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Abstract. We show that there is no absolutely continuous part in the spectrum
of the Anderson tight-binding model for large disorder or low energy. The
proof is based on the exponential decay of the Green's function proved by
Frohlich and Spencer. The extension of this result to the continuous case is also
discussed.

1. Introduction

In the last few years disordered systems have been one of the most actively
investigated subjects in solid state physics. Following Anderson's approach [1] it
is possible to describe the behavior of an electron in a crystal with randomly
distributed impurities by means of a Hamiltonian on l2(Έd) of the form:

H(Ό)=-A+Ό, (1)

where A is the finite difference Laplacian on ΊLd\

(Aψ)(n)= Σ (ψ(m)-φ(n))9 neΈ\
\m-n\ = l

and v = {v(n)}neZd are independent identically distributed (i.i.d.) random variables.
After Anderson's paper the Schrόdinger equation with random potential and

its discrete analog (1) have been extensively investigated: especially in connection
with metal insulator transition.

In the one dimensional case it has been shown [2, 3] that H has a dense pure
point spectrum with exponentially localized eigenfunctions.

However, in more than one dimension the strongest result in this direction is
the absence of diffusion for sufficiently large disorder or low energies, proved by
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Frόhlich and Spencer [4]. In order to obtain this result they prove that the Green's
function of Anderson's Hamiltonian (1) decays exponentially for long distances
with probability one.

In this paper we derive from their result the absence of an absolutely
continuous component of the spectrum of H in the same range of the parameters.

2. Notations and the Result of Frδhlich and Spencer

Let v = {v(n)}neZd be i.i.d. random variables with common distribution:

v ' dv

with

dλ
s u p — =

v dv
oo.

The random potential v belongs to the probability space Ω= Π (R, dλ(v(ή)))
«eZd

with product measure:

dP(v)= Udλ(v(n)).
neZd

For the reader's convenience, we recall the result of Frόhlich and Spencer on
the exponential decay of the Green's function in a form suitable for our purposes.

Theorem 1 (JFS'S result), i) For any p > 0 and any m > 0 there exists a constant
C(p, m) such that if \E\ + δ > C(p, m). Then the following event holds with probability
at least l-Γp:

There exists a set At containing the origin such that:

and for all εφO and all x, y satisfying \x — y\^

) # ( » )
Here HAι(v) denotes the restriction of the Hamiltonian H(v) to the set Ax with

Dirichlet boundary condition at the boundary of Ah

and σ(HAι(v)) denotes its spectrum.

3. Absence of Absolutely Continuous Spectrum

We state now our main result:

Theorem 2. There exist positive constants <50, Eo such that if δ>δ0 then

σac(H(v)) = φ, P-a.s.,
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and if dλ(v) is gaussian:

{E;\E\^E0}nσac(H(v)) = φ, P-a.s.,

where σac(H(v)) denotes the absolutely continuous part of the spectrum of H(v).

Proof. In order to prove this theorem we begin by showing that the result of
Frδhlich and Spencer implies that with probability one there are no polynomially
bounded solutions of the equation (H(v)—E)ψE = 0 (Lemma 1). However, we
know (Lemma 2) that for any realization of the potential v and for almost all
energies E [with respect to the spectral measure ρv of H(v)\ there exist
polynomially bounded generalized eigenfunctions oϊH(v) with eigenvalue E. The
proof of the theorem then follows the argument used by Pastur [2] for the one
dimensional case: if there is an absolutely continuous component of the spectrum
of H(v) for almost all v9 then from Lemmas 1 and 2 we obtain a contradiction.

Let us fix the energy E in such a way that \E\ + δ ̂ C(p,m) with C{p,m) the
constant appearing in Theorem 1 and let ln = 2n be a sequence of length scales.

We denote by ΩE δ the set of realizations of the potential v for which there exists
an integer no(E,δ,v) such that for any n>n0 there exists a set Aln satisfying
conditions (i), (ii) of Theorem 1. Using Theorem 1 and the Borel-Cantelli lemma we
obtain:

= ί. (2)

The following result is now an easy consequence of (2) and Theorem 1:

Lemma 1. For any veΩEδ the equation:

(ff(ι?)-£)φ = 0, (3)

has no polynomially bounded solutions.

Proof of the Lemma. Fix veΩEδ and assume (3) has a polynomially bounded
solution ψE. Then for any n>no(E,δ,v) ψE satisfies:

V*00= Σ (HA, -£Γ1(x,z)ψ£(z0 (4)
(z,z')eδAιn

for any x e Aln.
This equation can easily be obtained by considering xpE as the unique solution

of the following problem:

-E)u = 0 in Aln, u\dAln=ψE.

Using now the polynomial boundedness of ψE and the exponential decay of
(HAln-E)-1{x,z) for | x-z |^/ 3 / 4 we get that

3/4 (5)

for some C > 0, α > 0 and any x such that dist(x, dAlt) ^ /3/4. The arbitrariness of n
together with (5) implies now that ψE = 0.

We now recall the following result concerning the generalized solutions oϊH(v)
(see Berezanskii [5] and Simon [6]):
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Lemma 2. For any v there exists a spectral measure dρv of H(v) and for almost every
E with respect to ρv there exist solutions of the equation (H(v) — E) ψE = 0 which
satisfy

ψ2+ for any η>0,

and some constant C > 0.

For definiteness let us consider the case δ > δ0 = C(p, m), the case dλ(v)
gaussian and \E\ ^Eo = C(p, m) being similar. It is well known [7] that σΆC(H(v)) is
P-almost surely independent of v, so let us assume that

A) σac(iϊ(ι;)) = zlφ0 for any veΩcΩ with P(Ώ) = 1.

Consider now the space M = ΩxR and define on M the measure P = P(χ)μ, where μ
denotes the Lebesgue measure. Let now MOCM be defined by M0 = {(v,E);
v e ΩEfδ}. We observe that M o is a Pmeasurable set; this follows from the definition
of ΩE δ and from the fact that (H(v) — E — iε)'1 (x,y) is a continuous function in ε
for εφO and a jointly measurable function in E and v ([7]). In the continuous case
which will be discussed in the next section one also needs the continuity of the
Green's function in x,y for x + y (see [6]).

P(M0) = o o o o f
A Ω A Ω A

(6)
By assumption A) and by (2), P(ΩnΩE δ) = ί V£. Furthermore μ(A)>0, since

we are assuming that for all veΩ the spectral measure ρv has an absolutely
continuous component. Thus the right-hand side of (6) is strictly positive.

On the other hand, by Fubini's theorem:

P(M0) = [ dP J dμ(E)χMo(E, v). (7)

By assumption A) and Lemma 2 we know that for μ-almost all E e A and all
VGΩ there exists a polynomially bounded solution of the equation:
(H(v)—E)ψE = 0. However, using Lemma 1 and the definition of M o this is
impossible, that is χMo(E,v) = 0 for υeΩ and μ-almost all EG A.

Thus the right-hand side of (7) is zero and we get a contradiction.

4. Extension to the Continuous Case A + V on L2(Rd)

Here we discuss briefly the extension of our main result to the continuous version
of the Anderson model.

Let {Ci}ieZd be a covering of ΊR.d with unit cubes around the sites of Έd, and let
{qί(co)}ieZd be i.i.d. random variables with values in [0,1] such that

ί

< + oo , and
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Let also φ e C™(C^ be such that:
i) φ(x)>OVxφO, x e C 0 ,

ϋ) φ(0) = 0 and the origin is a quadratic minimum of φ, i.e. there exists
l/2>f7>0 and C(η)>0 with φ(x)^C(^)x2V|x|<^.

We now define the selfadjoint random Schrδdinger operator on L2(Rd):

H(ω)=-A+ Σ9i(ω)φ(x-0, (8)
ieZd

w h e r e w e set φ(x — ί) = 0iϊx — ίφCo.
Since the random variables {qi(ω)}ίeΈd can be arbitrarily small with positive

probability it follows from Weyl's result that σ(H(ω)) = [0, +00), P-a.s. In the
continuous case, by using Green's formulas, (4) reads:

ψE(x)= J

where

dnz(HAln-EΓ\x,z), xeAln, zedAln

denotes the outward normal derivative at z of (HAι(ω) — E)~ί(x,y). When the
function φ is replaced by the characteristic function of* the cube Co the continuous
analogue of the result of Frόhlich and Spencer given in the previous section was
proved in [8] (see Theorem 3.6) for the Green's function and for its gradient for all
energies 0 ^ £ ^ £ * ( | / | o o , a ) with the threshold JE^fl/l^a) given by:

£0(a) and E^α), being suitable constants independent of l/l^.
Since Lemma 2 on polynomially bounded eigenfunctions holds for

Schrδdinger operators on L2(Rd) (see e.g. Simon [6]), by the same proof given for
Anderson's model we would get the absence of absolutely continuous spectrum in
[0,£*(|/|ω,α)]for

H(ω)=-A+ Σ^(ω)χ C o (x-z) .
ieπd

It is interesting to observe that if in E*(\f\^ α) we increase \f\^ while keeping α

fixed ( e.g. / α = -χ [ 0 α] + 2(l — α)χ[1/25i] and a<ζ l) the classically allowed region:

x e R«; Σ q{ω)χco(x - i) ί £ (|/|M, α)l,

contains with probability one an infinite cluster of nearest neighbour cubes Q if α
was chosen greater than the percolation probability for the site percolation model
on Έd. In order to extend the result to the more general case (8) the only missing
step in [8] is the proof of the basic probabilistic estimate in this case. This is done in
the next lemma (see e.g.: Lemma 2.4 in [4] and Lemma 3.2 in [8]):



470 F. Martinelli and E. Scoppola

Lemma 3. Let ΛcΊLd be bounded, let A = (J_Ci9 and let HΛ(ω) be the restriction of
ieΛ

the Hamiltonian (8) to L2(Λ) with Dirichlet boundary conditions. Then for any k<E:

P(dist(σ(HΛ(ω)), E)<k)^ const k\Λ\3,

where

\Λ\=Φ{ieΛ}.
Sketch of the Proof. Let μn(HΛ(ω)) denote the nth eigenvalue (counting multiplicity)
of HΛ(ω), and let N(E,HΛ(ω))= Φ{n;μn(HΛ(ω))<E}. Then following Wegner
[9] we write:

P(dist (σ(HΛ(ω))9 E)<k) = P(N(E + k, HJω)) - N(E - k, HA{ω)) ^ 1)

f J-,N(E\HΛ(ω)). (9)

To bound the right-hand side of (9) we use the estimate on the μn(HΛ(ω)) valid
for any sufficiently small ε if μn(HΛ(ω)) ̂  α,

μn(HΛ(ω))-ε^μn[ -AA+Σ[qt-17^)φ(x-ί)),
(10)

with λ(a) given by:

Ma)=ττ

where K^η) and K2(^/) are positive constants depending only on η (see the
definition of φ). In turn (10) follows in a rather straightforward way from the min-
max principle and the estimate:

idxg2(x)Σφ(x-ί)^λ(a)idxg2(x) if geH^A) and Jdx\(Vg)(x)\2£a\
A ieΛ A A

(Π)
In order to derive (11) we used the quadratic nature of the minimum of φ

together with the Heisenberg inequality. Using (10) we bound the right-hand side
of (9) by:

E + k fl

- sup λiay^dPiω) f Σ^N(E',HΛ(ω))dE'.
\a-E\<k E-kieΛOqi

The rest of the proof follows now word by word that of Lemma 3.2 in [8],
As a conclusion we can now state the analogue of Theorem 2:

Theorem 3. Let H(ω) be given by (8). Then

σβc(H(ω))π[0, E*(|/L, α)] = φ, P-a.s.
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