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Abstract. We study the Migdal-Kadanoff recursion relations for lattice gauge
models with gauge groups SU(iV) or U(JV) in dimensions d < 4. It is shown that
the Gibbs factor of a plaquette with Wilson action is driven to 1 for all values of
the "temperature" (coupling constant). For models recently proposed by K.R.
Ito, where MigdaΓs and Kadanoff s recursion relations hold exactly, a lower
bound on the string tension is derived. The results obtained by us extend those
derived by Ito for U(l). Our method is based on analytic continuation of the
Gibbs factors, which are class functions, in the central angles.

1. Introduction

The recursion relations of Migdal [1] and the modified ones of Kadanoff [2] have
been proposed as approximate real space renormalization group transformations
both for spin systems and lattice gauge theories. However, only very recently these
recursion relations have been investigated by purely analytic methods [3, 4]. Ito
[4] studied the U(l) gauge group with Villain and Wilson action. For dimensions
d < 4 he showed that the effective actions generated by both types of recursion
relations are always driven to the high temperature (strong coupling) region.
Moreover he proposed special lattice gauge theory models in which the recursion
relations of Migdal and of Kadanoff hold exactly and derived for d = 3 a lower
bound for the U(l) string tension of these models.

In this article we generalize Ito's work to the non-abelian gauge groups SU(iV)
and U(iV). MigdaΓs [M] and Kadanoff s [K] recursion relations involve multiple
convolutions of class functions on the gauge group G, ne N o ,

° lM)
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with q, r positive integers, ueG, and e the unit element of G.
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Both recursion relations have the obvious fixed point g(u)=\. In Sect. 2 we
define inductively analytic continuations in the central angles of the class functions
entering both types of recursion relations. These analytic continuations are
deduced from translations by elements of the maximal abelian subgroup in the
recursion relations, the real parameters of which are then extended into the
complex plane. This method avoids continuation of the Haar measure.

From these analytic properties we derive for gauge groups SU(iV) or U(JV)
similar convergence properties of the effective actions and in Sect. 3 similar lower
bounds for the string tensions as obtained by Ito in the case of U(l). Our main
results are stated in Theorems 1 and 2.

2. Convergence of the Effective Actions

We consider the gauge group G = SU(iV) or U(JV). The block plaquettes have size /
x / with / = 2, 3,4,..., and we denote by r the number of plaquettes in a block and

by q the number of identified block plaquettes,

Let gin\u) be the Gibbs factor of a plaquette after n renormalization group
recursions, normalized at the unit element e of G

gin\e)=\. (2.2)

With UjEG for7 = 0,1,2, ...,r, where uo = u and ur = e, MigdaΓs and Kadanoffs
recursion relations can be written in the following form [4], n=l,2,3, . . .

g(n)(u) = -^ { Γl ί duk π g^-'Kuj-&*)}*, (2.3M)

Φn\u) = J ^ Vί ί duk ί ή g(n~ 1}(Uj- ! ^ ) Γ , (2.3K)

with normalized Haar measure du and constants Jί, Jί' determined by the
condition (2.2). In order to avoid clumsy notation we use the same symbols for the
functions generated by both iteration schemes although they are not identical.
Wilson's action is chosen on the original lattice, hence with βeΈL+

g^(u) = eβRe{tru~NK (2.4)

We first observe that the g{n)(u) are real positive and class functions on G, invariant
under inversion of the argument

(2.5)

g^(u~1) = g(n\u). (2.6)

This is evident for (2.4) and follows then inductively from (2.3) due to in variance
properties of the Haar measure.

Denote by {λa}aeK a set of selfadjoint generators of the Lie-algebra of G such
that A C K is the index subset corresponding to the maximal abelian subaigebra,
i.e.,

a,beA: ίλa9λb2 = O. (2.7)
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There are M such generators, M = N—l, [JV] in case of SU(iV), [U(JV)]. For
x e RM, x = {xa}aeA, we define

X= Yxaka, (2.8)
aeA

and therewith particular group elements

; = 0,l,...,r. (2.9)

Upon replacing u^vμ 3 in (2.3) we obtain, due to translation invariance of the
Haar measure and (2.5), n= 1,2,...,

( ^ V ) } \ (2.10M)

^ / { f ^ (2.10K)

For g ( 0 ) defined in (2.4), we write

^ { O )(e~ ί xw)-expii5{tr(β"^w) + tr(w*^)-2iV}. (2.11)

Equations (2.10) and (2.11) define for any fixed ueG real-valued functions of

&n)(u9x):=g<nXe-ixu). (2.12)

Moreover they define inductively analytic continuations of these functions by
replacing

X^>Z = X + iY,x-+z = x + iy9 J/GIR M . (2.13)

These analytic continuations form the basis of our treatment. We observe that the
analytic continuations g{n)(u,z) have the form g{n\e~izu). This follows by
uniqueness of the analytic continuation, starting from (2.3) with u replaced by
e~ιXu and defining then inductively the analytic continuations.

Proposition 1. For n e N o the functions g^n\u, z) are continuous in u on G for fixed
zGCM and entire holomorphic in ze(CM for any fixed ueG.

Proof Inspecting (2.11) the proposition is obvious for n = 0. Assuming it to be true
for n— 1 we first conclude from the right-hand side of (2.10) the continuity of g(n) in
u for fixed z, since only integrations of continuous functions on compact domains
are involved.

In order to prove the proposed analytic properties it suffices to show [5] that
for fixed ueG and any point z e CM, g{n) is complex differentiable, i. e. holomorphic,
in each zα, aeA, with the remaining zb9 beA\{a}, kept fixed. Proceeding again
inductively the properties of Proposition 1 for given n — 1 allow in the analytically
continued right-hand side of (2.10) to interchange differentiation with respect to za

and the group integration; this implies the analytic property for n. Compare [6] for
a related theorem. The proof given there extends directly to our case. D
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The class functions g{n)(u) are periodic functions of the central angles
{</VL=I,2,...,M VueG3veG with

(2.14)

()ψN Σψ«

Hence α = 1

ί

(">(tt) = Λ(">({φβ}). (2.15)

We choose now such generators {λa}aeA of the maximal abelian subalgebra, that
the {xa} introduced in (2.8) are central angles. From Proposition 1, considered at
u — e, together with (2.12) and (2.15) we obtain

Proposition 2. For n e N 0 the class functions h{n)({za}) = g{n\e,z) are entire
holomorphic in the analytically continued central angles za = xa + iya, aeA.

g(n).

We next derive upper bounds for these functions from bounds for the functions

From the analytically continued Eq. (2.11) follows easily

L ' 1 J (2-16)
SV(N):yN=- Σ )V

α = l

For real ί, 0 < £ < ί 0 ? we use

coshί- 1 <B(to)t2, tlB(t0) = cosht0-l, (2.17)

and in the case of SU(N) in addition the inequality

Σya) £MΣή.

Then introducing for y e R M the norm

we obtain for

| = max|j/β|, (2.18)
aeA

M

\gV\u, iy)\ ^ φ ° \ u ) e x p ( β b β Σ y l ) , (2.19)
a= 1

with the constant bρ defined by

fB(ρ) for

\
ht [B(ρ) + MB(Mρ) for SU(JV).

Proposition 3. With be of (2.20), for n e N 0 :

if \\y\\<Qf. (2.21)
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Proof. Due to (2.19) the proposition is true for n = 0. Employing this result in the
right-hand side of the analytically continued Eqs. (2.10) and proceeding induc-
tively concludes the proof. D

From (2.21) we finally get bounds on the analytically continued class functions
h{n); choosing in (2.21) u = e~ιX we obtain

Proposition 4. For w e N 0 and z = x + iye<EM the entire holomorphic functions
h{n)({za}) are bounded for \\y\\ <ρrn by

}) exp [βbQ (£j Σ; y2

a J . (2.22)

We consider now the Taylor expansion of the real function h(n\{xa}) with
remainder of order 2. Due to (2.6) there are no linear terms, hence

h* X{xa}) = 1 + i Σ x*x«( W " ) ( M X 0 < 5 < 1. (2.23)
^ί k,leA

Since the functions h{n) are holomorphic the derivatives in (2.23) have the Cauchy
representation

({5x0})= π ί
beA Cb

aeA

with Cγ x ... x CM chosen to be the distinguished boundary of a polydisc with
center {sxa} and equal radii R. Together with (2.22) and the anticipated property
0<h(n)({xa})^l, see (3.7), we obtain

Γ /βV ' ,1
exp βbo[-\ MR2

I W J
R2

Minimizing this upper bound in R gives

isXa})] g (1 + δkl)eβMbρ (ϊj (2.24)

The application of (2.22) requires

β>βo, with -^=ρ2bρ. (2.25)

Collecting (2.23), (2.24), and inserting (2.1) we obtain our main result which we
formulate in

Theorem 1. For n e N o the Gibbs factors g(n\u) = h{n\{xa}) satisfy onG = SU(iV) or
U(N) the uniform bounds

|flf(B)(i/)-l|<(7j8/»(d-4), β>β0. (2.26)
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The positive constant σ does not depend on β or n, however, it depends on the gauge
group G and on β0.

Remark. For the abelian case G = XJ(1) the bound (2.26) has been derived by Ito
[4]. It implies that for dimensions d<4 the effective actions generated by the
recursion relations (2.3) are driven into the high temperature region with
increasing n.

3. String Tension

Since the Gibbs factors g(n) are class functions, (2.5), they have the character
expansion

g{n\u)= Σ d^(β)χτ(u)9 n = 0,1,2,..., (3.1a)
τeΓ

where Γ is the set of classes of inequivalent continuous irreducible unitary
representations of G, χτ the character of class τ and dτ = χτ(e). The normalization
(2.2) implies

Σd τ

2 4 n ) = l>VrceN0. (3.1b)
τeΓ

Proposition 5. For n e N 0 and V J S G R + and VτeΓ the coefficients c^\β) in the
character expansion (3.1a) are real nonnegatίve in both cases (2.3M) and (2.3K).

Proof. From the complete reducibility of all continuous finite-dimensional unitary
representations of a compact group [10, Sects. (27.34) and (27.35)], follows
Vρ,σeΓ

XQ(μ)χσ(u)=Σrn!?χτ(ύ), (3.2)
τeΓ

with mf e N o .
For n = 0 we expand (2.4), denoting by φ e Γ the fundamental representation

oo 1

^°'(u) = e-"w Σ -r
m = 0 Ml

Due to (3.2) the powers of characters appearing in the right-hand side yield linear
combinations of characters with positive entire coefficients. Hence the claim is true
in this case. We proceed inductively. Considering first MigdaΓs recursion relations
(2.3M), we use the character expansion in the right-hand side and obtain

Φn\u) = J^r | Σ dτίcf~ ιXβ)Jχτ(u)}q • (3-3)

Since q is a positive integer we can again use (3.2).
In the case of Kadanoff s recursion (2.3K) we first observe that nonnegative

expansion coefficients in g(n)(u) imply for the expansions

(g(nKu))q= Σ dJbP(β)χτ(u), n = 0,1,2,..., (3.4)
τeΓ
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nonnegative coefficients b{"\ again because of (3.2). Moreover (2.2) yields

(3.5)Σ W G ) 0
τeΓ

Inserting (3.4) into the right-hand side of (2.3K) gives

{n\) Σ d v rΣ dτv>r(β)Ύχτ(μ) (3-6)
JV τeΓ

Hence we can proceed inductively. D

As a corollary we obtain, due to (3.1b),

( > .... (3.7)

Remark. The functions g{n)(u) are continuous class functions of positive type. This
can be deduced inductively: The convex cone of continuous class functions of
positive type is closed under product and convolution, which easily follows from
[10], Sects. (32.9) and (34.10) ("non-abelian Bochner's theorem"). Proposition 5
and (3.7) follow from these properties too.

Following Ito [4] we define

<$„= ΣdϊcPiβ), (3.8)
τeΓ

τΦO

where τ = 0 denotes the trivial representation. Because of (3.1b)

Due to (3.7) we then have the following corollary of Theorem 1:

0<δn<σβlnid-4) for β>βo. (3.10)

For δn sufficiently small the character expansions can be used in both recursion
relations (2.3) and lead to

Proposition 6. // δn < \, then

δn + ιύ(tδnY (3.11)

with t = 2qllr, [g 2q~] in the case of M, [K].

Proof. Starting with MigdaΓs recursion we get from (3.3)

(3.12)τΦO

(i-δnγ+
τΦO

The result in the numerator follows from the positivity of the coefficients c{"} and
(3.2). In the denominator we use

(3.13)
τΦO
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Hence, from (3.9) and (3.12)

With {l + x)~q>l — qx, for x>0, we obtain for δn

In Kadanoff s case we get by integrating (3.6),

0 ~ y j2rL(n)-ιr W 1 ^
τeΓ

Hence, due to (3.9)

τΦO

This last inequality follows by neglecting the sum in the denominator and
estimating the sum in the numerator as in (3.13). Moreover we used the
normalization (3.5). From (3.1a), (3.4), and Proposition 5 we deduce with (3.2)

bo)>tc$)Y = (l-δn)
q. (3.16)

Employing this in (3.15) gives

For δn < 1/2 then follows

δn+ι<(q-2"δj. •

Obviously Proposition 6 is only useful if tδn < 1.
The final steps to derive a lower bound on the string tension in the case of d < 4

are those of Ito's work [4]. For the reader's convenience we display them very
briefly. Iterating (3.11) leads to

n>no,δn<(t'δnf
n-n°\t' = t ^ . (3.18)

Consider a series of quadratic loops ^n of size /" x /" forming after n iterations the
boundary of a plaquette respectively, and define the string tension α by

α= - limy^ln--<^(%n)> . (3.19)

Due to Theorem 1 for each given β there exists a convergent polymer expansion
[7] for sufficiently large n, after iterating the renormalization group recursions n
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times. (6n becomes the boundary of a plaquette, hence

^<^n)>=||(l+Λ)^(l+Λ), (3.20)

where zlw is the higher order contribution in the infinite volume limit. Δn vanishes
for rc->oo. Using (3.18) with t'δnQ<\ in (3.20) implies

" ° l n ^ - . (3.21)

With 0 < ε < l we define the function v(β) and no(/?)eNo by

fσβΓviβn*-*> = ε9 (3.22)

no(β)-l<v<β)S>no(β). (3.23)

Hence, because of (3.10), we can deduce from inequality (3.21)

Inserting l~2v(β) obtained from (3.22) we proved

Theorem 2. For gauge groups SU(iV) or U(JV), in the case of d<4 and β>β0 the
string tension a satisfies

2

a > c o n s t β 4~d. (3.24)

According to our derivation MigdaΓs or Kadanoff s recursion relations do not
seem - for d< 4 at least - to distinguish between abelian and non-abelian gauge
groups.

The discrepancy between the bound (3.24) in case of U(l) for d = 3 and bounds
derived within the full U(l)-lattice gauge theory [8, 9] has already been pointed
out by Ito. In spite of this deficiency the result derived for non-abelian gauge
groups appears to us of some interest in view of the very difficult problem of
spontaneous mass generation in d = 3 non-abelian lattice gauge theories.

Acknowledgement. We thank the referee for pointing out an alternative proof of Proposition 5,
outlined in the remark.
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Note added in proof. After completing this work we became aware of [11], where the Migdal
recursion equations for U(l) have been investigated by a different method in the case of q > r in
our notation.




