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Abstract. We determine the essential spectral radius of the Perron-Frobenius-
operator for piecewise expanding transformations considered as an operator
on the space of functions of bounded variation and relate the speed of
convergence to equilibrium in such one-dimensional systems to the greatest
eigenvalues of generalized Perron-Frobenius-operators of the transformations
(operators which yield singular invariant measures).

I. Introduction

In this note we give some estimates on the speed of convergence to equilibrium in
1 -dimensional dynamical systems which can be described by a piecewise
monotonic transformation T: [0, 1]->[0, 1]. "Piecewise mono tonic" means that
there is a finite partition J> of [0, 1] into intervals on each of which Tis strictly
monotone and differentiable. Throughout the paper we assume the following
setting (see [4, 13]):

g : [0, 1]->R+ is defined by

g(x) = I/I T'(x)\ for x e X0 : = (J int / ,
IeS

^ liminf g(y) on the finite set [0, l]\X0. Set
y->x,yeX0

and 5 = lira (\\gn\\Jlln, P .U -*Ll is defined by

(Ll is the space of complex-valued Lebesgue-integrable func-
tions on [0, 1]; P is the Perron-Frobenius-operator associated
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to Tand does not depend on the choice of g(x) for xφX0.) P
satisfies

ί Pfι(x) -/2(*>fc = ί Λ(x) f2(Tx)dx

for./iεIΛ/ 2 eL«, l^p, ί^αo, p^+g-^l.
Recall that a function/: [0,1]->R is of bounded variation if

- <xB^U <oo,

and that

BV={feL1\5 a version /of /with var(/)<oo}

is a linear subspace of L1. On BV one can define a norm

II/L : =max{||/||1, inf{var(/)|/ a version of/}} .

| - L) is a Banach-space and {feBV: ||/L^1} is a
compact subset of L1.

In [4, 13] it has been shown that if g : [0, 1]->(0, oo) is of bounded variation
and if θ < 1, then P\BV : BF->J3Fis a quasi-compact operator, i.e. P has only a finite
number of eigenvalues I=λl9...9λr of modulus 1, whose corresponding eigen-
spaces are finite-dimensional. Pn can be written as

P»=Σλ i "Φ / +Ϋ", (neN), (1)

where the Φ^ are eigenprojections and || Ψn \\ v ̂  Mqn for some M>0, 0<#<1. The
function Λ : = Φ 1 ( l ) i s a P-invariant probability density such that for every fe L°°
holds

ί/(73c) - h(x)dx = Sf(x)Ph(x)dx = Sf(x)h(x)dx ,

i.e. dμ(x) = h(x)dx is a Γ-invariant probability on [0, 1]. From (1) it follows that
there is a power Tk and a finite partition {Al9..., As} of [0, 1] into Tfe-in variant sets
(each of them a finite union of intervals, see [6]) such that T\Ai is mixing (i = 1 , . . . , 5).
If T itself is mixing (for sufficient conditions see e.g. [1]), (1) reduces to

Pn = Φi + ψ» and Φlf=h-ίf(x)dx. (2)

If T is not mixing, we consider instead the 7μ., which is possible because the At are
finite unions of intervals. For mixing T it follows from (2) that each initial density
fεBV converges exponentially fast under the action of the system to the
equilibrium density h:

\\Pnf-h\\v=\\P"f-ΦJ\\v=\\Ψ"f\\v^M q'' \\f\\υ. (3)

This can be expressed in terms of the spectrum σ(P\BV) of P : BV-^BV as

{l}, (4)
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where qQ is the infϊnum of all numbers q that can occur in (3). In order to get more
information about the approach of Pnf to hasn-*co one should relate q0 to other
dynamical characteristics of the system and give a more detailed description of
σ(P\BV). We present here some partial results in this direction: In Sect. II we show
that q0 ̂  5, more precisely: θ is the radius of the essential spectrum of P\BV (see [9]).
Having decomposed the system into the wandering and the non-wandering part
(modulo sets of Lebesgue-measure 0) in Sect. Ill, we discuss the spectrum of P
restricted to the non-wandering set in Sect. IV and show that for continuous T
each λeC with |Λ|<exp(-/ι(T)) is an eigenvalue of T. [h(T) is the topological
entropy of T] A simple example is treated in detail in Sect. V. It suggests a
connection between the metric entropy and the speed of convergence to
equilibrium for Holder-continuous densities, which is inspired by ideas of Parry
and Tuncel [10]. In Sect. VI we finally discuss the transition from the wandering to
the non-wandering set and relate the transition rate to the pressure of T\Σ on log#,
where Σ is the set of those non-wandering points which do not belong to the
support of the invariant measure μ. This is related to results of Pianigiani/Yorke
[12] and Pianigiani [11] on exponential decay.

II. The Essential Spectrum

Following Browder [2], Definition 11, we say that a complex number λ belongs to
the essential spectrum ess(P|£F) of P)βF, whenever at least one of the following
conditions holds:

i) The range of (T-λl) is not closed in BV.
ii) U ker((T-lΓ)n) *s of infinite dimension.

n ^ O
iii) λ is a limit point of σ(P\BV).

The set ess(P|5F) is closed, and σ(P\BV)\ess(P\BV) consists of at most
countably many isolated points which have no limit points outside ess(P|#F). For
each λeσ(P\BV)\ess(P\BV) the spectral-projection associated to λ has finite-
dimensional range since

dim/ΊJ ker((T-lΓT)<oo
\»^o

Define re = sup{|/l| :/ίeess(P|#F)} the radius of the essential spectrum of P\BV.
Nussbaum [9] has shown that

r e=lim(| |PwU 1 / w, (5)
«-* oo

where ||Pw||* = inf {\\P"-K\\υ: K is a compact linear operator on BV}. (The"^"-
direction of (5) follows immediately from Lemma VIΠ.8.2 in [3].) We show
(without assuming T is mixing):

1. Theorem. rβ= lim (||^L)1/M = θ.
«-*oo

Proof. In Proposition 2 of [13] it has been shown that for sufficiently big w e N
there exists a finite-dimensional operator K with ||Pn — K\\v< 1. A closer look at
the proof reveals that even more has been shown: K can be chosen such that
\\Pn-K\\v^6 sup{gn(x)}. Now r eg# follows from (5). For /:[0,1]->C of
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bounded variation call f(x+) = lim f(y) and f ( x ~ ) = lim f ( y ) . We show now that
for w e N and xε [0,1], ylx y^x

lin^KnVΓ1- (6)

For ε>0 there is c)>0 such that Tn\(x x+δ] is monotone and differentiable and
||(T")/(x+)|~1-|(TII)/0;)Γ1|<ε for x<y^x + δ. (Assume x < l here.) Consider
functions /fc' = l(Cfc,c fc-ι] w^h ck = x + 2~kδ (fc=l,2,3, ...). Then

\\P"fkl=

IIΛ-/«L = 4 for kΦl, (7)

1

, (8)

for fcΦ/. (9)

Let K:BV-+BV be a compact linear operator and denote by C the closure of
{Kfk : k e N} . C is compact. Hence for each k there is ρk e C such that || P"/fc — ρfc || v
= inf { || Pnfk — ρ || y : ρ e C} , and there is a subsequence ρfcv converging to some ρ e C.
Now

l|P"/fev-κ/JU
for v big enough. On the other hand we have because of (9):

||P"Λ-ρ|Uα or U^-ρll^α if

Hence there are infinitely many k for which \\(Pn — K)fk\\Ό^cί — s. As ε>0 was
arbitrary this implies (6) for x + , and the same argument applies to the x ~ -part, too.
As \(Trί)'\~1 = gn is of bounded variation, the theorem follows from (6).

III. The Decomposition

Set S = supp (μ). S is a finite union of intervals (cf. [6]). As TS £ closure(S), we have

pnf=pn(f - y
where Ps is the Perron-Frobenius-operator associated to 7fs and acting on the
space of integrable functions on S. As S is a finite union of intervals, all results on
piecewise monotonic transformations on [0, 1] apply to 7[s. Therefore we can treat
the following two problems separately:

a) The behaviour of F1/, if S- [0, 1].
b) The behaviour of P\f - \sc) on Sc, i.e., the transition from Sc to S.

IV. Eigenvalues and Eigenfunctions

In this section we neglect transition phenomena from the wandering to the
nonwandering set and assume S = [0, 1]. Thus T is onto, and if we choose a lower
semi-continuous version of h, then h(x) > 0 on an open set of full measure. As T
leaves μ invariant, it acts isometrically on each Lp

μ (1 ̂ p^ oo), and we can define
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T* : L2

μ-+L2

μ by <T*/ι, Λ> = </ι> Γ/2>. Most of the following simple facts can be
found in [4], Lemmas 8, 9 and Theorem 3 :

T*f= ' and consequently Γ* extends to Lj,

P/7

, i.e. ||Γ*||00 =

(T*)Tn = Id for all rceN,

oo

Γ"(T*)" is the orthogonal projection onto TL2, and f) T"^
n=0

is finite-dimensional (this is less obvious).

For A e C, |A| < 1 define Qλ : Lj^LJ, by

Qλ:= Σ λkTk(ld-TT*).
k = 0

One easily checks:

Hence QA is a projection onto {/ e L1 : P(//ι) = /l(/ /ι)} and A is a L1 -eigenvalue of

"P if and only if βλφO. Set Qf>: - Σ A*T*(Id- ΓΓ*).
fc = 0

2. Lemma. Γ/zere is α function f e BV such that for alined holds: β^/φ β? + υ/
II filn)/ll oo < °° Furthermore f can be chosen such that there is δ > 0 and /(x) = 0 if
h(x)<δ.

Proof. As Π "̂̂ μ is finite-dimensional, TL2

μ=^L2

μ. Hence, as BV is dense in L2,
n = 0

there isfeBV with TT*/ φ /. As {h(x) > 0} is an open set of full measure, there is a

sequence (7fc£[0, 1] of finite unions of intervals such that h\Uk^ - and m(t/fc)->l
fV

(Λ ^oo). Set Λ : =/• lr-1[/k. Then /fce5F, TT*/kΦ/fe for big fc, and Λ(x) = 0 if

h(x)< 1/fc. Take/=/Jor some big fc. If Q(ϊ)f=Q(ϊ+i}l then λnT\J- TT*f) = Q,
contradicting the fact that Tis onto. Finally, ||β(M)/||00<oo as HΓ* 11^ = 1.

3. Proposition. For /IsC with \λ\<\ there is at least one eigenfunction Oφ/eL°
withPf = λf. Hence

{\z\<l}ζeigenvalues(P\Lp)ζσ(P\Lp) = {\z\^l} for l^p^oo.
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Proof. Choose n such that \λn\ < 1/2. Without loss we may assume by Lemma 2
00

that there is fεBV such that βlM)/φO. From Qj=Q(?]i+ Σ λknTknQ(^J and
k=ί

k=ί
λknTknQ(£\ (as

if follows that ®<\\Qλf\\ao< oo, and QA/ is the desired eigenfunction.
This result shows that the spectrum of P as operator on LP contains no useful

information. In some nice cases, however, one can conclude that the eigenfunction
/ is of bounded variation from the above construction. For continuous T it has
been shown in [8, 17] that

lim - log card</M = h(T) ,
n->oo n

n-1

where «/„= V T~1J> and h(T) is the topological entropy of T! For piecewise
i = 0

continuous T we may take this as a definition of h(T).

4. Proposition. For A e C with \λ\ <exp( — /ι(T)) there is at least one eigenfunction
OφfeBVmth Pf=λf. Hence

{\z\<Qxp(-h(T)}}ζeigenvalues(P\BV).

Proof. In the proof of the preceding proposition Oφ/ had been constructed as
f = Qλf for some feBV with /(x) = 0 if Λ(x)<δ. One easily sees that
c: = \\f-TT*f\\Ό<σo. Hence for |/l|<exp(-/ι(T)) holds:

^ Σ \λ\k\\Tk(f-TT*?)\\υ
fc = 0

oo

^ Σ W*

Remarks. 1) If | Γ7[ = ̂  > 1 is constant, it follows from Theorem 1 and Proposition 4
that G$s(P\BV) = {\z\<^β} and that the interior of ess(P|£F) consists of
eigenvalues.

2) In some particularly nice cases, σ(P|£F) = ess(P|£F)u{l}, and re = B
describes the approach of Pnf to h in || ||y-norm. One might hope to get better
convergence rates, if one considers \\Pnf — h \\ ̂  . That this is not the case will become
clear in the following example.

V. An Example

For a compact subset C of L1 define y^^limsupisupill^/ll^/eC})1/". We
consider the following simple example: n~*™

Example. Fix 0 </?, q < 1 with p + q = 1 and define

T(x) = p~ίx if 0^x^/7, T(x) = q-lx-p), if ^x^l.
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Then exp( — h(T)) = 1/2 for all p, 9(TP) = max(p, q), and one easily shows that T is
mixing (cf. [1], Theorem 2a) and leaves the Lebesgue-measure m invariant.
Furthermore σ(P| BV) = ess(P|£F)u{l}, if P is the Perron-Frobenius- operator of
Tp. Set Cυ: = { f E B V : \ \ f \ \ v £ l } , and for r>0:C r : = {/eL1

<: ( l/H^l and a
version f of f is Holder-continuous with exponent r and Hr(f)^ 1}, where

a) As σ(P|BF) = ess(P|BF)u{l}, we have y
and the following example shows that there is even equality (suppose p^q):

and/:= £ %1[0,P^

Then | |/L=1 and \\Ψ"f\\ι= Σ "kP
k Hence limsup(||ίP-/||1)

1/"=p.
k = n+1 «->oo

b) Let /G Cr, /o = /— J /rfm. Then

"/ = ̂ "/o = Σ w(7) (/o o 7J7 λ) , such that

= H,(f) Σ m(iy+r =
Iε ?n

Hence yc(Tp)^p1+r + q1+r, and equality holds because of the following example :
Let /(x) = 2x (O^x^έ), /(x) = 2(l-x) (i^x^l) and
Then

= IIP"/.-

as

In particular, all coefficients yCr are different from exp(— hm(Tp)) = pp qq. If we
extend the function r->γCr (r>0) to r = 0 by ^Co^l' tnen we see> however, that

= -hm(Tp), i.e., yCr(Γp)= 1 -r./zm(Γp) + 0(r). That there

is some hope to generalize this relation may be seen from the following: for T= Tp

we have

yCr(Γ)= lim Σ m(/)(^(/)X/"= lim

= lim (\Png'ndmYln= lim
w-> oo

where P 1 + r /=Σ(/ 01 +0°η71
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Parry and Tuncel [10] have shown that in such a situation where T=TP

is isomorphic to a Markov-shift, P" + r(l)~λ(r)n - hr (hr is an eigenfunction of Pί +r

to the greatest positive eigenvalue λ(r)) and that — λ(r)jr=0 = —hm(Tp). Hence we

recover

Using results on equilibrium states in [5] it might be possible to use similar
arguments for non-Markovian transformations, too.

VI. The Transition

Let l/£[0,1] be finite union of intervals, A: = [0,1]\C7. The transition (under
T) from A to U can be modeled by the transformation f: [0,1]-»[0,1],

f(x) = T(x) if xeA, f ( x ) = x if xeU.

T is again a piecewise monotonic transformation, and its associated Perron-
Frobenius-operator P describes the extinction of A (i.e., the transition from A to U)
in the following sense: Given an initial density / on A which defines a probability
dv(x) = f(x)dx, for BgA holds:

v{x:TkxeA (k = Q,...,n-l\TnxeB}

= v{x:T"xeB}

= $P»f(x)dx, (10)
B

in particular:

Df(n): = v{x:TkxeA(k = Q,...,n)}=$Pnf(x)dx. (11)

If U = S is the support of the absolutely continuous invariant measure (cf.,
Sect. Ill), (10) and (11) describe the transition from the wandering to the non-
wandering set.

For our further investigations we need not assume that θ<l. However, we
suppose that there is R > 0 such that R ~15Ξ | T"(x)| ̂  R for all points x where T is
differentiable and that f' is of bounded variation. Our aim is to relate Df(ri) to the
pressure of T under — log|T"|. Since the concept of pressure is defined for
continuous transformations only, we first have to modify the space [0,1] and its
topology in such a way that f and T" become continuous. The idea is due to
Walters [15] and has been carried out for general piecewise monotonic
transformations in [4,5], Let W0 be the at most countable set of discontinuities of

fand T and set W= U T'SW0\{091}. f and T are continuous on
7 = 0

[0, l-]\W, f ([0,1]\HOC([0, l]\WOu{0,1},
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and as Γ, 7" are of bounded variation, one-sided limits of f and T' exist in all
points of [0,1]. Let W'={x':xeW} be a disjoint copy of W and set
X = [Q, l]uϊ/Γ. We extend the order relation on [0, 1] to X. If x<y<z in [0, 1]
and yeW, then we define x<y<y'<z. The resulting order topology is compact
and separable, T: [0, l]\W->X can be extended to a continuous transformation
on X and also T': [0, 1]\P7-»R can be continuously extended, just as any other
feBV. The Lebesgue-measure carrys over to X. Let $ be the partition of [0, 1]

n-l

into intervals on which Tis monotone and continuous, $n=\/ T~1^. Denote
_ _L= 0

by J>n the corresponding partition of X into closed intervals :./„ = {/ £ X :I e </„},
where Γis the closure of / in X. (Γn J=0 if JnJ = 0 by construction oίX.) As X is
separable it is metrizable by a metric d( , ), and

Suppose that x , y, z E X , fny= Tnz = x, y φ z. Let^ fc = min {i^0\fly= Tz] . Then
l^k^n and f^VφT^z. Ifthere were /in/ such that t1*"1^ ί*"1^/, it
would follow that f kj; φ Tkz as T is injective on /, contradicting the definition of k.
Hence d(f ky, fkz) ^ δ. Therefore for each x e X holds: f ~n{x} is (n, ̂ /2)-separated
(see [15]).

Consequently, if 0^/:Jί^R is bounded and ^:Jί->R is continuous with
R ~ 1 ̂  g(χ) ̂  Λ (x G X) and £(x) = 1/| Γx(x)| = 1/| T '(χ)| (x 6 ̂ ), one has with ^n - g

lim sup n * logDjOt)^lim supra MogJ Σ (f'9n)(y)dx
H-+OO n-xχ> Ayef~nx

^ lim sup w" 1 log/sup Σ gn(y)\
n->oo \xeA yef~"x J

where Pr(T, log^) denotes the pressure of T with respect to the energy-function
00

log$ (see [16]). This proves one half of the following theorem. Let Σ = Π T~nA,

g as above.

5. Theorem. Suppose that supg^inϊg, and that there is M>0 such that
£ A

then

inf|(T«)Ί

^ lim infw~ x logD/n) ̂  lim supn
w-> oo n—> oo

^PKίlogfl).

Furthermore Pr(T,\ogg) = Pr(T]Σ, -log|Γ'||Γ).
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Corollary. // \T'\ = β>l is constant, then

lim n

where h(T), h(T) denote the topological entropies of T and T.

Proof of the Corollary. Apply the theorem with g = β~^. The second equality
follows from Theorem 2.1 in [16] and the third one e.g. from Theorem 6 in [4]
together with Theorem 1 in [7]. For continuous T one can also use Proposition 2.2
in [17].

Proof of the Theorem. In view of (12) only the first inequality must be proved.
Suppose /ι(T)>0. It follows from Theorem 1 in [5] that there is a constant c>0
and a finite union of intervals F with m(Fr\A) > 0 (m Lebesgue-measure), such that
for all x e F and n e N holds

"{x}^c exp(π

and (11) implies

D/n^M-1- ί Σ 9n(y)dx
AnF yeT~nx

^C'M-1'm(Fr^A)'Qxp(n'h(T) + in(T-nA))y (13)

where in(S) : =log(inf{0II(j;) :y eΰ}) for BgX. Similarly,

sn(B):=log(sup{gn(y):yeB}).

Set Ω = ΣuE7. Ω contains the non-wandering set of Tk for all fcεN and TΩζΩ.
From Theorems 2.1, 2.2, and 4.12 in [16] it follows that

= n Pr(T,logg)-sn(Σ),

because sup^^ inf^. Together with (13) this leads to
u A

lim inϊn~ 1 logDf(ri)
n^> oo

^Pr(ΐ;iogg) + liminfn-1iπ(f'-M)-limsupn-1sn(i:). (14)
n-» oo n-» oo

Fix /ceN and set n = km+j, 0^j</c. Then

m

ik(f~uA)

m

m ik(Σ) + Σ (ίk(T-"lA) -
1=1
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As Σ= Π T~"A, (ik(T~klA)-ik(Z))^0 as ί-»oo for fixed jfc. Hence

lim infVΓ \(Γ> £ lim inf n~ Hn(T ~nA) ̂  lim inf-—. ik(Σ) = k~Hk(Σ) ,
w->oo Λ->OO m-»oo K1ΊΪ~τ~J

such that

liminfn~1i l l(t I~M)= supn~1/B(I)= ϋm n'1/^!).
π-»oo n n-+oo

By the subadditivity of the sequence sn(Σ), we have

limsupn~ίsn(Σ)=mϊn~1sn(Σ)= lim w"1^!').
n-> oo n n->oo

Now the first inequality of the theorem follows from (14). If Λ(T) = 0 and
d : = inf [m(An T nX) : n e N} > 0, then - cf. (1 1) -

T-"Aj) = d - exp(« h(T) + ίn(f ~M)) ,

and the same proof as above works, because we needed h(T)>0 only in order to
establish (13).

As mentioned above,

Fr(f, logfl) - Pr(7Jo, log»,0) - max {Pr(7j

(see Theorem 2.2 in [16]). As f^ = \άv, it follows that

U A.

hence Pr(i,log^) = Pr(7|^ -logT'\lΣ). This completes the proof of the theorem.

Remark. If there is a periodic source in A, then inf [m(An TnX) : n e N} > 0.
In the proof of the theorem we already used the fact that the dynamics of T are

essentially determined by those of Jj^, namely:
a) The non- wandering set of T is contained in ΣuU and T\υ = id.υ.
b) As a consequence of a), each invariant ergodic measure of f is either a point

mass on some x0 e U or is concentrated on Σ and invariant under T\Σ.
So it is natural to conjecture that for xeT~nA,n big, the trajectory of x is for a

long time very similar to a typical trajectory in Σ. If T is a Markov-transformation
with Markov-partition 3 and if 1 < |TΊ is continuous on each element of 3 , it is
not hard to make this precise: By choice of the topology on X, (T\Σ,~Σ) is
homeomorphic to a subshift of finite type over the set of symbols 5̂  = {Γe 3 : TkT
nZφ0 for all ίc^O}. For simplicity suppose that T\Σ is mixing, i.e., that the 0—1-
matrix A defining the corresponding subshift satisfies Aκ>0 for some
Tuncel [14] has shown that under these assumptions

Pr(7i I,logflf^)=limn- 1 log| r Σ

for all xεΣ, if AT^/gM. As T^n{x} = T~n{x} for xeZ, this implies

Pr(f, logfl) - lim n~ 1 logP"/(x) for x e Σ . (15)
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Denote 5^:= V T~n£f. Fix Γe y. Then for each x e /and S e ̂ n with SgT~n\T9
~ i = 0

Sn jΓ~Λ{x} contains exactly one element. This property defines in a natural way a
1 — 1-correspondence between the sets T~n{x} and T~n{y} if x, y are elements of
the same Γe<9^ and it is not hard to see that by continuity of g\A = \I\T'\\A the

relation (15) carries over to all xeΓ, Γeί^. In particular, lim n~1logDf(ή)
= Pr(Γ,log<7).

The papers of Pianigiani-Yorke [12] and Pianigiani [11] on exponential decay
deal also with such Markovian situations. They give detailed results on the
asymptotic behaviour of P"/, and treat rc-dimensional transformations. However,
they do not relate the decay-exponent to the pressure of T\Σ.

In [5] one finds results on equilibrium states for piecewise monotonic
transformations which yield a relation like (15) also for many non-Markovian
transformations. But it seems very difficult in general to extend (15) to a set of
points of positive Lebesgue-measure.

VII. Concluding Remark

In Sects. V and VI we used generalized Perron-Frobenius-operators (P1+r in
Sect. V, P in Sect. VI) to describe certain aspects of the time-evolution of absolutely
continuous initial distributions although, in general, Pί+r and P have singular
invariant measures (equilibrium states) which are supposed to be not directly
observable. It would be interesting to know if also properties of these singular
measures themselves are reflected by the time-evolution of certain initial densities.
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Note added in proof. In a joint paper of F. Hofbauer and the author (to appear in J. Reine
Angew. Math. 1984) it has been shown for piecewise linear interval maps T that the Artin-
Mazur-Ruelle zeta-function of T is meromorphic in {|z| < r~*} and that λ~ί is a pole of the zeta-
runction if and only if λeσ(P\BV)\QSs(P\BV) (cf. Sect. II).






