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Abstract. Itis proved that the reduced dynamics of an N-level system coupled to
a free quantum gas converges to a quantum dynamical semigroup in the low
density limit. The proof uses a perturbation series of the quantum BBGKY-
hierarchy, and the analysis of this series is based on scattering theory. The
limiting semigroup contains the full scattering cross section, but it does not
depend on the statistics of the reservoir. The dynamics of the semigroup is
discussed.

1. Introduction

In recent years there has been considerable progress in the rigorous derivation of
the Boltzmann equation from the microscopic dynamics of a classical many particle
system with short range forces. Using ideas of Grad [1], Lanford [2,3] provea
the convergence of the hierarchy of correlation functions for a hard sphere gas in
the Boltzmann—Grad limit for sufficiently short times. This proof was extended by
King to positive potentials of finite range [4]. The limiting dynamics preserves
factorisation of the correlation functions, and the evolution of the one particle
distribution is governed by the non-linear Boltzmann equation.

The test particle problem was studied by Spohn [5] and Lebowitz, Spohn [6].
One considers the motion of a single particle through an environment of randomly
placed, infinitely heavy scatterers (Lorentz gas). In the Boltzmann—Grad limit
successive collisions become independent and the position and velocity distribution
of the particle, when averaged over the positions of the scatterers, converges to
the solution of the linear Boltzmann equation. In fact, also multi-time correlations
converge, and the convergence holds even for a typical fixed environment [7].

The rigorous derivation of a quantum Boltzmann equation is an open problem.
Physically one expects (e.g. [8—16]) that the evolution of a quantum gas at low
density should be described by the Boltzmann equation with the classical differential
cross section replaced by the quantum mechanical cross section. The Boltzmann
distribution function should then be understood as the low density limit of the
one-particle Wigner function. On a non-rigorous level, the author regards the
derivation by Wittwer [17] as the most convincing one.
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In this paper the certainly simpler quantum mechanical test particle problem
at low density is studied. The system is taken to be an N-level system and the
reservoir to be an ideal Bose or Fermi gas. The total Hamiltonian is then formally
given by

H=H;®1+1®Hz+ H,, (1.1)

where Hg= Z w,|lny<{n| is the Hamiltonian of the system and Hy=

[dk k*/2 a*(k)a(k) is the free Hamiltonian of the bath. The interaction is of the
form H, = Q®Zoc] a*(f;a(f;), where Q is a self adjoint operator of the system

J
and Y o; a*(f)a(f;) describes the scattering of the bath particles. This form of the

interejtction implies that no particles are created or annihilated. It will be proved that,
in the limit, when the particle density of the reservoir converges to zero and time is
appropriately speeded up, such that the collision rate stays constant, the reduced
dynamics converges to a quantum dynamical semigroup.

Since the interaction between gas particles and the N-level system is strong,
the dynamical semigroup involves the full differential cross section. Let T,,.(k, k)
denote the matrix element {(nk|T|n'k’> of the T matrix for the scattering process
of one reservoir particle with the system. For weSp(Lg), where Lg*= [Hg,*] denotes
the Liouvillian of the system, one defines T, (k,k)= Y T, (kk)m>{n

DOm— Opn=0w0
At low density the rescaled particle density of reservoir particles with momentum
k is R°(k) = n(2n/B)*?e~#¥*12, where n is the rescaled density and f the inverse
temperature. The dissipative part of the generator of the limiting semigroup may

be written in the form
Kép=2n Y [dk[dk 6(k'*/2—k*/2 + ®)R°(k)

coeSp(LS)
AT K, k)pTE(K, k) — 3(TE (K, k)T, (K, k)p
+ Tk, k)T (K, k))}. (1.2)

The equation of motion formed with the generator (1.2) is a fully quantum
mechanical generalisation of the classical linear Boltzmann equation. Note, as
expected, any information on the statistics of the gas is lost, and R°(k) is simply
the Maxwell distribution.

A preliminary analysis of the problem considered was given by Palmer [18].
However, Palmer truncated the interaction and, in the limit, obtained a semigroup
which contains only the second Born approximation instead of the full scattering
cross section.

The methods used in this paper are completely different from those used in
the analysis of the weak and singular coupling limits based on the Dyson series
[19-22]. Here the starting point is the quantum BBGKY-hierarchy and its
associated perturbation series. The analysis of this series is based on multiparticle
scattering theory.

The limiting semigroup differs in two respects from the semigroup obtained in
the weak coupling limit. Clearly, in the weak coupling limit the scattering cross
section appears only in its Born approximation, reflecting the fact that the
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interaction becomes weak in the limit. In the low density limit all information on
the reservoir statistics is lost, whereas in the weak coupling limit some information
on the reservoir statistics is retained in the two point correlation function of the
reservoir.

A quantum Boltzmann equation should also be obtained in the weak coupling
limit of an interacting quantum gas. Here one expects a similar structure. The
equation will contain the differential cross section in the Born approximation and
a quartic collision term giving information on the statistics. Hugenholtz considered
recently the weak coupling limit for a Fermi gas on the lattice [23]. He succeeded
in identifying the terms of the Dyson series contributing at weak coupling, however,
without proving the convergence of the series. In the limit the set of quasi-free
translation invariant states is preserved by the dynamics, and the time evolution
of the two point function is governed by the quantum Boltzmann equation.

For a classical system one obtains the Landau equation in the weak coupling
limit, which describes a diffusion process. In contrast, the Boltzmann equation
describes a jump process in momentum space. This reflects the wave nature of
quantum scattering. For a weak potential in most scattering events the particle is
not deflected at all, but when it is eventually scattered, there is a finite probability
for a large angle deflection.

The paper is organized as follows. In Sect. 2 the dynamics of the system is
defined in the algebraic framework of quantum statistical mechanics, and the main
theorem of this paper is stated. In Sect. 3 the perturbation series for the
BBGKY-hierarchy is introduced. First the equivalence of the unitary dynamics in
Fock space with the dynamics given by the BBGKY-hierarchy equations for a
reservoir in a finite volume is proved. Then the infinite volume limit is performed,
thereby proving the equivalence of the dynamics defined in Sect. 2 with the time
evolution given by the perturbation series of the BBGKY-hierarchy. Section 4
introduces the scaling for the low density limit and outlines the strategy of the
proof. The proof is presented in Sect. 5. In Sect. 5.1 some auxiliary results are
proved. In Sects. 5.2 and 5.3 the theorem is proved in two steps. In the first step
an intermediate approximation is established, where the reservoir statistics is still
retained. In the second step it is proved that the contributions from the statistics
vanish in the limit. The semigroup generator obtained does not preserve positivity,
in general. In Sect. 6 an averaged generator is defined, which has the required
positivity properties. The relaxation properties of this semigroup are studied. In
Sect. 7 some modifications and generalisations of the result are discussed.

2. The Model and Results

In this section the model with Hamiltonian (1.1) is described in detail and the
infinite volume dynamics is constructed. Then the main theorem of this paper is
stated. The analysis is carried through for a Fermi gas. The modifications to be
made for a Bose gas are discussed in Sect. 7.

For a Hilbert space # let #(+#°) denote the Banach space of bounded operators
on # with norm | -|| and () the Banach space of trace class operators with
norm |-;.
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The Hilbert space # 5 of the system is assumed to be finite dimensional. The
single particle space of the reservoir is #, = L*(R%). The system Hamiltonian
HseB(Hs) is self adjoint. The bath Hamiltonian is formally given by Hp = [d°k
k?/2 a*(k)a(k), where a*(k) and a(k) denote Fermion creation and annihilation
operators of momentum k. The interaction Hamiltonian is given by H;=Q0®F,
where Qe%B(H) is self adjoint and F =Y o,a*(f)a(f;). {f;} is an orthonormal

system on #, and o;€R, )’ |0 < co. H, preserves the particle number of the bath,
i

and therefore the bath particles are only scattered and not created or destroyed. The
interaction is a generalisation of the interaction used by Davies [19] in the analysis
of the weak coupling limit and of the interaction used by Palmer [18] in the
treatment of the low density limit.

The Hamiltonian for the coupled motion of the system and one bath particle is

H,=H;®1+1®H,+Q®A4 @.1)

on the Hilbert space #¢® #,"H,= —1/2A4 is the Hamiltonian for the free
evolution of one bath particle and A = Z o] fi > fil- Aisin the trace class of #, and

from dim # g < oo follows QR AeT (# @ H,). Let Hy=Hs®1+1® H, denote
the free Hamiltonian. From Kato—Birman theory [24] follows the completeness of
the scattering system (H,, H,). For the following one needs the conditions:

(E) The spectral subspace belonging to the point spectrum of H, is finite
dimensional.

2]

(F) For a dense set & of vectors ¢pe2, | |Ae”He'¢| dt < co.

These conditions will be discussed in the appendix.

The initial state of the composite system is w = w, ® @, 5. w,(-) =tr p- is a state
of the system determined by an arbitrary state operator peJ (#s), p=0,trp=1.
m, 5 is the thermal equilibrium state of the bath with particle density n and inverse
temperature f§ with respect to the free dynamics.

The dynamics of the infinite system is defined in the algebraic framework of
quantum statistical mechanics by an automorphism group on the algebra of quasi-
local observables. Let o/ ¢ = %(#5) be the algebra of bounded observables of the
system and .« ; = CAR (+#,) the algebra of the canonical anticommutation relations
over # ,. The algebra of the composite system is .o/ = ./ ® &/ . The automorphism
group a,(t) of the free evolution is defined by the relation

()X ®a*(f) =els'Xe Hs' @ a* (e f). . 22
L,-=[H,,-]is a bounded derivation on /. Therefore the interacting dynamics a(t)
corresponding to the formal Hamiltonian (1.1) may be obtained by the Dyson series

oA(D)Y = 20 P dedyagt— )L Logt)Y 23)

St Stest

A

for all Yeo/. The series converges in norm for all ¢t = 0. For t <0 one puts a(t) =
a” (=1
Expectation values of system observables are completely determined by the
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reduced dynamics ¢t —T(¢), which is implicitly defined by the relation tr X T(t)p =
(o)X @ 1) for all XeB(H ).

The scaling for the low density limit is as follows. The particle density of the
reservoir is scaled as n, = en. For small ¢, collisions of bath particles with the system
become very infrequent. To obtain a non-trivial limit, time is rescaled such that the
collision rate is kept constant. As the mean free path is (on,) ~ !, where ¢ denotes the
total scattering cross section, one should scale time as ¢, = ¢~ 't. The scaled reduced
dynamics is determined by the relation

tr X T(t)p = 0, ® 0, sa(e” )X ®1) 2.4)

for all X eB(H ).
In addition to the dissipative part (1.2) the generator of the asymptotic
semigroup has also a Hamiltonian part, and the total generator reads

K*p=— i[ S kRO (Ty(k, )+ Tl i_c))|n><n'|,p] +Khp.  (25)

n,n’
O =0,

The asymptotic semigroup is given by T#(¢) = exp(—i¢~'Lg + K¥), where Lg* =
[Hg,-] denotes the system Liouvillian.
The main result of this paper is

Theorem 2.1. Assume that (E) and (F) hold. Then there is a finite time T =0, such
that for te[0, T)

ligl IT0)p — T@)pll, =0 (2.6)
holds for all peT (Ks).

To prove the theorem, the series representation (2.3) of the dynamics is not
appropriate. Instead of (2.3) a perturbation series of the BBGKY-hierarchy is used.
The limitation te[0, T) comes from the limited radius of convergence of this
perturbation series, and is probably an artefact of the method used. The relevance of
the restrictions of the particular model are discussed in Sect. 7, where also some
possible generalisations are indicated.

3. The Quantum BBGKY-Hierarchy

3.1. BBGKY-Hierarchy on Fock Space

The series (2.3) is not suitable to perform the low density limit. Therefore one
introduces reduced density matrices, for which the time evolution is expressed by
a perturbation series for the BBGKY-hierarchy. It is convenient to perform the
necessary manipulations for states on Fock space. In the next subsection the
thermodynamic limit is taken. In this section quantities are not scaled. The scaled
objects are introduced in Sect. 4.

The joint Hilbert space of the system and n bath particles is denoted by

H,=Hs® ® # , and the subspace of #,, which is totally antisymmetric in the
1
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bath components, by (#,) . = # s ® ( @ H e> . For neS(n), where S(n)is the group
1 —

of permutations of n elements, one defines the unitary operator U, : #,— #, by

U fo®f1® R f,= f0®fn(1)® ®f1r(n)' For ¢e(#,)_ holds U,¢ =sgnnd.
The Fock space of the total system is denoted by # = @ (#,)-.
n=0

Let peJ () be a state operator commuting with the number operator N. Then
p may be represented in the form

p= é Pn G.1)

with p,e T ((+,)-), z lloalls = 1. The reduced density matrices R,, n=0, 1,2,.
are implicitly deﬁned by the relation

trg plfo><{gol®a*(f,)...a" (f1)algy). .. alg,)
=(go®gl®®ngnf0®fl®®fn) (32)

Using the representation (3.1) one obtains the well known expression [25]
= ZO (n+m),/m, tr[n+1,n+m]pn+m' (33)

In this formula p,,,, is regarded as an operator on #,.,, with p,, . =0 for
ye(#,,)-. Then 4 1,0+m denotes the partial trace over the components
n+1,...,n+m of #,,,, and no problems arise because of the antisymmetri-
sation.

The sum in (3.3) converges, if the following condition holds:
(A) Thereis 0 <g <1 and C >0 such that |p,||; < Cq" for all neN.

Lemma 3.1. If (A) holds R,, neN, is a bounded operator on H, and the estimate

C q \"
IR, = =4 "!<1—§> (3.4)

holds for all neN.

Proof. USing “tr[n+ 1,n+m]pn+m“ é “tr[n+1,n+m]pn+m”1 § “pn+m”13 one obtains
from (3.3) the bound

Cq"tm (3.5

(n+ m)!
m!

IRl = Z

m=0

For 0 < g <1 the right-hand side is convergent. This proves the boundedness of
R,. Evaluating the right-hand side of (3.5) one obtains the bound (3.4).
Let Hp;=101® - ®H,® - ®1 denote the free Hamiltonian of the j®
bath particle. The Hamiltonian of the interaction of the j't bath particle with the
system is H;;=QQ®1® - ®A® - ®1. The total Hamiltonian on (#,)_ is

H,=Hg+ '21 (Hg; + Hy)), (3.6)
=
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where, for simplicity of notation, the continuation of Hg on #, is also denoted by
Hg. The time evolution of p,, is given by

pult) = e~ Hmip, et (3.7

If (A) holds, the reduced density matrix at time ¢ is the bounded operator

R()= 3,

It will be proved that the reduced density matrices satisfy the integral equations

(n+m)

tr[n+ 1,n+m]pn+m(t)' (38)

Rn(t) n(t)R (O) + j‘ dS Un(t ) nn+ an+ I(S)

where n=0,1,2,..., (3.9)
[_]n(t)Rn =e” iH,.tRneiH,.t
and

Cons1Rys1=—itr,  [Hp i1, Ry 4]

tr,+; denotes the partial trace over the n + 1'® component of #,,, ;. The differen-
tial form of (3.9) is

lg—Rn(t) = [Hm Rn(t)] + trn+ 1[H1n+19 Rn+ 1]' (310)

This is the quantum analogue of the classical BBGKY-hierarchy equations. To
avoid domain problems with the unbounded operators H,, neN, it is convenient to
work with the integral equation (3.9) instead of (3.10).

Lemma 3.2. C,,. is a bounded operator from B(H, ) in B(H,) with the bound
[Cun+ 1l =21Q0 Al

Proof. One defines C,,, R, by the relation
tr[O,n]Xvng:nn-i- an+ 1= — itr[O,n+ 1][Xn ® 1]> H1n+ l]Rn+ 1
for all X,eZ (#,). From the estimate

Itri0mXaCon+ 1Ry 11| S 1 [X, @1,0@ 1@ AT 1 Ry 44
=20 X101 T AN IR, 44

follows the boundedness of C,,,; and the bound stated.
Theorem 3.3. On condition (A) the integral equation (3.9) holds.
n+m
Proof. One writes H,.,=H?,, +H},,, where H,,=H,+ Z Hpg;, and
j=n+1

n+m
H, . = Z+ Hy;. Considering H, ., as a perturbation in the Liouville equation,
Jj=n

i(d/dt)py+ () = [Hp 4 m»> Pusm(t)], one obtains the integral equation,
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pn+m(t) - Ur?+m(t)pn+m(0) - l_deU +m(t S)[Hr%*-m’ pn+m(s)]’ (311)

where U2, ,.(t) = e~ Hiemt . glHlnt The partial trace of (3.11) gives

tr[n +1,n+ m]pn + m(t) = n(t)tr[n +1,n+ m]pn + m(O)

- lj dStr[n+ 1 n+m]Un+m(t - s)[Hn+m’ pn+m(s)]' (312)

n+m

Using the fact that H, commutes with ), Hpg;, and that the latter operator acts
j=n+1
only on the components n+ 1,...,n + m, one obtains the identity

Uit 4n+m Upim(t) = Uttt ntm)” -
Exploiting the symmetry of p, . .(s), one gets from (3.12)
tr[n +1,n+ m]pn + m(t) = l_]n(t) tr[n +1,n+ m]pn + m(o)

t
+m£ds Un(t_S)Cnn+ltr[n+2,n+m]pn+m(s)' (313)

Equation (3.9) follows by inserting (3.13) in (3.8).
The integral equation (3.9) may be iterated and leads to a perturbation series
for R,(t). The following theorem shows that R,(t) is indeed represented by the
perturbation series for short times.
To simplify the notation of the integrals, one uses the abbreviations A(t, n,t'):=
{1, ., t)eRNt<t, < - <t; <t} and dt = dt, ...dt,,.

Theorem 3.4. Assume that (A) holds. For te[0,T) with T =(1—q)/2q|Q| 1 4]l1),
the series

0
d—t-gn(t - tl)gnn+ 1" Cn+m— 1n+m[_]n+m(tm)Rn+m(O) (314)
m=0 A(0,m,z)
converges in norm to R,(t).

Proof. The m™ term of the series has the bound

j e seionany S mem( L) =in,
A(0,m,t)

The series Y, B,, converges if 2| Q| A ,#(g/1 — q) £ 1, which proves the conver-

gence of (3.in4).
The k-fold iteration of (3.9) leads to

k
Rn(t) - ZO A(Oj dt Un(t - tl)C n+1:-: Qn+m—1n+m(_]n+m(tm)Rn+m(0)

+ | dtUft—t)Cons1-- Cotinris 1Rusis 1(tis ).
A0F+1,0)
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To conclude the proof of the theorem one has to show
lim I dtU,(t —t)Cons1-- Cotintit 1Rusx+ 1+ )| =0.

k=0 || A(0,k+1,1)

From the bound (3.4) for R, ;. 1(t), one obtains

dtUn(t —t)Cpns1-- Covintir tRnrir1(lir)

A(0,k+1,1)
tk+1 q n+k+1
2 At M — .
<IN Tk )(1_q>
For k— oo the right-hand side converges to zero.

3.2. Thermodynamic Limit of the BBGKY-Hierarchy

Let A be a bounded region in R*> and w* = 0, ® w5, where w4 is the equilibrium
state for a Fermi system with density n and temperature ! in the volume A with
respect to the free dynamics with Dirichlet boundary conditions. For A 1R? the
Fock states w? converge to the initial state w = ®,® w, ;.

In Lemma 3.6 it is shown that w” satisfies the following improvement of
condition (A):

(Ao) For all 0 < g <1 there is a C > 0 such that ||p||; < Cq" for all neN.
The following two conditions are imposed on the reduced density matrices R, of
g

ﬂ(B) There are constants a > 0 and C, > 0 such that for all neN and all bounded
A cR?|R,|| £C,n! a" holds.

(C) For all AcT (#,) lim3 tr, AR} =tr, AR,.

AR

Theorem 3.5. Assume that (A,), (B) and (C) hold. Then for te[0,T) with T =
clelnAla=?,
@) {1fo><{gol®a*(f,)...a"(f1)alg,)... alg,)})
=(G0®9:1Q " @9 R0 ® f1® " ® f), (3.15)

where
00

Rn(t) = ZO A(Oj‘ )d—’;gn(t - tl)Cnn+1 e Qn+m—1n+mgn+m(tm)Rn+m' (316)
m= sm,t

Proof. From Theorem 3.4 one knows that

@0 {1fo><gol ®a*(f,)...a* (f)algy) . alg,)})
—(Go®9:1®  ®gn RADSo® f1® ® f), (3.17)
where
RIO=3 | dtUt—t)Comsr- - Crom-inimUnin(tn)Rim:  (3.18)
m=0 A(0,m,t)

(A,) implies the convergence of (3.18) for all ¢ > 0. w* converges to w in the weak-*
topology. Therefore the left-hand side of (3.17) converges to the left-hand side of
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(3.15) for ATR3. To prove the theorem it is sufficient to show the convergence of
RA(t) to R,(t) in the weak-* topology of #(#,). The convergence of the series (3.18)
to the series (3.16) is proved, if one finds a majorant for (3.18) uniformly in A, and if
each term of the series converges. ©

From condition (B) one obtains the majorant Y, (¢"/m!)2|Q]l Al )"

m=0

Ci(n+m) a"*™ which converges for 2||Q| || A|l,at < 1. Weak-* convergence is
denoted by 5. RALR, implies U, ()RASULt)R,. From the identity
(W, Cons 1R 1 — Ry 1)) = — itrgo e LA > <YI®1, Hp,y JRY  —R,4;) and
the fact that [|¢><{Y|®1,H,.11€T(#,s,), one concludes that RA , SR,
implies C,,+ 1R2 15 Cpps 1R, 4 1. One obtains thus the pointwise convergence of
the integrand in each term of (3.18). The convergence of the integral follows by
dominated convergence.

The following lemma shows that the conditions (A,), (B) and (C) hold for the
initial states w* = w, ® vy,

Lemma 3.6. w* satisfies (A,). The reduced density matrices are given by

R}=p® ) sgnnUR*® - ®R*, (3.19)

neS(n)
where
R* = (exp(B(HZ — p)+ 1)~ % (3.20)

HZ|12(4) denotes the operator —1/2 A on A with Dirichlet boundary condition and
H2 |23 4)=0. (B) holds with a = 1. (C) holds and

R,=p® ) sgnnU,R® ' ®R, (3.21)
neS(n)
where
R=(exp(B(H,—m)+ 1)~ " (3:22)

Proof. To prove A, it is sufficient to look at the bath component. The grand
canonical partition function Z ,(8, ) = trexp(— B(H”* — uN)) is finite for all chem-
ical potentials u, and therefore for all « > 0,

™) pun=2Z AP+ B 0)/Z 4(B, p) < o0.

00
As (e™yp,a= Y. € lpp,nll, and the series is convergent, there is a C > 0 such
n=0

that || p,?,,”, [|{< Ce™™. As « is arbitrary, one obtains an estimate of this kind for all
qg=e %€(0,1).

The explicit representations for R? and R, are obtained from the well known
formula

o@*(f1)...a*(f,)ag,)... alg,)) = det{(9;, Rf))}

for quasi-free states, where 0 < R <1 is the defining operator. Using the explicit
formulas for R} and R,, it is straightforward to verify that (B) and (C) hold.
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4. The Low Density Limit

In this section the scaling for the low density limit is introduced. Instead of rescaling

time as t,=& 't, one may alternatively rescale the Hamiltonian as H®=

¢ Y (Hg®1+1® Hp + H,). This point of view is taken in the following.

The reduced density matrices of the scaled initial state w® = w,® w,, ; are
Ri=p® ) sgnnUR® QR 4.1)
neS(n)
where R® = (exp(B(H,— u,)) + 1)~ !. The chemical potential y, is determined by
the relation

[ dk(exp(B(k*/2 — p)) + 1)~ =,
The scaled reduced density matrix at the rescaled time is denoted by R}(¢). It
is given by the perturbation series

R (1) = Zos_m I dtUs(t —t)Cons 1 Uns1(t1 —13)

A(0,m,t)
"'Cn+m-—1n+mgfz+m(tm)Rf;+m’ (42)

where Ut(t) = U,(¢~ 't). For n =0 one obtains the reduced dynamics of the system:
T()p = R5(0).

As in the weak coupling problem [20], Theorem 2.1 is proved in two steps.
In the first step R§(z) is approximated by exp{(—i¢~'Lg + K)t}p. The generator
—ig"1Lg+ K will not preserve positivity, in general, and therefore an averaged
generator K* is introduced in a second approximation, which leads to a quantum
dynamical semigroup in the sense of Lindblad [26]. In this section the first ap-
proximation is formulated (Theorem 4.1), and the strategy of the proof is outlined.
The details of the proof are given in Sect. 5. This approximation involves all the
essential difficulties. The averaging procedure, which is rather standard, is
considered in Sect. 6.

The semigroup exp{(—ie~'Lg + K)t} is given in form of a perturbation series,

which is defined as follows. Putting Uj,(t) =exp —i<Hs+ Y HBj)e‘lt}
j=1

I=

and U4,(t)= exp{ — i<HS + Y Hy; + H,,,)a‘ 1t}, one obtains the scattering
=1

operator 2, = s — lim U3, (t) U}, (— t), t > 0. The corresponding operators acting on

el0
reduced density matrices are:

4 ?)n(t). = %n(t). Uf)n( - t)’ (43)
UL, = UL, (0) Ui, (=), (4.4)
Q, =0, Q% (4.5)

With these definitions the perturbation series may be written in the form

R3(1) = Zo A(oj ) dtUgo(t —t1)Co122 U5 (ty —13)... Cooe 1 R mUbm(t)RY..
(4.6)
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The initial state is given by
n=POR°® - ®R°,

where R = n(2n/B)*%e~PHe, As R® commutes with the free evolution of the bath,
(4.6) may be written equivalently as

R3() = ZO A(Of )d_t(_ffs(t —t)KUs(t; — 6)K... KU5(tn)ps 4.7)

m= ,m,t
where Us(t)p = exp(— iHge ™ 't) p exp(iHge ™ 1) (4.8)
and I_(p = —itr1L11Q1p®R0. (4.9)

Clearly, from (4.7) one obtains R}(t) = exp{(—ie~*Lg + K)t}.

Theorem 4.1. Assume that conditions (E) and (F) hold and put T=
eIl IR~ For te[0, T),

lim || R§(®) — R3(®) |l =0.
el0

Strategy of the Proof. First a uniform majorant will be found for the series (4.2)
(Theorem 4.3). With this the proof is reduced to studying the convergence of the
individual terms of the series. In Sect. S this is done in two steps. In the first step
one proves the convergence of the terms of the series for R(t) to the terms of
the series

RO= 5 1 dtlho(t=6)Coi2: Ut = 1) Com s @ Uinlta)RE,
4.10)
with the initial state
Ro=p® ;)sgnn U,R°® - ®R°. 4.11)

Here the statistics is still retained in the initial state. In the second step one proves
that the terms of the series (4.10) converge to the terms of the series (4.6).

To prove the existence of a uniform majorant for the series (4.2), one needs

Lemma 4.2. Let R® = n(2n/B)*/?e #He, Then
lim |[¢"!R*— R =0. 4.11)
el0
Proof. Let z, =exp(Bu,). From an asymptotic expansion of the Fermi function
follows lim ez, ! = n~1(2n/B)3/2. 1t is straightforward to show that
el0
limsup |(e™ 1z, 2 + 1)~ — n(2n/B)*/2e~F¥*/2)| = 0.
2|0 keR®
The statement of the lemma follows from an application of the spectral calculus.



Low Density Limit 343
Theorem 4.3. For all te[0, T) with T = (2| Q|| | All;|IR®||)™?, there is ey > 0, such
that the series (4.2) converges in norm for ¢ < g4. It has a majorant not depending on e.

Proof. As in the proof of Theorem 3.5 one obtains the bound
IR, = ZO (n+m)l/m2e~ e QI Al )" o] IR]" ™

The right-hand side converges for 2|Q|| | 4] ; [le” 'R¥||t < 1. As 13}5‘ le”*R?| = ||R|,

for all t<Q2|QlAlIR®|)"?, there is &,>0, such that one has 2||Q| x
|4l x |le"*R?||t < 1 for all & < ¢,. This proves the theorem.

5. Proof of the Theorem

5.1. Auxiliary Results

In this section some results are presented, which are used in the proof of
Theorem 4.1.

The first is a cluster theorem for n-particle scattering (cf. also [27]).

The free evolution of j bath particles is denoted by

Ug;i(1) = exp( - i( i HBk>s'1t>.
K=1

Theorem 5.1. If t,...,7, >0 or 14,...,7, <0, then
s —lim [Ug(t))Ug1(t1). .. Uge— 1 (tk— 1) — UL(t) U1 (1) - .. Ug— 1 (7 1)1 = 0.
el0
(5.1)

Proof. Lett,,...,1, > 0. The prooffor the second case is analogous. It is sufficient to
prove the theorem for unit product vectors @ = ¢, ® ¢, ® - ® ¢,. Using the
perturbation formula

Tk k—1
Ui(n) = Uli(ty) —ie ™! g ds Uy (ty — S)< '21 Hlj> Uik(s),
j=

the proof is reduced to showing lim I = 0, where
el0

1=

Tk
e”! i dsUg(t, — )H ;U (s) U3y (ty) ... Upge— 1 (74— 1)@ ” .

Exploiting the product structure one obtains

E<et | ds|Qexp(— iHge™ 9
)
®exp{—iHpge Nt; 4+ + 41 + 9}, ®
®Aexp{—iHge (t;+  + T, +9)}P;®
®exp{—iHp,_ 18" (t4_; + )} p_, ®
®exp{—i(Hpg, + Hy)e™ s}l
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Tk
¢! (f) ds|Qll | Aexp{—iHpe '(t;+  + Ty + 99|
e=1(tj+ - 1)

=al § | Aexp{—iHp;s};ll.

e~ (it +r_y)
By condition (F) the integral j ds||Ae” | is convergent for ¢pe2. Taking
b1,..., 0D one obtains hm I/ = 0. This holds also for finite linear combinations of
such product vectors, Wthh form a dense set in J#,. A density argument completes

the proof of the theorem.

The next lemma deals with a trace class property of the tensor product
Hy=HsQH Q- QH,. Denote by Uy H,>H:, Udo®P, R, ®
Q= Po® P R®P,® - ®¢p, the unitary operator, which interchanges the
first and the k'® component of the bath.

Lemma 5.2. Let XeJ (#,_,) and peT (#,). Then (Up 1% VU H(X®1)e
T (#) and [(Up @1 " DUHX @D Z el 1X];.

Proof. 1t is sufficient to prove the lemma for p=|¢p>(¥|, o] =|¢| =1 and
=|DX{Y|, |@| = ||¥| = 1. For general p, X one uses the polar decompositions
p=Za,~|¢i><zpi| and X=Z,Bi|di,-><5"i|. Let (x;); be a complete orthonormal

1
system in #g. Using the representations

k=1
dj:;Xk@cva ‘Dke@fw Zk:”d)k”2=1:

V=2 u® ¥ S"kek@l He  LIFA =1,
¢=;Xk®¢k3 A e, ;”(bk”Z:l:
l//=;xk®lﬁk, Yret., ;H%llz:l,
a straightforward calculation yields
Up @1 DU X @1 =;<;|xk®¢m®¢k>><¥'®¢ml.

The vectors (|3 ®P,R¢,>), form an orthonormal system, therefore

”Zb{k@@ ®¢k>H = ||®,, || The estimate

(; 0 ® ‘pm®¢k>>< Y, )

(;'Xk®@m®¢k>>< P, ) <

12 12
= ; @l Yl = (; I|¢ml|2> (Z H!//mllz> =1
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completes the proof of the lemma.

Lemma 5.3. Let S be a separable Hilbert space and A~ = T (#) a compact set. Let
H be a self adjoint operator on A with purely absolutely continuous spectrum and
denote by U(t) = exp(— iHt) the unitary group generated by H. Then

hm sup |tr pU(t)| =
pEJi’
Proof. The spectral theorem implies the weak convergence of U(t) to zero. On
bounded sets weak convergence and ultraweak convergence coincide. Therefore
the boundedness of {U(t)|teR} implies lim tr pU(t) =0 for all pe.T (#).
t— o0

Choose ¢ > 0. There are py,..., p,eZ (#) such that the balls {p||lp —p;[l; <
e} cover 4. Choose t, such that for all t>t¢, |trp;U(t)|<e for all j=1,...,k
The estimate [trpU(t)| < [lp — p;ll; + [tr p;U(t)] < 2¢ for all t=t, shows that
the convergence is indeed uniform on compact sets. O

5.2. An Intermediate Approximation

The first step in the proof of Theorem 4.1 is to show that R} (t) approximates
RY(t) given by the series (4.10).

Theorem 5.4. For te[0, T) with T =(2||Q| | 4]l; |R°[)~* holds
lim ||R§(1) — R§(0)1l; =

el0
Proof. As dim # 4 < oo, it is sufficient to prove lim trg X(R%(t) — R§(t)) =0 for
el0
all XeJ (#5). From Theorem 4.3 one obtains a uniform majorant of the series
(4.2), and therefore the theorem is proved if for all meN

limtrgX {e™™ | dtUb(t—1)Co1.- Cr- 1mUs(t)RS, (5.2)
el0 A(0,m,t)
_A(Oj t)deoo(t—t1)001-Q1Uo1(t1 —13)... Cpe 1 m2, U (t,)RS} = 0.

Using Lemma 4.2 one obtains immediately lim|le ™R:, —R%| =0. The
e—=0

estimate

{ dtUH(t—t1)Co1 -+ C 1mUnn(tw) (e "RE — RD)

A(0,m,1)
< m/ml21QN Al )" e "R: — Ryl
shows that it is sufficient to prove
lim | detrgX{Us(t—1)Co1-..Cpo1mUs(t)RS (5.3)
2l0 AO,m,1)

— Uso(t — 11)Co1 21U (t; — 13)... Cpo 1 2, Ut n(t)R S} = 0.

By a straightforward estimate one sees that the proof of (5.3) may be reduced to
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prove

im | detrgX {Ubo(t —1,)Co12,Ub:(t, —15)...

el0 A(0,m,1)
G 1kl Ukt =t 1) — QUG (6 — ti+ )1 Cri 1
Uie1(tie1 = tes2) - Cm 1 mUa ()R} =0 (54

for k=1,...,m. Denote by P,e%(+# ) the projection on the subspace associated
to the continuous spectrum of Hg + Hy, + Hy,, and put P, = P,-P,.
Equation (5.4) is proved in three steps:

Step 1.
lim [ detrgX{Ubo(t —1,)Co:12,Ub:(t; —15)...
¢10 AG,m,0)
o G 1l Uk — By ) — Ut =t 1) 1Chi 41
'[—Ji+1(tk+1_tk+2)"'gm—1m(_]5n(tm)ﬁg;}=0' (5.5)
Step 2.
im | detrgX{Uso(t —1,)Co12,Ub;(t; —1)...
¢10 AG,m,0)
e Crm Ukt — e ) — PG 1
Ui 1(tes1 —ter2) - Cne 1 mUn(t)R} =0, (5.6)
Step 3.
lim | dttrgX{Ubo(t —1,)Co:12,Uby(t; —1,)...
el0 AO,m,1)
o Crm il Ut — et P — QU (8 — i+ 1) ]
“Cirs 1Ui 41 (s 1 — tes2) -+ Ce 1 mUS(t)RO} = 0. (5.7)

In the first step the fully interacting k-particle dynamics Uj is replaced by the
time evolution U%,, where only the k'® bath particle interacts with the system.
The second step shows that in the limit there is no contribution from bound states.
Finally, in the third step the time evolution U, is replaced by the free time
evolution and the scattering operator.

Step 1 of the proof. One proves the convergence of the integrand for0 <¢,, < -+ <
t, < t. By the boundedness of the integrand, the convergence of the integral follows
from the dominated convergence theorem. Omne defines Y§(t;)=Cir+1
Uit (s — tes2) - Cone 1mUs(tn) RS, Where = (tys1,-.-,t,). Putting Up(t) =
Ubo()Ug(t) and using the fact that Uj(f) commutes with C;_;; and
Q, for j >k, one obtains

E, =trg XUbo(t —t1)C012,Ud1(t; — 1) ... Com 1k Ukt — ti s 1) Yi(th)
=trs X Upo(t —11)C0121Ubo(t1 — 12) ... Cr— 1xUs1(t; — £5)Upa(t, — t3).- ..

o U 16— 1 — Ut — iy 1) Yi(ED)-
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One puts QF-=0%-0Q; and passes to the Heisenberg picture by repeated
cyclic permutation under the trace:

E,=itr,, [Uitir 1 — U — 1 (e — ti—1) .- Upa(t2 — 1)
"L Ubolty — tr— )¢ 1Lig—1--- Ubolt, — )27
‘L Ubolt; — )X @ 19]Y5 ()
In order to finish step 1 of the proof it is sufficient to show
lzgl ITUR G+ 1 — t) — Uit 1 — 8) WU — 1 (6 — ti—y) - .-
Ul — 1) X3 1, =0,

where
i(t) = Ly Udo(ty — ty—1) ... Ugo(t, — )27
Ly I_Jf)o(ﬂ - t)X®1](k)a

and t, = (ty,...,t)

For fixed X,eJ (#,) instead of Xi(t,) this follows from Theorem 5.1. By
an g/2-argument this property holds uniformly for X, on compact sets of I ().
Therefore, if one can verify

(1) for e>0 Xt )eT (H#)),
(2) {Xit)|e(0,1]} is compact in T (),

the proof of step 1 is completed. These two properties are proven inductively.

First one notes that XeJ (#5) =T (# ), and therefore also Ujy(t; —t)Xe
T (H ). As AeT (#,) one obtains Xi(t,)=[Q® A4, Ujo(t; — )X ®1]eT ().
Assume Xy(t)eJ (). From the boundedness of €2, follows Q¥X (t,)eT (H)).
The same arguments as for k=0 show that X}, (t,+1)€7 (#+,). This
proves (1).

To prove (2) one notes that the set %(#'s) = {UeB(H )| U*U = UU* =1}
of unitary operators in # is compact, which follows from dim g < co. Let
T =T (#,) be compact. From the joint continuity of the maps (U, X,)—
U®1X, and (U, X)X, U®1 as maps from B(H )R T (H,) to T (H))
follows the compactness of {U®1X,|Ue¥(Hs), X7, and {X,U®1|Ue
UHs), XAy The map T (H)—>T (Hir1) Xi— Ly X, ®1 is also
continuous, therefore {L;.;X,®1|X;e7,} is compact in J(H,).
Finally the map X,—Q}X, is continuous as a map on J (#,) and consequently
{QFX,|X, €7} is compact. Using these properties it is easy to prove (2)
by induction.

Step 2 of the proof. Using the definition of Cj;,;, the formula
Ubr— 1(te— 1 — ttr, = tr, Ugu(t, - . — t,)- and the identity

s .
—1 _f At Uity -1 — )Ly Uity — tiv 1)

Levt

=e(Ulu(tk—1 — t) — Ubilti—1 — 10)s
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one writes (5.6) in the form
lime(dt,...dt,_,dty,,...dt,
Y 0st s St St S s s0
trs X{Ubolt — 1)Co121 Ub1(ts — 12) .- Com2 k- 12-1
(ULt 1 — t) — Ubilte— 1 — )1 — P)Criv 1
Ui 1(tess = txr2) - Cne 1 mUilt)R D} = 0. (5.8)

It is sufficient that the integrand is bounded by some constant C. Then the absolute
value of the integral is bounded by ™~ /(im — 1)! C and therefore the left-hand
side of (5.8) converges to zero.

The integrand may be written in the form

trp (1 = P (Ut — ti— 1) — Uty — ti— 1)) (27 1 X5 - 1(tx— 1)) @ 1}
Ugi(ty — 6)U%a(t; — t3) ... Upi— otk — 2 — ti— 1) Yilth)-

Upi(ty — 2)UBa(t2 — 83) ... Ui 2(ti— 2 — ti— 1) Yi(ti)€B(5)) is uniformly bounded
in &. Therefore it is sufficient to prove that

(1 = PoUikte — ti— 1) — Uit — te— D25 - 1 X5 1tk - 1)) @ 1€ T (H)),

and that this expression is uniformly bounded in &.

To prove this, condition (E) is used. P, =1 —p, is the projection on the
eigenstates of H;. Condition (E) is equivalent to ||P, ||; < co.

The required estimates are proven separately for

(1 = PYULt — te—- (2% 1 X 15— 1)) ® 1 (59

and
(1 — PUbultx — ti— (25— 1 X5 - 1(8- 1)) ® 1. (5.10)
Defining U(t) = exp{ — i(Hgs + Hp, + Hp)e ™ 't} and Us(t): = U%(t)* Us(— 1),

one obtains U5,(t) = Us(t)U% - 1(t). As U%(t) and (1 — P,) commute, the identity
10— PYU Lt — ti— NQF- 1 X - 1(te- 1)) @ Tl
= (1 = PY(Usgi—1(tx — ti— )2 1 X5 - 1(te— 1)) @ 1l

for (5.9) follows. Xi_i(td) = Ui 1(tx — tu- )R- Xi-1(ts—1) is in T(H) )
and there is a constant C, such that for all e >0 | X:_,(t) |l < C,.

Let XeJ (#, _,). Using the permutation operator U,, one may write 1 — P, =
U, @1 DU,. With the identity (1—P)X®1N=PXQ®11—P)+
(1 —P)X ®1, the estimate

[T =PYX @1 =2|P_ [, X, (-11)

follows from Lemma 5.2. In particular one obtains for (5.9) the estimate
10— P)XE- 1t @D S 2|P |1 Cs.
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To estimate (5.10) one notes that Uj,(t, —t_ ) R2F X 1t ))® 1=
(Ubi-1(te — ti— )2 1 X5 1(¢- 1)) ®1, and obtains with (5.11)
(0 — P)UGk(6 — ti— )7~ 1 X5 -1 (- 1)) @14
S2|P Il 1UG k- 1(t — te—- D2F— 1 X5~ 1 (G- ) |1 1-
The right-hand side of this inequality is bounded in &.

Step 3 of the proof. Again it is sufficient to prove the convergence of the integrand.
As P, commutes with U%,(t, —t,_,), the integrand of (5.7) may be written
as

0, [(Uoalty — tir DU TG+ 1 — 8Py — L) XW(6) 1UB4 (8, — 15). ..
Ubi—1(t-1 — Ul — e+ 1) Yidts)- (5.12)
The existence and completeness of the wave operators implies s — lim (U$,(z,) X

&0
Ui(— )P, — 2F) =0 for £ > 0. The compactness argument used in step 1 of the
proof shows that

lim [[(Ugu(te — te+ )U Ttk + 1 — )Py — 25Xt [, = 0.
el0

Furthermore ||U%(t; —t5)... Ug—1(tx—1 — t)Yi(t:) || is bounded uniformly in e.
Therefore (5.12) converges to zero in the limit ¢ ] 0.

5.3. Contribution of the Statistics

To complete the proof of Theorem 4.1 it remains to show that in the limit £ 0
the contribution from the exchange terms in R vanishes.

Theorem 5.5. For te[0, T) with T = (2| QI |4/, [R°[)~* holds
lim || RS(2) — RY(0)[l; =0.

el0

Proof. Using the series (4.6) and (4.10) for RY(t) and RY(t), one sees that it is
sufficient to prove for all neN and all non-trivial permutations weS(m), = # id,

im | dttrgXUbolt —11)Co1 2, Uby(t; — t5)...

£l0 A0,m,t)
(KR Qm— 1m‘9m(—]f)m(tm)p® UnRO® e ®RO =0.

One proves that the integrand converges to zero almost everywhere. Taking into
account the boundedness of the integral, the result follows from the theorem on
dominated convergence.

The integrand may be written in the form

Lt = e, [Ubo(— t)2m X0t JUB1(E1 — 12) -+ - U — 1(tm—1 — tw)
' I_JBm(tm)(Unp ® RO ® " ® RO)
Using the invariance of R® under the free evolution one obtains

Ii(ty) =tr,, [Uso(— t,)R2EX5(t,)1p ®RO® - @ ROU,V,(L,),
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where Vm(Lm) = UBl(tl 2) s %m(tm)UnU m( m) 1(t2 - tl) A
straightforward calculatlon gives V,(t,)=exp(—ic 'H ,’;(t,,,)) where HZ(t,) =

_Z H(tny — ).
J=

If ©#id, then HZ(t,)#0 on a set of full measure in _A(0,m,1t). As all Hg;
j=1,...,m have purely absolutely continuous spectrum, H%(t,) has also purely
absolutely continuous spectrum when it does not vanish. By the methods used in
step 1 of the proof of Theorem 5.4, one proves the compactness of

{[Ubo(— tW 23 X5t 1p ®R°® - ® R°U,|e€(0, 17}

in J(#,). From Lemma 5.3 follows limI(t,)=0 for all t, for which
el0

At #0.

6. The Averaged Generator

According to Theorem 4.1 the reduced dynamics is approximated by the semigroup
TYt) =exp{(—ie”'Lg+ K)t}, where the dissipative part of the generator is
given by

Kp=—itr;L;;2,p®R". (6.1)

In general, K will not be of the canonical form given by Lindblad, and therefore
T(t) will not be a quantum dynamical semigroup. However, as in the weak
coupling case [20], the semigroup T# () = exp{(— ie~ ' Lg + K*)t} formed with the
averaged generator

K* = hm — j dtexp(— iLgt)K exp(iLst) (6.2)
T—*oo
is a candidate for a quantum dynamical semigroup. The discreteness of the spectrum
of Hg implies the existence of the limit in (6.2). The following approximation
theorem holds:

Theorem 6.1. For all t =0 and all pe T (#)
lim sup || T4(s)p — T{(s)pll, = 0.
el0 0<s=<t

T* is a quantum dynamical semigroup.

Proof. The first part of the theorem is Theorem 1.4 of [20]. From Theorem 4.1
one has

lim |lexp {ie 'Lt} Ré(t) — exp{ie "' Lgt} T#(t)p|, =0

el0
for sufficiently small ¢. R§(z) is the reduced dynamics of a Hamiltonian time
evolution, therefore p—exp{ic™'Lgt}Ré(t) is the dual of a completely positive
map. As [Lg, K*]1=0, exp{ic 'Lst}R5(t) has the weak limit exp{ic™'Lgt}:
THt)p = exp{K*t}p. Therefore exp{K*t} is also the dual of a completely
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positive map, and consequently T#i)=exp{—is 'Lgt}exp{K¥#t} is a
quantum dynamical semigroup.
Using the spectral representation Hg=) w,|n>{n| of the system Hamiltonian,

n
one forms the operators P,,, =|m){n|, which are the eigenvectors of the system
Liouvillian Lg. The operators T =H £, and X =Q, —1 may be represented
as T=YPu®Tp X=Y Ppu®X,,.

Lemma 6.2. The averaged generator is given explicitly by

K#p = Z Cmnm'n’Pmnppn’m’ + B#P + PB#*, (63)
m,n,m’,n’
where
Comm'w = — iéwm — WnyOmr — Opr tr(TmnRoX:rt’n’ - anRO Tr’fl’n’ (64)
and
Bf=—i Y P, trR°T,,. (6.5)

Proof. (6.1) may be written in the form

Kp=tr,[—iTp@®R°X* + Xp®R(iT*)] + tr,[—iTp®R° + p®RO(iT*)].
Using the product representations of T and X, one obtains Kp =K, p + K,p,
where Ki;p=—i Y PupPy,tr(T,R°X}, —X,,,R°T%,) and K,p=

mnm’n’

Bp + pB*, B= — iZPm,,trRon,,. Applying

lim — j dtexp(— iHgt)P,,,exp(iHst) p exp(— iHgt)P,., exp(iHgt)

T—-oo
= 6(0". — On, Omr — wnszinm'n’a
and
hm — j dtexp(— iHgt)P,,,exp(iHgt) = b, o Pouns
T2
a straightforward calculation leads to (6.3).

As H; eT(#s® H,), the operator T is an integral operator with the
momentum space representation <{m® ¢|T|n@y ) = [dk [dk' §*(k)T,.(k, k')
(k). If the kernel satisfies some additional regularity conditions, one obtams an
integral representation for K¥, from which the physical meaning of K* be-
comes clear.

It is assumed:

G) [ dtlAexp(—iH A, < oo,
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(H) for all m, n, T,k k') is jointly continuous and uniformly bounded in
k k.

Theorem 6.3. Assume (G) and (H) hold. Define T, (k,k)= Y Tk k)P,

Om— Wn=0w
Then

K#p = — l[ Z Pnn’ trRO(Y:m’ + Tf'n)’P]

On = On:

+2n Y [dk[dK RGO/ — K22 + o)

weSplLs)
{ T, RpTE(K, k) — 3[THK, k)T (K, k)p
+pTo(K, )T, (K, K1} (6.6)

Proof. Let w,, — w, = w,, — 0, = w. Using

X =s— lim (e—int _ e—iHot)eiHot
t=w

t
=5— hm jdse~iHos[(_ iH“)e——iHl(t—s)eiHo(t—s)]eiHos’
t— o0 Q

one obtains
Connm'n’ = tr RO(X:’n’ Tmn - T:’n’an)
t
— hmj‘dstr{|m/> <n/' ®Roe—iHm[e—iHo(t—s)ein(t~s)(iH“)]
t—00(

@1 @ T,,y) + 1) {m| @ R°(1 @ Thy)
e’ iHos[iHne TiHL _s)eiHO(t -s)]eiHos} . (6'7)

The terms in square brackets converge ultraweakly to iT* respectively iT for
t— 0. The following estimate proves that they may be replaced by their limits:

j)dsltr{lm'xn'l@Roe_iHos
[ Hot =9 gHI =il | ) — iT*] ) ® T,,,} |
ézdsltr{lm'><n’|®R°e_iH°s
[ HUI GO H ) — iT*]eF © T,y )|
+ zdSZ IROIIQ, [ Ae™ e Al | Y,

where the product representation 2, =) P,,® Y, is used. By condition (G) the

second term is smaller than any given &> 0 for sufficiently large t,. As t— oo,
the integrand in the first integral converges to zero pointwise. It is bounded by
the integrable function s—2|R%||Q|l,|Ae H=A|,|Y%,l, therefore the
integral vanishes for t — co. A similar estimate holds for the second term in (6.7).
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A straightforward calculation leads to
Commn' = tlllg> jt dse' {dk [dk'exp{—i(k*/2 — k'*/2)s}
"ROU) Ty (K, ) T (K, 1)

= ligljdl_(jdl_c’Ro(l_()Zs/((k'Z/2 —k*24+ w)+¢?)
T (K, k) T (K, k),
where an Abelian limit is used in the last step. By condition (H) one obtains finally
Commew = 27 [ dk [dK' RO(k)3(k2/2 — k2/2 + ) Ty (K', k) (K, K). (6.8)
With this representation one has
Y CommnPunPPow =Y, 2n[dk[dk'6(k'?*/2—k*/2 + w)

i weSp(Ls)
‘RO T, (K, KpTH(K, k).
The remaining terms in (6.6) are obtained by writing B* in the form
B* = BY + iB%, where
B{=—if2 ¥ P trRT, —T},),

and
Bz = - Z Pnn’ tr RO(Tnn’ + T;kn)

On = wns

The Hamiltonian term in (6.6) is formed with B%. B* may be written in the form

Bi = —n} fdk[dk 6(k'*/2 — k*/2 + 0)R° (D) THK, DT, (K k), (6.9)

which follows from the unitarity relation

Tm'm(l_(,’ I_() - Tmm’(k) l_(() = —2mi Z jd_k” 5(k/,2/2 + W, — k2/2 - Com)

: Tnm’ (kli, k/) Tnm(]_c”a _k)s (610)
for k?/2 + w, =k'*/2 + w,,. Equation (6.10) is proved analogously to [24],
Theorem XI.44. Using (6.9), one obtains the last two terms in (6.6).

For each w, k, k'
T K, K)pTH(K, k) — 5[ THK, T, (K, k)p + pTHk, k) T,(K', k)]

is of the canonical form given by Lindblad. The generator is obtained by a
superposition of such terms with positive coefficients and is therefore also the
generator of a quantum dynamical semigroup. The Hamiltonian term is a level
shift induced by the interaction with the reservoir. The dissipative part describes
the scattering process |nk)—|n'k’> of the system with the bath particles.
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The d-function accounts for the conservation of energy in the scattering process.
The particle density Ro(k) determines the rate at which bath particles are
scattered.

The relaxation properties of the semigroup are stated in the following theorem.

Theorem 6.4. Assume:

(a) Hg has non-degenerate spectrum,

(b) the microreversibility condition T,k k)= T, (—k,—k) holds for
k*2 + w,, =k?*2 + w,,

(c) for each pair m, n there is a pair k, k' with k?/2 + w,, = k'*/2 + o, satisfying
Tk, k') # 0.
Then p,,=exp(— pHg)/trexp(— fHs) is a stationary state of T* and for all
peT (Hg) one has tlim THOP = Poy-

Proof. K* may be written as K* = K¥ + K%, where

K#;Ip = - l|: Z Pnn’trRO(Tnn' + T:in)ap:l and

On=Ons

K%P = Z Connm'n’ {Pminn’m’ _%(Pn’m’Pmnp + an’m’Pmn)}'

mnm’n’
As K% and K% commute and K% p,, =0 it is sufficient to prove K%p,, =0 and
lim exp(Kbt)p = poy-
t—
peﬂ" (s#g) is represented as p= me,, .- FOr p(f) evolving according to

(d/dt)p(t) = K% p(t), the coefficients pm,,(t) satisfy the equations

d
—Pmnlt) = Z CotemPri(t) — 3 Z (Cxomtom + Cenken) Ponn(t) - (6.11)
dt |\ k=1

Let I? = {m|3n: w,, — ®, = w}. In each class I° there is for every meI® a uniquely
defined index m which satisfies w,, — @, = w. Each set {p,,|/mel®} has a closed
subdynamics.

First the diagonal elements are considered. The dynamics is given by

d
Epmn(t) = z Cmnmnpnn(t) - Z Cnmnmpmm(t) ’

which is the master equation of a classical Markov process with transition rates
Comnm- FTOM assumption (b) one obtains

Pm—n=
Connm'n’ exp(— Ba)n) = Comn'm’ exp( - ﬂwm)s (612)
from which follows the detailed balance condition
Connmn exp( - ﬁwn) = Coumnm exp( - ﬁwm)

Hence p,, is a stationary state. Furthermore, as (c) implies ¢, > 0 for all pairs
m, n, 1im p,,(t) = pegnn holds for all pe T (Hs).
t—> o0

It remains to show limp,,(t)=0 for m+#n. The closed subdynamics for
' t— o0
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any w =+ 0 is described by the equation of motion

d

apmm(t)z z Lpi(®), (6.13)
kel®

where the coefficients L2, are determined by (6.11). Equation (6.13) is regarded

as a differential equation in the Hilbert space s#* with the scalar product (x, y) =

Y. xiexp(Bw,). The proof is complete, if the matrix L°=(Lg,) generates a

kel®

strict contraction semigroup in .
The matrix L” is written as

L= Y Lo+ L3 +L3,,

m el
m<k
Conkrle i=mj=k
Chamlon i=kj=m
_ 1 P
L&uyi; =S — 2(Coomiom T Conten) l=j=m
1 . .
— 2 Cotemtc + Coton) i=j=k
0 elsewhere,

L3, = (Cin— 3(Casii + C))03j

1
Lp,ii=— P (k;; Criri T k;_ ckfkf>5ij,
where  I¢={l,...,N}\I®, I¢={1,...,N}\{klkeI®}. Using the re-
presentation (6.8) of ¢, and the relation (6.12), it is straightforward, but
somewhat lengthy, to verify Re(x,L{,)x)<0 for all xex#” and all m<k.
Analogously one verifies Re(C,,min — 3 Commm T Canins)) < 0 for all meI®, and conseq-
uently Re(x, L3, x) <0 for all xe#®. Finally, as ¢, > 0 for all k, m and I? + 0,
the matrix L$, is strictly negative.

7. Discussion

In this section some modifications and generalisations of the model are considered.

The Fermion reservoir may be replaced by a free Boson reservoir at some

temperature T >0. For sufficiently low density one is above the transition

temperature, and no condensate is present. Then the methods used in this paper

apply. After performing the thermodynamic limit, one obtains the perturbation

series (4.2) for the reduced density matrices, where the initial state is now given by
Ri=p® Y UR® QR

neS(n)
R* = (exp(B(H, — n)) — )~

As only the initial state changes, Theorem 4.1 also holds in the Boson case. At
T =0, one remains in the condensed phase in the low density limit, and the methods
used here are no longer applicable.

If the reservoir has Boltzmann statistics, the initial state in (4.2) is of the form
Ri=p®R*® - - ® R’ In this case the radius of convergence of (4.2) is infinite,
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and one obtains the convergence of R(t) for all times ¢ = 0. The finite radius of
convergence of the series (4.2) for Fermion and Boson reservoirs is due to the
statistics. As in the low density limit the reservoir has Boltzmann statistics, one
would obtain convergence for all times, if one had a good a priori estimate of the
contribution of the statistics.

It was assumed that the space dimension d of the reservoir is three. However,
it is sufficient to assume d = 3. For d < 3 condition (F) will not hold, in general.

The condition dim # g < co may be omitted. Then one assumes that Hg has
completely discrete spectrum, which is a sufficient condition for the existence of
the averaged generator. Instead of Theorem 4.1 one obtains the weaker result

limtr X(R(t) — R(t)) =0 for all XeT (#). If one takes QeB(Hs), QR A
el0
is no trace class operator, in general, and the existence and completeness of the

wave operators does not follow from Kato—Birman theory. Therefore one has to
state additional conditions to assure the existence and completeness of the wave
operators.

The compactness argument for Xj(¢,) used in the proof of Theorem 5.4 has
to be modified. {Xj(t,)le€(0,1]} is no longer compact in 7 (#,). But for
each 6 >0 Xj(t,) may be decomposed in Xi(t,) = X%,(t) + X5,(t), such that
IX5,(t)| <0 and {X},(t)|e€(0,1]} is compact. Using this decomposition,
it is possible to modify the proof of Theorem 5.4 such that the result still holds.

The interaction may be generalized to H; = Z 0, ®F;, where Q,e#B(Hs),
Q, self adjoint and F;= Zocua*(fu)a(fu) Zloc”|<oo a;;€R, || fill =1 for all

JjeN

i=1,...,r,jeN.

For times t <0 a theorem similar to Theorem 4.1 may be derived, where the
sign of the dissipative part K of the generator is reversed. This symmetric situation
is due to the assumption of factorizing initial conditions at t = 0.

In this paper only the reduced density matrix R}(t) of the system was studied.
One would like also to consider the limit of the n-particle reduced density matrix
R(t). For ¢]0 the motion of the bath becomes very fast, and the bath particles
move out to infinity. Therefore Ri(t) will not have a limit, but in the interaction
picture one may expect Ug,(—t)Ri(t) to have a limit. However, there is a
problem. Technically, this problem is indicated in the fact that the cluster theorem,
reducing the n-particle collision to a series of independent collisions, is no longer
applicable. Physically, one should not expect the convergence to hold everywhere.
This situation is familiar in the classical case. There one proves convergence only
for those configurations, which have path histories without recollision events. The
problem is to formulate a corresponding notion of convergence in the quantum
case.

Appendix

Given an interaction Hamiltonian of the form Q ® F, it is in principle possible
to check if conditions (E) and (F) are satisfied. The following theorem shows that
the class of such interaction Hamiltonians is not empty.
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Theorem A.l. Let

M (j;ll |AI*2 exp(—iH 1|42 | dt < Q] 7",

2 _Of 1A' exp(—iH )¢ ||dt < o for pe2,

where 9 is a dense linear subspace in #,. Assume that Hy=Hs®1+1®H,
has purely absolutely continuous spectrum. Then s-limexp(—iHt)exp(iHt)¢
t— 0

exists for all pe# |, and H, = Hy + H;, has purely absolutely continuous spectrum.
It is easy to find interaction Hamiltonians H;; = Q ® A satisfying (1) and (2).
k

Let A=Y o;lf;>{f;l, where a;eR and f;e#(R>. Then t—(f,exp(—iH,t)f)

=1
is integra]ble fori,j=1,...,k, and therefore condition (1) is satisfied for sufficiently
small ||Q|. Condition (2) may also be satisfied, if one takes 2 = #(R3).

If the theorem holds, H, has no bound states and therefore condition (E)
is satisfied. The estimate || Aexp(—iH, )¢l < |||AIM?|||A]Y? exp(—iH, t)¢|

shows that (F) is also satisfied.

Proof of Theorem A.1. 1t is sufficient to prove the existence of s-lim exp(iH yt) x
t— 0

exp(—iH t)y for all Yyes’;. Then the scattering operator s-limexp(iHt) x
t— 0

exp(—iHyt) is unitary, and therefore H; has purely absolutely continuous
spectrum.
One may restrict oneselves to proving the existence of s-limexp(iHyt) X
t— o0

exp(—iH W for all Y = dps® ¢, pse#’s, 2. The limit exists also for finite
linear combinations of such vectors. The existence of the limit for all e #°; follows
by a density argument.

To prove the existence of s-tlim exp(iHt)exp(— iH t)}y one uses the pertur-

bation series
exp(iHot)exp(—iH )y = Zo(_ iy . oj dt Hyy(t,)... Hyy(t )y, (A1)
n= (0,n,t)
where H,(f) = exp(— iHot)H exp(iH ot). The n'® term of the series is estimated by

I,=

I dt Hyy(t)... Hy(t)ds ® ¢ N

A(0,n,t)
t—§y— e —

t t Sn ) )
égdszn'gdsn g ds  |Q1" | sl | Ae™ e 4. Ade~Hes1,

where s;=t;, s;=t;—t;_y, j=2,...,n. Using the identity A4 =|A4|'?sgnA-
|A|'/2, one obtains I, < ab" ™!, where

a=oslIQ] 114" :fds I1AI*"* exp(—iHs)$ ]I,

b=10] [ ds1 141 exp(— iHL9) 42 .
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lle—— 8

Therefore the series (A.1) is majorized in norm by 1 +

I,,, which is convergent
n=1

for b< 1.

To prove the convergence of the series (A.1) one still has to show that each
term of the series has a limit. For this Cauchy’s criterion is used. With the defini-
tions  h(t)= [[|A]">exp(—iHt)|A[Y?|l,  hy(t)=l|A]"* exp(—iHt)¢|l,  one
obtains the estimate

< j. dt — _f ﬂ)HU(tn)---Hn(tl)‘//“

AOmt+7) A

t+t

}f dtnt!:dtn— 1ee- Zdh Q1™ 1l 1A [ A(t, — t,— 1) ... h(t; — t)hy(t;)

IIA

IIA

dsy... [dsy Q1" | dsll 11AIY2 | hls,). .. h(s2)hy(sy).

sttsat+tsp2t

S1y--0sSyhy(S)N(sy). .. h(s,) is integrable on ([0, 00))", and the domain of
integration decreases monotonically to the empty set for t — co. Therefore the
integral vanishes in the limit ¢ — co. |
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