must lie within 2**/ of a portion of y that is
connected as above and close to some ¢;. Each such portion of y can be walked in a
distance of the order of its area — large steps are needed only to reach comparably
large contours. Hence the sum of the lengths of the required branch walks is less
than cly|.

The total number of plaquettes in W ,, /(y) is less than P=c2~ 2w~ 27y,
Certainly this is also a bound on the number of steps in the trunk. Hence a factor
exp(c2~ 2w~ 23|y|) allows us to choose which steps in the trunk will acquire
branches. We need to partition the plaquettes for attachment into subsets which
will form the branches. There are at most 2° possibilities, again bounded by
exp(c2~ 2w~ 23|y]). We are now in a situation considered in the single walk case,
having to choose at most P steps of total length less than c|y|, or c2 % J|y| in
2k*JZ3. Hence the number of possible sets of branches, with starting points and
numbers of steps specified as above, is less than

¢cD P Cz_k_jl’))l €2~ 2iw~2/3y| )
— ) | —5— < j ~Ziy23g).

Gathering together all combinatoric factors, we obtain an estimate

exp(c(j+ k)2~ *w™2/*g) on the number of possible W, ,, (y)’s. This completes the
proof. [

6. Long-Range Order in the Random-Field Ising Model

We are now in a position to prove Theorems 1.1 and 1.2. Let us avoid the set of
measure zero on which the ground state configuration in A* is non-unique. We
have the following formula for the ground state configuration ¢™"(A"):

—1, ifieS(y) for some favored (+) external contour y,

1, otherwise. ©6.1)

O.;nin(A+)= {
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Here S(y)={ie V(y):a™*(V(y)*)= —1}. This formula holds because as in the
proof of Lemma 2.1, S(y) CS(y’), where y” is the maximal (€ A ™) external contour
with V(y)SV(y). By Lemma 2.2, as in the proof of Proposition 3.2, we have
a™(V(y)*)=a™(A*) [ V(y’), which yields (6.1).

Proof of Theorem 1.1. From (6.1) and the fact that », <0 [strict inequality only if y is
favored (+)], we have an estimate
Pr(o™™(A*)=— 1)§Pr< > ry<0> §Pr< > X rk,a,w’v,x<0).

y:ieV(y) k,x:ieByx x a,w,v

We apply (4.2) and our main estimate, Proposition 4.1, to bound this by

> exp{—;iwexp[—coaogzvm,w))ﬁ}

k,a,w,v,x

<Y ck® exp(— 2t /e2) <exp(— C/e?) 6.2)
k=0

This yields (1.3) and the theorem. [
Next we prove a strong result about the approach to the infinite volume limit.
Theorem 6.1. The limit

lim gMin(A ) =gin
n—o

exists for each i € Z3, with probability 1. Furthermore, there exists a constant C >0
such that for any n,

Pr(@m=2n:o™YA}) o™ for any i€ A,) <exp(—Cn' ""/e?). (6.4)
Consequently, for any of CZ* with max lil<n/2,

[T o°(4;") ~ TT o) Sexp(—Cn'~"z?). (6.5)
ied ied

Proof. Let us define provisionally ™" by the right-hand side of (6.1), where we put
A=73 in the definition of favored (+). [Thus y is favored (+) if it is favored in
B(y)™" instead of (B(y)nA)*.] Then if we verify (6.4), we obtain (6.3) automatically:
To see that the limit exists with probability 1 we need only observe that the
following statement is true. For any 6>0 there exists an n such that with
probability 1—6, a™*(A,})=g™" for all m=2n.

We now prove (6.4). By (6.1) and the analogous statement for 6™, 6™%(A,,) can
differ from ¢™® for some i€, only if there is an external contour y with
V(y)nA, =0 which is favored (+) in 4,, but not in Z?3, or vice versa. If V(y)n A, +0,
then B(y)\A4,,+0 only if 2¥?) > (m—n)/8. Only such external contours can feel the
difference between A,, and Z>. Hence

Pr(@m=2n:o™™A,})+o™" for any i€ A,)
=2

m22n k2loga(m—n)/8 x:Bk, xnAn* D a,w,v

[Pr(r, . <0)+Pr(rZ), , .<0)]. (6.6)
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Here the superscripts on the #’s indicate the volume used in defining that random
variable. Note that r{*) is independent of A for B, , C A. Proposition 4.1 yields

k,a,w,v,x

the following bound on (6.6):

cn3k3 exp(—c2K1 ~1/g2)
m=2n k=logz(m—n)/8

< > cndexp(—cm! T"/e?) Sexp(—cnt T/e?). (6.7)
mz=2n

This yields (6.4), completing the proof of the theorem. [J

Proof of Theorem 1.2. Defining 7,=(1 —07")/2, we easily obtain (1.9) from the
estimate

[T7;— T3 Sexp(—cli—j|* ~"/e?). (6.8)
We have that

3 {1 , if ie S(y) with y favored (+),
710, otherwise.
Similarly 7;7;=1 precisely when both sites lie in some S(y), y favored (+) — not
necessarily the same 7. Let E; denote the event “i e S(y), y favored (+)”, and let ¢;
denote the event “ie S(y), y favored (+), k(y)<log,|i—j|/16”. Define similarly
E;e; We have
77;=Pr(E; and E))

=Pr(e; and e;) + Pr(E; and E; but not ¢; or e;)
=Pr(e;) Pr(e;) + Pr(E; and E; but not ¢; or ¢;), (6.9)
where in the last step we have used independence of e;, e;, which depend only on i,
for |i—I| <|i—j|/2, respectively |j—I|<|i—j|/2. In a similar fashion we have
7;=Pr(E;)=Pr(e;) + Pr(E; but not e,) (6.10)
and the analogous statement with j replacing i. Hence
[t;t;—7;7;|=|Pr(E; and E; but not e; or e;)
—Pr (¢;) Pr(E; but not e;) — Pr(e;) Pr(E; but not ¢,)
+ Pr(E; but not ¢;) Pr(E; but not e;)|
<Pr(E; but not e;) + Pr(E; but not ¢,)
> 2Pr(riawv,x<0)

k>logz|i—jl/16 x:ieBy xorjeBi x a,w,v
ck3 exp(— 2K ~1/g2)

k>logz|i—jl/16

exp(—cli—jl' 7"/e?), (6.11)

IAlIA

IIA

which is (6.8). [

Finally, it is worth describing what our expansion yields about the free energy.
Using the subadditive ergodic theorem [17], it can be shown that the free energy
per site exists and is independent of the magnetic field configuration with
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probability 1 (similarly for the magnetization per site). We can see this directly
from our expansion, with precise estimates on the rate of approach following from
the bounds of Sect. 4. Define the free energy per site as

Sa, =147 inf H(4,). (6.12)
By (3.1), (3.6) we have
LA e B @)
Hence
fa, =471 kg TR 14,7 ieZAn%hi : (6.14)

The second term converges to zero, with probability 1, by the central limit
theorem. For each k, a, w, v there are 8 sublattices of 2*Z* on which the 7, , , , 'S
are independent random variables. They are identically distributed, except for x
with dist(x, 04,)<2**2. But the distribution of these r , ., S obey uniform
bounds (by Proposition 4.1 and the inequalities ¢, , .,y x =7 4,.v,x=0). Hence
the boundary terms approach zero. Applying again the central limit theorem, we
have

fAn_)foozk aZ»:v v2—3krk,a,w,v,09 (615)
where 7 4 .0 is calculated in any A, with n>2**2 This limit is of course
independent of the magnetic field configuration. Proposition 4.1 easily yields

027 a0 2 —exp(— 20 71/e?), (6.16)
which implies that
—exp(—C/e?)<f,=0. (6.17)
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