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Abstract. A Lorentzian splitting theorem is obtained for spatially closed space-
times. The proof employs and extends some recent results of Bartnik and
Gerhardt concerning the existence and rigid uniqueness of compact maximal
hypersurfaces in spatially closed space-times. A splitting theorem for spatially
closed time-periodic space-times, which generalizes a result first considered by
Avez, is derived as a corollary.

1. Introduction

Yau [12] has posed the problem of establishing a Lorentzian splitting theorem
analogous to the splitting theorem of Cheeger and Gromoll [5] for Riemannian
manifolds. In this paper we prove the following splitting result for spatially closed
space-times.

Theorem 1.1. Let V be a space-time which has the following properties:
(A) V contains a compact Cauchy surface.
(B) V satisfies the timelike convergence condition, i.e., Ricpf,X)^0 for all

timelike X.
(C) V contains a timelike curve which is future and past complete.
(D) For each pεV, every future (past) inextendible null geodesic η issuing from

p reaches a point in the timelike future (past) of p, i.e., ηr\I+(p)^φ(ηr\I~(p)^φ).
Then V splits into the pseudo-Riemannian product of (IR, — dt2) and (M,h),

where M is a smooth compact spacelike hypersurface and h is the induced metric on
M. In particular if V is Riccί flat and dim V=4 then V is flat.

Remarks. We shall always use the term "hypersurface" to mean "hypersurface
without boundary." Put more succinctly, condition (D) states that there exists a
null cut point along each future and past inextendible null geodesic. In Sect. 3 it is
shown that for space-times admitting a compact Cauchy surface, (D) is equivalent
to the requirement that there be no observer with a nontrivial future or past event
horizon.
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Theorem 1.1 can be viewed as a singularity theorem of sorts: If V is a space-time
satisfying (A) and (B) which does not split in the sense described above (e.g. is not
static) then either (C) fails to hold, in which case V is singular in the usual sense, or
(D) fails to hold, in which case one suspects the occurrence of a singularity.
Interpreted in this way, Theorem 1.1 is an example within singularity theory of a
rigidity result in the sense described in Cheeger and Ebin [4].

The proof of Theorem 1.1 rests heavily on different aspects of the important
recent papers of Bartnik [2] and Gerhardt [7]. Gerhardt ([7], Theorem 7.4) has
proved a splitting result for the region between two compact maximal hypersur-
faces in a globally hyperbolic space-time satisfying the timelike convergence
condition. In order to use this result to prove Theorem 1.1 it will be necessary to
establish new criteria for the existence of compact maximal hypersurfaces. By
using singularity theory in an essential way we are able to modify an existence
proof of Bartnik ([2], Theorem 4.1) to establish the existence of compact maximal
hypersurfaces in space-times satisfying (A)-(Q and a compactness condition
implied by (D). This existence result is presented in Sect. 2. In Sect. 3 we obtain a
number of equivalent characterizations of condition (D) and present the proof of
Theorem 1.1.

In Sect. 4 we derive as a corollary to Theorem 1.1 the following rigid version of
Tipler's [11] No Return Theorem, which settles a problem dating back to the 1963
paper of Avez [1],

Theorem 1.2. Suppose V is a spatially closed time-periodic space-time which satisfies
the timelike convergence condition. Then the conclusions of Theorem 1.1 hold.

Avez had considered the Ricci flat case, but his proof contains a well-known
error (see Marsden and Tipler [10]).

In order to simplify some statements occurring in the following sections, we
shall refer to the hypotheses of Theorem 1.1 by letter only. Frequent use is made of
the causal theory of space-time, for which Hawking and Ellis [9] is a standard
reference.

2. Existence of Compact Maximal Hypersurfaces

Theorem 2.1. Let Vbea space-time satisfying (A), (B), and (C). Let Shea smooth
compact spacelike hypersurface in V such that the collection of compact spacelike
hypersurfaces meeting S stays in a compact subset of V. Then V contains a smooth
compact maximal hypersurface which meets S.

The proof is a modification of Theorem 4.1 in Bartnik [2]. The essential new
ingredient is the application of singularity theory, for which one needs the timelike
convergence condition. In fact Theorem 2.1 is false without this assumption.

We shall isolate in terms of a lemma precisely what is needed from Bartnik's
proof. First, let us introduce some notation. Let t: F->R be a smooth time
function all of whose level surfaces are Cauchy. Let S0 be the slice t = 0. V is
homeomorphic to 1R x S0 via the correspondence p<-^(ί(p), π(p)), where π: F-»S is
projection along the flowlines of Vt into S0. For ί l 9 1 2 elR, let

^ = [u e C2(So): graph u is spacelike and ίt ̂  u ̂  t2},
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where graph u = {(u(x), x):xeS0}. Let H(w) = mean curvature of graph w, and
H°(u) (x) = mean curvature of the slice t = u(x) at the point (u(x), x). (We use the
sign convention in which H > 0 corresponds to expansion on the average of the
future pointing normal.)

Lemma (Bartnik [2]). Let t : F-»R be a smooth time function such that the slice S0 is
compact. Fix ε > 0 and t i < 0 < t2. If for each σ, 0 < σ < 1 , w e ̂  satisfies the strict
inequality

t1<u<t2,

whenever u satisfies,

H(u) = (l-σ)v(u)H°(u) + εu,

where v(u) is defined as in [2], then there exists uε e C°°(S0) such that graph uε is
spacelike and has mean curvature H(uε) = suε.

Proof of Theorem 2.1. Choose a smooth time function t: F-»R whose level
surfaces are compact Cauchy surfaces. By Budic et al. [3] S is Cauchy and hence
can be represented as a graph over the slice t = 0. By Proposition 3.2 in Bartnik [2]
one can choose the time function so that S corresponds to the slice t = Q.
Furthermore by rescaling the time function one can choose times
...tn_l<tn<tn+ί... such that t0 = 0, ίw-> + oo as π-> + oo and for nφO,

(2.1)

where λn = sup\Hn\ and Hn is the mean curvature of the slice t = tn.
For each positive integer n define,

<£n = {ueC2(S): graph u is spacelike and t^n^u^tn}

Suppose for some σ, 0<σ<l, uE^n obeys

At points where Vu = 0, v(u) = 1 . Thus, if u = tn at its maximum, then the equation
above becomes, H(u) = (1 — σ)Hn + n~ ltn.

Hence,

H(u) -Hn = n~\tn- nσHn) ^n~\tn- nλn) > 0 ,

where the last inequality follows from (2.1). However, since graph u lies below the
slice t = tnwQ must have H(u) ^ Hn at any point of tangency . Arguing similarly at a
minimum of u shows that u obeys the strict inequalities t-n<u<tn. Thus, by the
lemma there exists unεC™(S) with mean curvature,

H(ιO = n-V (2.2)

Suppose the family {un}™= ί obeyed a uniform height estimate independent of n.
Then by the gradient estimate in Gerhardt ([7], Theorem 4.1 see also Theorem 3.1
in [2]) and standard estimates for linear and quasilinear elliptic equations (see
Gilbarg and Trudinger [8]), the family would be uniformly bounded in C2' ^-norm.
Hence, one could extract a subsequence {unk} converging to u e C2(S) with mean
curvature zero. By standard regularity results u would be C°°.
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The desired height estimate can be obtained using singularity theory. By the
compactness assumption it suffices to show that graph un meets S for all n. If graph
un does not meet S then by (2.2) the mean curvature of graph un is either everywhere
strictly positive or everywhere strictly negative. Suppose H(un)<0. Since we are
working in a globally hyperbolic space-time, standard singularity theory (see e.g.
Hawking and Ellis [9]) implies that every future inextendible timelike curve
issuing from graph un has finite length. But this contradicts assumption (C).

Finally, since graph un meets S for all n, the limit surface of mean curvature zero
must also meet S.

3. Proof of Theorem 1.1

We begin this section by establishing a number of equivalent characterizations of
condition (D).

Theorem 3.1. Let Vbea space-time which contains a compact Cauchy surface. Then
the following conditions are equivalent:

(D 1) Condition (D) holds.
(D2) For each compact set KcV, the collection of achronal subsets of V which

meet K is contained in a compact subset of V.
(D 3) All closed achronal subsets of V are compact.
(D4) <9/ + (p), 8I~(p) are compact for all pe V.
(D 5) For each inextendible timelike curve y ,1 + (γ ) = I~(y) = V, i.e., there are no

observer horizons.

Proof.(Dl)^(Ό2):LQtW+ = (j E + (p\ where E + (p)~J + (p)-I + (p) = dI+(p),
peK

since Fis globally hyperbolic. We prove that W+ is compact. Let Γbe a smooth
future pointing unit timelike vector field on V. Define,

Jf = {(p, AT): AT is a null vector at p e K such that <ΛΓ, Γ> = -1}.

Jf is a compact subset of the null vector bundle over V.
We prove sequential compactness. Let {qk} be a sequence in W+. Then

qk = QxppkskNk for some (pk9Nk)e^V. There is a subsequence, again denoted by
{(Pk> Nfc)}, such that (pk, Λffe)->(p, N) e J f . Let η: [0, α)-> V be the inextendible null
geodesic defined by: η(s) = exppsN.

We claim that s = limsups f c<α. Indeed, suppose s^α. Then, by taking a
subsequence, we can assume sk |s ̂  a. By assumption p <| η(s0) for some s0 e (0, a).
Consider the null geodesic ηk defined by: ηk(s) = exppksNk. Since s0<s, ηk(s0) is
defined for all k sufficiently large. Since pfc-»jp and ^fc(s0)->^(s0), we have for k large,
Pfc^^o)<ί7k( Sfc) = «fc9

 which contradicts qkeE+(pk).
Hence, s = limsups f c<α. Let q = η(s). Clearly qeE+(p), otherwise qkεI+(Pk)

for some k. Thus {qk} has a subsequence converging to q e W+. Therefore, W+ and
similarly W~9 which is defined time-dually, are compact.

Let S be any achronal subset of V which meets K. To complete the proof
we show that ScJ+(W~)nJ~(W+). Let peSnK. The argument showing that
W+ is compact implies in particular that E+(p) is compact. Standard arguments in
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causal theory can be used to show that E+(p) is an achronal Cauchy surface, but
this fact follows, in particular, from Corollary 1 in [6]. Hence, for each q e S either
q e I+(E+(pJ) or q eJ~(E+(pJ). However the former case violates the achronality
of S. Thus, ScJ-(E+(p))cJ-(W+). One shows similarly that ScJ+(W~).

(D2) =>(D3): This follows immediately.
(D3) => (D4): The sets δ/1^) are closed and achronal.
(D4) => (D5): Let y be an inextendible timelike curve in V. For each qe V,

E~(q) is compact and hence, as discussed above, is an achronal Cauchy surface.
Thus γ meets E~(q) and hence qel+(y). Therefore I+(y) = V and similarly
Γ(j) = V.

(D5) => (D 1): Suppose (D) does not hold. Then, without loss of generality,
there exists a future inextendible null geodesic η issuing from some point p such
that I~(η)nη = φ, and hence I~(η)φV. One easily constructs an inextendible
timelike curve y such that yd~(η). But then 7~(y)Φ F, contradicting (D 5). D

The proof of Theorem 1.1 employs the splitting result of Gerhardt [7,
Theorem 7.4] mentioned in the introduction which we now discuss in more detail.
Given a smooth spacelike hypersurface McV we can introduce the associated
normal exponential map Φ defined by, Φ(τ,/?) = exppτAΓ, where N is the future
directed unit normal to M.

Theorem (Gerhardt [7]). Let V be a space-time satisfying (A) and (B). Let M1 and
M2 be compact maximal hyper surf aces in V with d(Ml5 M2) = δ > 0 (d = Lorentzian
distance function). Suppose that the collection of compact spacelike hyper surf aces
meeting J+(Mί)nJ~(M2) remains in a compact subset of V. Then Mt C/~(M2) and
the normal exponential map Φ: [0, δ] xM1->J+(M1)nJ"(M2) is an isometry
(where it is understood that [0, δ~\ x M1 carries the Lorentzian product metric
— dτ2@h, h = induced metric on MJ.

We now proceed to the

Proof of Theorem 1.1. Let {Sn: n E TL\ be a family of compact slices of some smooth
time function such that SnCΓ(Sn + ί ) for all n and V= \J J+(Sπ)nJ~(Sn + 1). In

«e£
view of Theorem 3.1 ((D) => (D2)) all the hypotheses of Theorem 2.1 (with S = Sn)
are satisfied. Thus for each weZ, there exists a smooth compact maximal
hypersurface Mn which meets Sn. By choosing the Sn's sufficiently far apart one can
ensure that d(Mn,Mn+ί) = δn>Q for all n. Again, since (D) => (D2) all the
hypotheses of Gerhardt's splitting result are satisfied. Thus, for each n, Mn

C/~(Mn+1) and the normal exponential map Φn: [0,<SJ xMn-»J+(Mn)
nJ~(M n + 1 ) is an isometry. Furthermore, (j J+(Mn)nJ~~(Mn+1) = V (as follows

neZ

from (D) or (D 2)). It is then not difficult to see that the isometries Φn fit together so
/ 00

that the normal exponential map Φ 0: (α, b) x M0->F where a= — Σ δ_n and
oo \ \ »=1

b= Σ δn) is an isometry. Finally, (C) implies that a= — oo and b = oo, which
n = 0 /

completes the proof.
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4. Spatially Closed Time-Periodic Space-Times

There have been several definitions of SCTP (spatially closed time-periodic) space-
times to appear in the literature. We adopt the following definition.

Definition 4.1. A space-time V is SCTP if
(1) V contains a compact spacelike Cauchy surface S,
(2) there exists a discrete group of isometries \pn: F-> F, n e TL, such that Sn

CΓ(Sn+1) and V= U J+(SM)nJ-(SM + 1), where Sn = ψn(S), and
neZ

(3) for each peS there exists a positive integer n such that p<ψn(p).

The definition of a SCTP space-time given in Tipler [11] essentially requires
only that (1) and (2) hold. A space-time which is SCTP in this sense can have some
undesirable features. For example one can construct space-times which satisfy (1)
and (2), but which do not satisfy (D) and do not contain any compact maximal
hypersurfaces. The definitions of a SCTP space-time given in Avez [1] and
Marsden and Tipler [10] require that the discrete isometry group arise as a
subgroup of a timelike R-action, i.e., an IR-action whose orbits are timelike curves.
Condition (3) is then automatically satisfied.

The significance of condition (3) within the context of the present paper is
described in the following theorem.

Theorem 4.1. Let Vbea space-time satisfying conditions (1) and (2) of Definition 4.1.
Then condition (3) holds if and only if (D) holds.

Proof. First suppose that (3) holds. Let η be a future inextendible null geodesic
issuing from a point q. By sliding η via the isometries we may assume that
geJ~(S0). For w^O, let qneηr\Sn, and consider the sequence {pπ}CS0, where
pn = ψ-n(qn). Let peS0 be a limit point of {pn}. By condition (3), there exists an
integer N > 0 such that p <ξ ψN(p). By passing to the subgroup of {ψn} generated by
ψN we can assume without harm that N=l. Thus, there exists a neighborhood U
CS0oϊp such that U^ψ^U). (Here we are using the notation A <^ B to mean that
every point in A can be joined to every point in B by a future directed timelike
curve.) Since isometries preserve causal relations we have

Ψm(U)<Ψn(U) for all m,neZ,m<n. (4.1)

Choose pm,pnεU with Q^m<n. Then by (4.1), qm = ψm(pj<ψn(pn) = qn. Thus,
q<ζqn, as required.

Now assume (D) (o (D3); see Theorem 3.1) holds. If condition (1) fails for
some p E S, then (\pn(p): n ̂  0} is a closed achronal subset of V. Hence, by (D 3), this
set is compact, which is impossible. D

We mention the following corollary which is relevant to the work of Marsden
and Tipler [10], but which will not be needed in the proof of Theorem 1.2.

Corollary. // V is SCTP then V obeys the Marsden-Tipler avoidance of singularities
condition. In fact, there exist Cauchy surfaces S~ and S+, with S~ C/~(S+), such
that for any achronal set A C V there exists a set A CV isometric to A (under one of
the isometries ψn) which is contained in J+(5~)nJ~(S+).
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Proof. Let X = J+(S0)nJ"(S1). It follows from (D2) that there exist compact
Cauchy surfaces S~,S + , with S~Cl~(S+) such that if A' is an achronal subset of V
which meets K then A'C J+(5~)nJ~(S+). The proof is completed by noting that
any achronal set Ac Fcan be moved via the isometries ψn to obtain an isometric
set A' which meets K. D

We conclude the paper with the proof of Theorem 1.2.

Proof of Theorem 1.2. It suffices to show that if Fis SCTP then conditions (A)-(D)
hold. (A) and (B) hold by assumption. (D) holds by Theorem 4.1. That (C) holds can
be seen as follows: Consider the quotient manifold V= V/{ψn}. V is a compact
space-time which carries a Lorentzian metric with respect to which the natural
projection map is a local isometry. Since Fis compact it contains a closed timelike
curve γ. By repeating loops we can view y as an inextendible curve which is future
and past complete. Then by lifting γ we obtain a future and past complete timelike
curve in F
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