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Abstract. We introduce a new expansion to prove exponential clustering of
connected correlations in a large class of disordered systems. Our expansion
converges for values of the temperature and magnetic field where standard
cluster expansions diverge, due to the presence of Griffiths type singularities. It
is organized inductively over an infinite sequence of increasing distance scales.
In each induction step one redefines what is means by the “unperturbed
system”, a procedure somewhat reminiscent of K.A.M. theory. Our techniques
may be useful in dealing with the so-called large-field problem in real-space
renormalization group schemes.

1. Introduction

1.1. Overview

In this paper we introduce a new method to partially resum high-temperature, or
low-activity expansions in situations where they actually diverge. Our method can
be used, for example, to analyze spin glasses, the random-field Ising model and
other disordered systems at temperatures and activities where straight
high-temperature, or low-activity expansions diverge, due to the presence of
so-called Griffiths singularities [1]. We think that our results and methods are a
prerequisite for understanding critical behavior in disordered systems.

Among the mathematical problems that one encounters in the study of
disordered systems are:

A. Certain random couplings, such as the spin-spin couplings, J;;, in a spin
glass or the inverse of the magnetic field, h;, in a random field model, can have
anomalously large values over large regions of the lattice with very small, but
positive probability. In the vicinity of such regions the correlation length is
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anomalously large. As a consequence, one may find singularities in the free energy
and/or in certain correlations as functions of e.g. the inverse temperature, f3,
arbitrarily close to the origin, and ordinary cluster expansions (such as the high-
temperature expansion) are bound to diverge. In a special model singularities of
this type have been proven to exist [1]. They are called Griffiths singularities.

Consider, for example, a nearest-neighbor Ising spin glass model on a lattice Z"
with Hamilton function

e}f= - ZJijO'iO'j—hZO'j,
iJ j

and suppose that the couplings J;; are random variables that can become
arbitrarily large with non-zero probability. Then there exist, for anyn=1,2,3, ...,
arbitrarily large (hyper-) cubes, 4,, in Z* such that J;;=n, for all i,j in 4,. In the
vicinity of A,, “correlation lengths” are expected to be large, for large n. More
precisely, if one performs a high-temperature expansion for expectations of spin
variables which couple to spins in A,, one expects that it diverges for |§| > const-1/n.
Since this argument can be used for all values of n, one concludes that the radius of
convergence of the ordinary high-temperature expansion is presumably zero. If the
support of the J;;’s is bounded, but their variance is non-zero one still expects that
the high-temperature expansion starts to diverge inside the single phase region,
well before any transition point is reached. If all J;;’s are required to be positive
then the high-temperature expansion is likely to diverge when

p>[maxJ;;]~ ' Be.i(Ising),
but long-range ordering only sets in for
ﬁ Z [J_u] - 1ﬁcrit(ISing) .

In such models one can use the Lee-Yang circle theorem to actually prove that, in
some cases, the magnetization, M(h), has a singularity at h=0, without there being
spontaneous magnetization, i.e. M(h=0)=0, provided f is sufficiently large (but
not so large as to cause spontaneous magnetization). In this situation one expects
that correlations have no analytic continuation from Reh>0 to Reh<0, and
expansions in powers of h around h=0 diverge, [1].

Difficulties which are closely related, mathematically, to the ones described
above are also encountered when one tries to carry out block-spin transformatins in
a real-space renormalization group calculation: The purpose of such calculations
is to construct an effective Hamilton function (or effective action) as a functional of
the block-spins with the help of e.g. cluster expansions [2-4]. However, the block-
spins can be anomalously large over fairly extended regions of the coarser lattice,
albeit with small a priori probability. Such events obstruct the convergence of the
high-temperature expansion that one would like to use to integrate out the
fluctuation field. This difficulty is known as the large-field problem [2—4]. The
techniques introduced in this paper might provide a rather efficient way of dealing
with large-field problems in real-space renormalization group calculations.

B. Another mathematical problem arises if the random couplings, J;;, between

spins may have anomalously long range, e.g. in the sense that Y |J;;| diverges with
jezv
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probability one. In this situation one expects that if 3. |J;;|* <o and the phases
jeZv
of J;; are sufficiently random, then no long range ordejr, or sensitive dependence on
boundary conditions, appears at high temperatures. Indeed, a suitable form of the
cluster expansion should converge, in an L,-sense with respect to {J;;}, with p=2.
In this paper we develop analytical methods to deal with problem A. The basic
philosophy underlying our methods is inspired by previous work on Anderson
localization [5] and shares various ideas and concepts with K.A.M. theory in
classical Hamiltonian dynamics [6]. Our methods are inductive; the induction
being indexed by an infinite sequence of increasing distance scales. In the course of
our inductive construction we redefine successively what we mean by the
“unperturbed system”. Each induction step involves a cluster expansion about a
new “unperturbed system”, incorporating more and more, larger and larger lattice
regions, where the random couplings are large. The cluster expansions are done
using the techniques in [7-9]. The goal of our construction is to establish, with
probability one, uniqueness of the equilibrium state and exponential cluster
properties for connected correlations in disordered systems at fairly high
temperatures or in fairly strong magnetic fields. We obtain an expansion for the
logarithm of the partition function in terms of quantities that depend locally on the
random fields. This corresponds to calculating the effective action in a block-spin
renormalization group setting. Thus we develop tools which we believe may be
useful to control the large-field problem.

1.2. Models

The physical systems which we propose to study are spin glasses, disordered
ferromagnets, and ferromagnets in random magnetic field. A typical mathematical
model of such a system is an Ising-spin model with Hamilton function

iJ j

where i and j range over the lattice Z”, the spins o; take values +1 with equal a
priori probability, for all j € Z”, and the couplings

J:Z“xZ“a(i,j)n—»Jij,}

h:Z’>j— h; (-2

and

are real-valued, independent, identically distributed random variables. Typical
distributions for these variables are the following ones:

(1) Random Field Ising Model (RFIM ), Large Disorder

(k) =()/2x H) ™ exp(— h2/2H?)dh;,
e—ﬂ(H-const) < 1.

(1.3)
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(2) High Temperature Spin Glass
Jij, for li—jl#1,
do(J,)=()/2n 4)~ ' exp(—(J;;—T)*/24%)dJ] (14)
dA(h;): an arbitrary probability measure,, f<1.
(3) High Temperature Spin Glass, Slowly Decaying Distribution for J;;
J;=0, for [|i—jl#1,
do(J ) =(A/m)(JZ+ 4%~ 1dJ,;, (1.5)
dA(h;) arbitrary, p<1.
We define
FV_JI)EI(I;I) dQ(Jij)l;[di(hj)F(J, h). (1.6)

(4) Low Temperature, Predominantly Ferromagnetic Spin Glass
Ji;j asin (2),
J=1, 4<1, p>1, h=0.
(4) Random Field Ising Model, Small Disorder
Jyasin (1), =0, hi<l, pB>1. (1.8)

(5) High Temperature Spin Glass, Long Range Interactions

(1.7)

IJ_%éDi—j’ p=192539"'a

> D;<1; (1.9)

jezv

dA(h;) arbitrary, B<1.

with

The point of this example is that J;; may have very long range with non-zero
probability, but that the phase of J ;is sufficiently random to wipe out correlations
over very far distances. It can happen that |J;j| is not summable, but that,
nevertheless, a standard cluster expansion converges in I” with respect to {J;;},
p=2.

All these examples offer different challenges of varying difficulty.

To start with the analysis of these models one first studies finite subsystems. In
the definition (1.1) of # one restricts the summations over j to a finite subset A of
Z’. The corresponding Hamilton function is denoted J#,. Moreover, one chooses a
probability measure, dP 4, on the space of configurations {o};.zv 4. The equilib-
rium state of the system in A with boundary conditions given by dP , is then
defined by

dug p (0)=Z; p o~ P*44P ,(0), (1.10)

where Z, p  is the partition function chosen so that [du; p (¢6)=1. (The integral
sign stands for summation over all possible configurations {7} ;. z.)
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In this paper we set out to analyze existence and uniqueness of the
thermodynamic limit, A" Z°, of the states dug p, and the cluster properties of
dug, p ,» uniformly in A, under suitable hypotheses on f, H, 4, J. We seek to prove
results which hold with probability one with respect to (J, h)={J;;, hj}; jez>-

1.3. Results
We now sketch our main results. We define the expectation {(-)); 4(J, h) by

(Fp,alJ, ) =[F(0)dpy p (0). (1.11)

If F is some function of {5} ;. z~ we let supp F denote the set of sites x € Z* with the
property that F depends non-trivially on o,. Let A and B be functions depending
only on finitely many spins, g;. Let ae Z*, and define B, by the equation B,({c;})
=B({g;_,}). We are interested in the behavior of connected correlations

CA; Bop, a0, W) =KA By 40, ) =< ADp 40, h) - {Bapp, 40, 1), (1.12)

for large values of |a|, where |a| denotes the Euclidean length of a. More generally,
we propose to study the asymptotic behavior of connected correlations of n
observables

(Aa AL o A p, AU, h), (1.13)

as |a;—aj|— o, for i+j. We say that the connected correlation function (1.13) has
tree decay with decay rate M if, for arbitrary but fixed sites x, ..., x, in Z”, a,=0x;,
i=1,...,n,forall 0=1,2,3,...,

Ali/lrzlv CAas A2y s Al D5 (0, ) SCUL B x4, .., x,) exp(— M| T(ay, ..., a,)).
(1.14)

Here T(ay, ..., a,) is the shortest tree with end-points in the sites a4, ..., a,, and
|T(ay, ...,a,)| denotes its Euclidean length. While M is almost surely independent
of the sample (J, h) one has chosen, C(J, h; x4, ..., X,) is a random variable. An
alternative formulation of (1.14) is to set a; =0 and consider the limit |a;|— oo,
la;—a;| >0, for i,j=2,...,n.

Our main results are as follows. _ _

Let v be the dimension of the lattice, H> =h} and 4?=J}. In the following, F,
Ay, ..., A, are always arbitrary bounded functions of the spins of finite support.

(i) Consider the model (1), the RFIM, and suppose that f and/or H are so large
that

e@veolb ¢ 1 (1.15)
for some small ¢, < 1. Then
lim (Fy (0, B)=CF(J, ) (1.16)

exists and is independent of the boundary conditions (b.c.) P 4, almost surely with
respect to J and h. Moreover, there exists some constant M(f8) >0, independent of
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J and h, such that

<A;1; el A2n>ﬂ,A(J9 h)

has almost surely tree decay with decay rate M = M(f).
(i) Consider models (2) or (3) and suppose that 4 is sufficiently small. Then

im C(FDp 40, W)= CFDp(Js 1)
Al

exists and is independent of the b.c. and (A}; AZ,;...; A} >4 4(J,h) has tree
decay, with decay rate M >0, almost surely with respect to J and h.

The proof of these results for model (3) is considerably more difficult than the
proof for model (2). The methods developed in this paper cover both cases on an
equal footing, but are somewhat complicated. Berretti [10] has found a simple way
of proving some of the results described above for model (2), based on the Glimm-
Jaffe-Spencer form of cluster expansions [11]. However, his techniques appear to
fail in model (3), the reason being the slow decay of do(J;;), as |J;;/— oo. His method
also applies to model (1), although since he expands in fJ;; he requires H to be
large, depending on f# (H— oo as f—o0). Our method is uniform as f—o0; in
fact, large  improves convergence, see (1.15).

In order to develop some perspective and for convenience we briefly
paraphrase Berretti’s ideas; for details see [10]. Let & - »; 4 denote the
expectation with respect to the equilibrium state

dpg,p (0)®dpy p (0) 1.17)

of a duplicate system. (The spins {o,} and {c} are duplicates of one another with
identical distributions.) If 4 is a function of {o;} we let A" denote the same function
of {g}}. Then

(A; Byp 4(J, 1) =3K(A~A)B—B)Yp 4. (1.18)
Next, we rewrite the expectation € - ), 4 by using the simple identity
exp(BJ;o.0)) exp(BJ;j0i07) =1+ E4(, j), (1.19)
where
Ey(i,j) =exp(BJ;[0,0;+0i07]) -1, (1.20)

and expanding in E;. We start the expansion by choosing a nearest-neighbor pair
<i,j> such that {i,j>N(suppAusuppB)+0. In (A—A")(B—B)Ys 4 We now
replace exp(BJ;;0,0,) exp(pJ;;o;07) by the right side of (1.19) and expand in a sum of
two terms. Next, we choose a pair <i;,j,» such that {i;,j >n(suppAusuppB
u<i,j>) *0 and repeat the expansion step described above. We continue until we
have generated a graph G of nearest-neighbor pairs, {i,j», in A with the property
that the set X = Gusupp AusuppB is connected. With each such graph G we
associate a number

K p(@)= X [(A(G)_A/(G,))(B(G)_B/(OJ))<ichEﬂ(i,j)]- (1.21)

{0j,07}jex
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We then resum the expansion in A\X and obtain

Z
(A4; B>ﬂ,A(Ja h)=%ZKA,B(G) ZA\X, (1.22)
G A
where Z,=Z; p ,and Z , x is the partition function of the system in A\X with b.c.
P, at 04 and zero b.c. at 0X\(0X NndA). By rather straightforward estimates [10]

1K 4,5(G)(Zax/Z )| S[K 4,51 P UZ ax/Z )]
=Cypexp[—C1X[], (1.23)

where | X| is the cardinality of X, and C’— oo when f4—0. This estimate suffices to

show that, for sufficiently small 4, the expansion (1.22) converges absolutely, in

mean. This proves exponential decay of {4;B,»s(J,h) in a, for almost all
J and h, when 4 is small.

Unfortunately, |K, 5(G)(Z4x/Z )| need not be integrable with respect to

IT do(J;)) if do(J)/dJ has slow decay, as |J|— o0, e.g. do(J) = An~ YJ2+4%)71dJ,

L,J
aind> if dA(h;) is chosen appropriately.

In this paper we propose an expansion which avoids the problem just
described, which is entirely constructive, in the sense that the expansion terms
depend only locally on the random fields, and which converges absolutely, almost
surely. It can be used to prove result (ii) for models (2) and (3).

(iii) For model (4) we can prove that, with + boundary conditions and at
sufficiently low temperature, there is spontaneous magnetization, and connected
correlations have exponential decay properties, with probability one. The fact that
the system exhibits spontaneous magnetization at low temperature, almost surely,
can be shown, in certain cases, with the help of a Peierls argument: Let { - > .(J)
be the equilibrium state with + b.c. Then

Coopp,+(NZ1=3 TI e 2/, (1.24)

70 <i,j>ey

where 7|0 means that y surrounds the origin. Now if
fdo(J)e >0 as p-oo?, (1.25)
then for sufficiently large f,
(oopp, +()>0, (1.26)

as follows from (1.24) and (1.25), by standard arguments. The ergodic theorem tells
us that {a), +(J) is the spontaneous magnetization, almost surely. For closely
related arguments see [12]. However, when suppdp ¢ [0, o), e.g. when e~ 2#7 is not
do(J)-integrable, as the case may be, then more detailed probability estimates are
needed before Peierls inequality (1.24) can be used to establish positivity of
{6974, +(J). The methods developed in this paper circumvent such difficulties and
are constructive.

1 If suppdo ¢ [0, 00), then it is still possible that there is an interval [y, 8], f; < o0, such
that for fe[Bo,B,], [do(J)e™*# is so small that (1.24) implies that <o), +(J)>0
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Model (4) is the random field Ising model. It has been in the focus of much
recent theoretical and experimental attention; see references quoted in [13]. At
high temperatures, the equilibrium state of this model is unique, and connected
correlations have exponential decay properties. The conjecture is that, in three or
more dimensions and at sufficiently small temperatures, the system exhibits
spontaneous magnetization with probability one, while in one and two dimen-
sions, there is never any spontaneous magnetization. It turns out that it is
surprisingly difficult to prove this conjecture. For some partial results, see [13].
The methods developed in this paper may be useful to extend a proof of the
conjecture for d=3 and T=0, ie. in the ground state, to small, but positive
temperatures, T.

(iv) For model (5) a cluster expansion can presumably be derived which

convergesin L, ({J i [ Tde(J; j)) ,for p=2. As a corollary one would get clustering
i,Jj

(oc}/ D; ;) of connected correlations at sufficiently high temperatures. If, in this
example, large J;; or small h; problems are eliminated [by requiring (1.9), for
example] the proofs appear to be quite standard.

All these results follow from detailed estimates on correlation functions as
functions of (J, h). These should be of interest in their own right and are stated in
Sects. 7, 8.

Our paper is organized as follows. In most of the paper (Sects. 2—7) we develop
the method in the case of model (1). Then, since the majority of the work is model-
independent, we discuss only the modifications needed to handle models (2)—(4)
(Sect. 8). No applications of our techniques to renormalization (block-spin)
transformations are studied.

2. Singular Sets and Entropy Bounds

We consider model (1), with a|A° specified arbitrarily. We define an unnormalized
expectation value

[Al,= 2 Aexp (ﬁ 2 O'io'j+ﬁiezllhi‘7i>,

{oitiea i, jyCcAudd

where the sum runs over all spin configurations in the volume ACZ". The
observable is
A= TT] &%,

iedd

with all s; real and 3 |s]<d, some constant of order unity. Normalized
ied

expectation values and truncated expectations will be obtained by differentiating

our expansion for log[ 4], term by term with respect to the s;.

The measure for the magnetic field at each site is

di(h)=()/2n H)~te”WI2Hqp
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We choose a cutoff H on h. If |h;| > H’ then o, is strongly favored to equal sgnh,.
The probability that |h|<H’ is

2H

=(1/2 1 ~h2/2H? )
e=(]/2nH)~ f e dh< T

We choose H’ such that ¢ is small. We also demand that e*"# 277 <1,

The main difficulties in the problem arise from regions of singular sites. These
are sites where the random field is weak (|, < H’) so that it is impossible to expand
about a known, most probable, spin configuration. Only relatively crude methods
can be applied near singular sites, and while a cluster expansion can be devised, the
resulting clusters have an exponential divergence in the volume of the singular
region (see Sect. 3). Such divergences make it difficult to take the logarithm of the
partition function or to divide numerator by denominator to compute normalized
expectations in the presence of the random field. The iterative expansion of Sect. 4
is designed to overcome these difficulties. The iteration proceeds through a
hierarchy of more and more extended singular regions, which we now define.

Definition. We choose a sequence of distances d,, d,,d,, ... as follows:
do=1, d=2"" fork>0.

Here k, is a fairly small integer, and 1 <a<2. We have d; ,, =dj for k>1.

A set DCZ" is called k-connected iff every site, j, in D can be connected to any
other site, i, in D by a sequence of jumps (x;, x;.,)CD with |x;—x;,|=d,,
[=0,...,m, Xo=J, Xp+1=1.

Definition. So=1{j : |h;| < H'}. We decompose S, into its 0-connected subsets. Every

0-connected subset whose volume is at most 1/0—1 whose diameter is at most
dl *®/2 =1 and which is separated from its complement in S, by a distance >d, is
deﬁned to be a 0-component, C?, «=1,2,3,... . We set

= U c‘°’

Sl =S0\S0.

Note that S% consists of C{*”’s which are single sites separated by distances d; > 2.
Next, we decompose S, into its 1-connected subsets, and so on. Suppose now that
S, _ 1 has been constructed. Decompose Si_ 1 into (k—1)-connected subsets. Every
such subset, whose diameter is at most d{! ;*/?, whose volume is not larger than
J/ di— 1 and which is separated from its complement in S, _, by a distance >d, is
defined to be a (k—1)-component, C¥ 1, a=1,2,.... We set

Si_y= U C¥ VY, and S,=8,_,\S{_;.

a=1,2,...

Note that, by this construction, a k-component, C®), has the properties

(a) diamC® < d(t + 22 2.1)
(b vol(C¥) L /dy, (22)
© dist(C, S\CY) 2 dys 15 23)

and that Sf is a maximal union of k-components.
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Entropy of Components

The following proposition shows that the “entropy” of singular components is at
most linear in their volume.

Proposition 2.1. As the magnetic fields {h;} vary, the number of possible components
C® of volume v containing the origin is bounded by 2%, for some constant k. The
minimal volume of a component, C®, of S{ is 2*.

Proof. Proposition 2.1 is clearly true for k =0. Thus we suppose that k= 1. We start
by proving the minimal-volume property of the components, CL"), of S{. We

decompose C® into its (k—1)-connected components, D™V, ..., D§ 11’ If
N,_ ;=1 then, by (2.1) and (2.2), either

1) diam (D¢~ 1) > P12,
or

1) vol(DE~)>/d,_, .

(For, otherwise, C* would really be a component of S¢_,!) In case II), vol(C%)
=vol(D{~ V)22 since 1+]/d;_, 22" for k2 1. In case I), C¥ contains at least

L (A5 dy ) = L+ DR 22"

sites, for k=1. [This follows immediately from the facts that C® is (k—1)-
connected and that diam(C®)>d{1 "2 If N,_, =2, then

vol(CW) =2 mpin (vol(D§~ 1) = 2%, (2.4)

provided vol(D§~ V)= 2%~ 1.

We now prove by induction that the volume of each I-connected component,
DY, of C¥ is at least 2, for all | <k — 1. This is clearly true for [=0. By conditions
(2.1) and (2.2), either diam(D{)>d{*1”?, or vol(D{’)>]/d,_,. (Otherwise, DY
would be a component of S7_,!) Since )/d,_, +1=2/, it suffices to consider the
case where diam(D{)>d{%?/% If DY) is composed of at least two (/—1)-connected
subsets, D~ Y, we may apply the 1nduct10n hypothesis. Otherwise, D is (I—1)-
connected and hence consists of at least 1+d* V2> 2" sites. This proves the
minimal-volume property asserted in Proposmon 2.1.

Next, we wish to estimate the total number, n(N, _,), of possible components,
C® (as the magnetic fields {h;} are varied), which contain the origin and consist of
Ni_; (k—1)-connected constituents, D§ Y, f=1,..,N,_;. We let n(N,_, p)
denote the total number of possible (k—1)-connected constituents, D,
containing the origin and composed of N,_,, (k—2)-connected sub-
constituents, D%~ 2.

By the mlmmal volume property,

N S22 YN, 5 <0272, (2.5)
5
where v=vol(C¥). By a simple geometrical consideration,
Ni-1
n(Ny— 1) S [(2d)"]* N pI:I1 n(Ny-2,p)

Ni-1
<[Qdy71**" /31:[1 n(Ny-2,p), (2.6)
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and we have used (2.5) in the second inequality. By iterating this inequality we
obtain

k
n(Nk_ 1) = 11;[1 [(2dl)v]v/2l -2

K
1+ l§12a1+ko(a/2)" 1] v

| s,

IIA

for some constant x” which is finite if o« < 2.

From this analysis we conclude that the total number, n®, of possible
components C¥ (as the h;’s vary) with volume v which contain the origin is
bounded by

n(k)§2(1+"')"52"” , (27)
since the number of possible sequences (N, ;) is bounded by 2°. This ends the proof.

The entropy factor, 2**, is balanced by the small probability, ¢°, that a given set
of v points lie in $¢. Thus if £2* < 1, then the C%’s are rather rare. More precisely,

probACH30)< 3 (225 < c(e27)". 2.8)
v=2k
Given a component C®, we choose a simply connected set C® with the
following properties:
co>cw,

d,< min dist(h, C¥)< max dist(h, C¥)<2d,,
k= beoCyo ( s Y )_ beacyo ( a )_ k

0COACE)=0, for all k" and o'.

It is not hard to see [5] that such a set can always be chosen. If k=0 we define
CO=CO,

3. An Expansion in the Nonsingular Region

Let ¢™"=¢™"(h) denote a spin configuration of minimal energy E™?®. This
configuration satisfies ¢™"=sgnh, for ie S5, because |h;|>H’ implies that it is
favorable for o; to align with &; no matter what the neighboring spins are. (We
choose H’ such that e*"# ~2PH’ < 1) The minimal configuration in a component C®
depends only on h|C®. It is nonunique only on a set of measure zero for h|C®; we
choose it arbitrarily but depending only on h|C%®. We have dependence of ¢™|C®)
on boundary conditions only for C¥ adjacent to A°.
We write our unnormalized expectation as

[A],=e PE™" A(g™im) {Z} exp [.B <i2j> (0:0;— ™" + ; (Bhi+s)(o;— U;nin)]-
(3.1)

Each spin configuration {g;} defines a collection of clusters {X§”, Y”}. These are
the C-connected components of the set {i:o;+ 0" or i€ S,}.
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Definition. Two lattice sites are C-connected if they are nearest neighbors or if they
lie in the same component C® of singular sites. A subset X of Z" is C-connected if
there is a sequence of C-connected sites whose union is X.
The clusters that contain sites in S, are denoted {X§},_, , . ; the others are
denoted {Y¥},_, , . The basic “cluster expansion” for [A], is
[Aly=e """ Ae™") ¥ I;I X TTe(Y?), (3.2)
v

(X4, 740
where ¢ is defined as follows.

Definition. For clusters X©, Y, spin configurations o(Y®) and o(X‘?) are
defined as

min .
oy _ )0, i€ Y,
o(Y) { ey, (33)
—o™n e XO\S,,
O-(X(O))l: Gi, iE SoﬁX(O), (3.4)
oMn jeXC.

The configuration o(X®) depends on a|X?.
In terms of ¢(X?) and ¢(Y?) we have

oY) =exp T plo(Y )oY = F 07"+ X (Bhit 5)(o (V)= F")],

(3.5)
qXN= | 3 0P T BEXo(XO);—op o]
|SonX(© < j>
+ X (Bhits)(e(X )i=oF")]. (3.6)

Note that the sums over {i,j> may as well be restricted to Y® or to bonds
contained in X©UoX . Similarly, the sum over i may as well be restricted to Y@
or X,

We prove estimates on these cluster activities and on their s-derivatives. Let
BCsf be a (possibly empty) collection of |4| sites in the support of the ob-
servable A. Let (0/0s)g= 11 0/0s;.

ie®

Proposition 3.1. The bounds

(2),er

(&),

hold with m=(QH’—4v)B.
Proof. Let us consider g(Y?) first. We have that
Bhio(Y*)— o) = —2plh,| < —2BH’,

< 21Blp20p=miY O] (3.7)

< 181g20)]X@ S0l = mIXO\So] (3.8)
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since i€ S%. There are at most 2v|Y®| bonds in the sum over <i,j); each term is

bounded by 2. This yields the decay e ™Yl We have 3 |s;)]<9, so that
ied
3 si(0;—0™") <26. Each s-derivative brings down a factor ¢ — ™", which we

bound by 2.

With the factor 21¥“"5¢l we can consider a fixed o in the sum defining o(X©).
Define 6(X @) =0 in XPnS, and 6(X?)=¢™" elsewhere. The energy of a(X®)
is at least (2H'—4v)|XO\S,| larger than the energy of ¢(X?), since we have
aligned | X©\S,| spins with the field in S¢. The energy of 6(X‘?) is larger than or
equal to the energy of ¢™"(X?) because ¢™" has minimum energy. Hence the
energy difference is at least (2H'—4v)|X©\S,|. The s-derivatives and the terms
involving s in the exponent are estimated as before, and the proposition is
proven.

The First Step

We want to apply the polymer formalism to exponentiate the expansion away
from S,. The unexponentiated part can be used to define activities of the mildly
singular regions in $%. A second cluster expansion (Sect. 4) can be derived about an
unperturbed partition function which is the product of these activities. This can be
exponentiated away from the next most singular regions; exponential decays
coming from large distances between the rare singular regions beat the exponential
divergences in the volumes of singular regions. Activities for the next most singular
regions can then be defined, and so on. In the end (Sect. 7), the logarithm of [ 4], is
expressed as a sum of logarithms of activities of singular regions, plus a sum of
small, localized interactions from all the exponentiated expansions. This yields the
desired estimates on correlation functions.

The reader should consult [8] for more details on the version of the polymer
expansion used here. We write

1

_"a
ooy e,y !

where the second sum is over ordered collections of Y©’s. Next we extend
the sum over (Y{%,...,Y®) to conclude Y®’s overlapping each other or
overlapping X s,

Definition. Two clusters overlap if they contain common sites or if a site in one is a
nearest neighbor of a site in the other.

Similarly, we extend the sum over {X{} to include overlapping X§”s, but we
maintain a constraint X' nX{NS,= (D The newly added terms are removed
with factors u:

0 if Z™, ZY overlap,

Wz, Z9) = .
(Z1%.257) 1 otherwise.
Here Z{? is either an X or a Y(©. The expansion is now

[Al=e P A(e™") 3 i Hu(ﬂ)l—IQ(X‘O)) H o(Y\?).

w® o, Tren Il e

(3.9)
Here % is any {X¥, Y9}, {Y©, Y7}, or {X{, X}

Y12 72
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Note that Y©’s containing sites adjacent to S, did not occur in the original
expansion, though they can occur here. However, there is no dependence on /S,
because ¢ is set to 6™ in Y©* in the definition of o(Y‘?). Similar considerations
apply to the new X@s,

Standard manipulations [8] lead to the following form for the expansion [we
put u(¥L)=1+a(¥)]:

1

[Al=e ™4™ ¥ F  LF ] a()
w0y @, 7 ven I uixion weceixien
!
TTeX{) TT Q(Yy‘o’)exp<2 V‘O’(I_"O’)), (3.10)
B y=1 Y

where

VOY©)= —Z AL a(i”) H o(Y,?). (3.11)

¥, ..., ) filling 7@ m! G

Here G ({X{"'}) is a graph of lines % which is connected in the sense that each Y*
is connected directly or indirectly to some X{”. The graph G, must be connected. In
the expansion for [ 4], above, we unite into a single cluster X© all clusters X or
Y® involved in a connected component of the graph G, ({X®}). Grouping
together all terms in X{, we obtain

[Al,=e """ A(0™) HQ—1(X§0))GXP< > V(O)(Y(O))) (3.12)
(X((?)} 0 Y©
Here XN XS, =0, the {X} cover all of S, and

_ 1
a:1(X§) = 2z 2 I1 aA)TTe(Xy) TT o).
(X§0>},(Y§°>,4..,y50>) filling X(® G, LeG, B =1

(3.13)

The graph G, is now an arbitrary connected graph.

We would like to eliminate the constraint that the {X} cover $%. This is
accomplished by regarding the expansion as an expansion about a new
unperturbed system, []z(C”), a product of activities associated with the

a
components, C¥, of §%. The activities, z(C{?)), are defined as follows. Since

a o

diam(C{")<d,=1, each C is just one site, i. We set
2(CP)=0,(CP)= Z CXP[ > Ble—a™e™ +(Bhi+5;) (0 — 0’""")]
+1 (LY
(3.14)

see Eq. (3.6). The term with ¢ =¢™" on the right side of (3.14) is equal to 1. The
other term is between 0 and e?°. Thus

1<z(CO)<1+e. (3.15)
We can now write the expansion (3.12) as
[41,=2; X' TTe«(X¥), (3.16)
(X0} 45
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where
Z,=e PE™" 4(g™") exp ( 3 VX Y“”)) [1z(C©), (3.17)
Yo o
(X =a,(Xf) T1_ 2(CO)~*. (3.18)
a:C&O)C)?gO)

The sum Y’ does not contain X{*”’s covering just one site in $%, because ¢, (X{”)=1
for such X{”s. The point of this operation is to make all cluster activities g,(X{)
small, as long as X{’nS, = 0. Such clusters can now be exponentiated. The process
can be continued; we take (3.16) as the starting point for the induction step.

4. The Induction Step

After k steps, we have the following expansion for our unnormalized expectation:

[A];.=Zk(_(;’l)} I;IQk(X §7Y), 4.1
o
where
s . k_ 1 -
Z,=e PE"" A(g™) TT Z9, 4.2)
i=o
ZY =exp (Z V‘f’(}_’<f’)> T z(CY). 4.3)
¥y a:CY) CSJS

The sum over {X§ ™V} satisfies the following constraints:

(a) The X%~ 1’5 are C-connected; if X§ VnC* %0, then C*¥)c X¢~ 1.

(b) X§ VnXE VS, =0.

(c) All X%~ 1’s intersect S, _,; their union covers all of S,.

(d) If X%~V intersects some C¥~VS¢_,, then it intersects [C¥~ V7.

The last condition results from a division by appropriate z(C¥~V)’s, so that
small X%~ 17s intersecting S{_; do not occur. The cluster activities g,(X$ V), the
2(C*~Yys, and the VO(YYys will be defined below.

Given a term on the right-hand side of (4.1), indexed by a collection of X%~ 1)’s,
we denote those X*~!’s that do not intersect S, by {¥®}; those that do intersect
S, are denoted {X{}. As in the first step, described in Sect.3, we wish to
exponentiate the part of the expansion involving the Y®”s, Thus we extend the
sums over X®s and Y®’s to include clusters violating (b) above, subject to the
constraints Y¥nS, =0, X~ X¥nS, =0. The additional terms are removed with
factors u:

0 if XF UnXF VnSE %0,

Pk—1) FTk—1))_
uXY 0, X5 {1 otherwise .

The expansion (4.1) becomes

1 l
[4i=Z 3 TTuo(2) ¥ 5T TedX) IT el%Y),
xgy @, . yg)l B y=1 (4 4)
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where we have made explicit the constraints X nX$ NS, =0 with factors u,(Z")
=1o(XP, X)), which vanish when the constraint is not satisfied.
The Y"‘)-part of the expansion is now exponentiated, yielding

1

[A]h:Zk 2 LuolZ) X 7. [1 a(2)
iy 7 g, Zxpoy 1! Xy 2egaxton
H ol XP) H oY) eXp( > Vi Y””)) (4.5)

with

VO(Y®)= *Z AL @) H (). (4.6)

(¥, ..., Y0) filling Fx) m' G¢

As before, G,({X}) is a graph such that each Y,*) is ultimately connected to some
X, and G, is any connected graph on the Y*s. We now unite into a single cluster
X® all clusters X® or Y® involved in a connected component of the graph
G{XP}). We obtain for (4.5),

[A)=2, > 110w+ (X Eik)) exXp ( 2 V(k)(Y(k))> > 4.7
Xgoy o vk
with
Q_k+1(X(k)): ﬁ H“o(gl)
(X0}, (Y0, ..., Y{) filling X0
X T1 aD)TeXP) H a(Y9). (4.8)
G, £6G, 8 y=1

The X¥’s in (4.7) of course satisfy X{PnXPnS, =0. ~
We now define activities for components CCS{ by summing over X®’s
contained in C®, the neighborhood of C%® defined in Sect. 2:
2CP)= 3 G (XY). 4.9)

XCICCY

Dividing through by the product of the z(C%)’s, we obtain the expansion (4.1)
with k+ 1 replacing k:

[Al,=2Z 1 _Z' HQk+1(X§5k))~ (4.10)
B {W;
Here
Qk+1(X(5k))=Q_k+1(X55k)) IT _ Z(C((zk))_ ! > (4.11)
a:CgICX

and we have included the product

2(C¥)exp ( > VY Y"")) =Z® 4.12)
a:CgICSg 70
with Z, to form Z, , ;. The prime indicates that the restrictions (a)-(d) stated after
(4.3) are in effect.

We continue the process until all singular components have been incorporated
into the expansion. In a finite volume there is a largest k for a singular component



Improved Perturbation Expansion for Disordered Systems 161

C®, 5o S, =0 for k sufficiently large. There are no X®”s at that point, since
X""nSk:Hb Thus (4.10) reduces to [A],=Z, ., and using (4.2), (4.3) we can
immediately calculate the logarithm, for A=exp ( s a>

log[A],= —BE™ + ¥ s;o™"+ i [ > logz(C+ Y. V(j)(yu))]
ied j=0|a:CUCSE Yo
(4.13)

o« J

Truncated expectations of spins can now be generated by differentiating with
respect to the s;.

Inductive Bounds

Bounds on polymer activities g, g, will be proven inductively in the next section.
They guarantee that the procedure can be continued indefinitely. First, we define a
sequence of decay rates, m,, which decrease to some positive m.,:

mo=m—c, me,=m(l+codiM?)™ ", k=0,1,2,...,
with d_,=1. We will also need numbers
ni(k)=1+Card{j: j<k and ie C¥, for some o}

to measure combinatoric effects of observables (or, equivalently, derivatives with
respect to s). We also define the notion of “generalized covering”: X® G-covers a
site i if ie X® or if ie CY with CY CX®, 0<j< 0. A collection of clusters {X{}
G-covers </ CT if each i€ of is G- covered by some X and each X G-covers
some i€.«/. The cluster activities g, (X%®), g4 (X "‘)) depend only on s; for i
G-covered by X®.

Proposition 4.1. Let #C.o/ be a lattice subset. The polymer activities @, , , satisfy

0 =
_ 5 X
{X ()} G-covering &/ <3S>gg I;I Q-+ 1( A )
< [1—[ ni(k)} 21211 . (4.14)
Here cg is a constant independent of k=0, and (0/0s)g = H 0/0s;. The X{’s satisfy
XPnXPS, =0, XPS,+0, and if C¥CXP, then X”‘)\C"‘)#(b The exponent-

lated terms V“‘) satzsfy
0 -
9 puyw
<55>@ ")

We need some estimates on the activities of singular components, in order to
obtain bounds on g,,,; from (4.14). These are contained in the following
proposition, proven in Sect. 6.

Proposition 4.2. Let #CC%. Then

[T [ems+ XSSt~ eslXgonsid
[

emerlT®l < [1‘[ ni(k)] 2211, (4.15)
iceRB

Y(k) G-covering o/

<2291 (4.16)
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This implies, in particular, that
Z(CP)~1<1. 4.17)

Bounds on z(C¥) and its derivatives follow from (4.14), since in (4.9) we have

X®nS,=C®,
0
_ (k)
'<65>@ AC)

Corollary 4.3.
Next, we formulate bounds on cluster activities g ;-

Sersicl [1‘{ n,.(k)} 2191|781 (4.18)
icA

Proposition 4.4.

[1[e™* UX NS, —Cslffg‘)nskl]
B

0 -
k
- - ITow+ (X }3 )
{X{)} G-covering o/ 0s) 5 6

< [1‘[ ny(k + 1)}2'”' B! . (4.19)
ich

The sum over {X{} is as in Proposition 4.1.

Proof. We combine Propositions 4.1 and 4.2, since (4.11) expresses gy, ; in terms of
0r+1 and z(C®)~!. We sum over %' C4%, the set of derivatives that act on
T10k+1(X). The rest, #\%’, act on the inverse activities. We obtain

[]

(LHS of 4.19)< Y

0 _
= k
_ (6_ [Tor+ 1 (X ;3 )
B'CH (X0} G-covering o S)a B

(2) . mae
Os BB’ a:Cgoc| ) XY
B

[ [+ 15§\l esiTipsu]
B

(4.20)

Note that each C appears only once, because XPnXP S, =0. Furthermore,
each derivative in #\%’ can act on only one z(C®)~! because the C¥’s are
nonoverlapping, and (0/0s)z(C*¥)=0 for i¢ C®. Thus the derivatives of the
inverse activities are bounded by
[ [T (n(k+ 1)_ni(k)):| 28 BB
ic BB
Here we have used the fact that n,(k+ 1) —n,(k)=1if i is in some C®, 0 otherwise.
Applying (4.14) we obtain
(LHS of 419)< Y TI mk) TT1 (nk+1)—n,(k))2*"|5]!
ieB\@

BICRB icRB'

< [1‘[ ny(k+ 1)]2'@' ZI» 421
ich

which completes the proof.
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5. Estimates for the Induction Step

This section is devoted to the proof of Proposition 4.1. To make an induction, we
first prove (4.19) for g, = ¢ (case k= —1). We use X~V to denote either X or Y.
Using the estimates (3.7), (3.8) we wish to prove that

(gs) TTo(Xy )| [Tl %ol eIy o] <2171,
B B B
(5.1)

where X§~'’s are nonoverlapping. Here the constant ¢ is somewhat smaller than
cs, the constant in (4.14). No overlap implies that each s-derivative must act on a
particular term in the product over f. Thus (3.7) and (3.8) yield

(LHS of 5.1) < > 21T [e20e (m=molX}™ P\Solg = (e ~log2)IX)™DnSol],
{)?;3‘ D} G-covering o/ B
(52)

We estimate (5.2) by repeatedly using the bound 3 f(t) < sup ¢, f(t), which is
t t

{fl(}“ 1)} G-covering &

valid when Y ¢, ' <1. The ¢,’s are called combinatoric factors. We allow a factor

t
21l in order to fix a subset {a,,...,a,}C.<, and then we sum over clusters
XY, .., X{ Y such that a;is G-covered by X{~ V. Since |.«/| < % IX§~ V), we have

(LHS of 5.1)<21%! T [ Y 2revralRy ”ﬁSoIe—c'l”‘}‘“\SO'],
j=1

X§“ D G-covering a;

(5.3)

where we assume mo<m—26—log2—c/, c—210g2—25;(2v+2) log2. We now
prove that the sum inside the brackets is less than 1, for ¢’ a sufficiently large
constant. We first sum over the ways that X~ D can G-cover a;. Either
a;e X" \S, orelsea;e C¥ with CP C X~ . The first case is glvenacombmatorlc
factor 2<2'X‘ D\Sol, the second is given 4%+1 <22IXj" V0ol This suffices, since

12+ Z 47¢*D<1 1In the first case we proceed by summing over X, the
k=0

component of X{~Y\§, containing a, using the standard estimate
p J 0 J g
e X<y, (5.4)

X>0, X connected

A factor 2'*1 allows us to choose which C®’s neighboring X are contained in X}~ Y.

Then if ¢’ =¢” + 2log?2, all three combinatoric factors are cancelled by e ~<1%§" 5ol
in (5.3). We are now in a situation like the second case, where a; isin a fixed C. Let
X’ denote the union of the chosen C*’s. We must allow a combinatoric factor
221Xl for the choice of a subset of the (at most) 2v|X’| sites neighboring X”. These
sites are the “starting points” for additional components of X{~\S,. We use (5.4)
for these components, and continue the process until the choice is made not to add
new C¥s or components of X{~"\S,. All combinatoric factors are cancelled by
terms in (5.3); thus the whole sum is bounded by 1. This completes the proof of
(5.1); the |4|! is unnecessary here.
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We now prove (4.14) for k=0, assuming (4.19) for k—1. Let us rewrite the
definition of g, . ; [Eq. (4.8)] in a form treating X*”’s and Y*s on the same footing.
Both X® and Y® are types of X~ 1, depending on whether the set intersects S, or
not. We write

7\ 3
vy g, oxgy

using the fact that the u,-factors in (4.8) remove duplicated X*”s. Since —

nn
= ([+1 ! <Hl-l), the sum over X®’s and Y*’s can be rewritten as follows:
O+ 1(XY) = 2 ’—H“o(g')z H a(ff) H (X,

(XD, X V) filling 00 P! &

(5.5)

In (5.5) it is assumed that X®nS, +0, but it will be helpful to avoid this
constraint later on. So we unify notations by defining g, , ;(Y%) by the same
formula (5.5), where Y® is a union of Y®’s, Y® S, 0. Thus g, {(Y®)=V*(Y®),
by (4.6). We let Z® denote either an X® or a Y®. We prove a stronger form of
(4.14) allowing arbitrary Z®”s. As a bonus we obtain (4.15) as a special case by
restricting to a single Z®=Y® in the collection {Z{}.

We insert our formula for g, ;(Z%) into the left-hand side of (4.14), allowing
arbitrary Z®s. Let us note that ZPnZPnS,=0, and in (5.5),
X YnX%YnS,=0. Thus the entire collection of X* '’s satisfies
XFEDAXE VNS, =0, and we make this explicit by extending the product over
&’ to include all pairs of X*~ s, We combine all the sums over collections of
X®~ 1’5 using the multinomial theorem. Thus

O a2 L[ 1257505
{Z{} G-covering o 0s)g 6
< » ()
(X1, X~ D): of is G-covered P

L (2) fase
G ZeG S)po=1

[T [e™e+ 11X4 D\Sudg=esiXge sl
9

(5.6)

On the right-hand side, not every X%~ need G-cover part of .7, but each i € o/ is
G-covered by some X% V. The graph G is the union of the connected graphs G,
corresponding to each Z{°. It need not be connected but each connected
component involves a cluster X%~ that G-covers some ie.«/. (Note that by
considering arbitrary Z*’s we lose the constraint that there be an X® in each
connected component of G.) We have distributed the exponential factors amongst
the X¥~1’s, but the conditions X%~ Y~ X%~ DS, =0 imply that each portion of
XPnS, is used only once.

To estimate the right-hand side of (5.6), we need to isolate those clusters
G-covering /. These will be held fixed while summing over the others. Call these
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the .o/ -clusters, and denote by G, the subgraph of G of lines connecting .o/ -clusters.
Let G,=G\G,,. The graph G, is an arbitrary graph on the «/-clusters (each cluster
is connected, directly or indirectly, to some </-cluster). Using this decomposition
we have

1
5.6)< = —Lu(Z
( )_ (XK= D, XED) G-covering o n! (R 0, 7RG 1)) pl HUO( ,)
0

X 10 a($)<a ) H X3 T1 a(x) n LaXEY)

Gy PeGy Ge £eG.

n+p

. H [emk+ 1|X\Sk|e_CS‘XﬁSk|]. (57)

6=1

Since G, is arbitrary, we have Y [] a(¥)= ]'[u(,?) where the product runs
Gy

ZLeGy
over pairs of .&/-clusters. The u- “factors enforce the constraints X§ VnX§~1

NS{_, =0, and the uy-factors imply that X§i~VnX[ ™S, =0. Thus we have
X§ 9nX§ VNS, =0, which is one of the cond1t10ns that were assumed in
Proposmon 4.1 (the inductive hypothesis). If k=0 the u-factors imply that
X§~Y, X~V do not overlap, which was assumed when we verified the k= —1
case. We can drop all the other constraints uy(.#’) — this only makes the right-hand
side of (5.7) bigger.

The following lemma controls the sums over X%V, ..., X% V.

Lemma 5.1. Let X"“l’, oy X%~ be fixed. Then for k>0

+
n |op (X~ D)mic+ X NSyl —es|XYe™ 1)nsk|l

=n+1

20k - s
PP (X% D, X D) P:

éeXp[ 2 Cidy. ”ZIst"_”\SkI] (5.8)

=1

InG, each X¥ 1, 1<j<p, isultimately connected to some X{* "V, 1 <1<n. If k=0

the estimate holds with | X%~ 1| replacing | X%~ "\S,| on the right-hand side
d_,=1.
The basic content of the lemma is the fact that the clusters connected to a fixed

set of clusters forms a gas with a small activity, c¢,d; />
We use the lemma with P= oo to estimate the right-hand of (5.7) by

Z

(X1, ~ 1)} G-covering o/

(2), frace)

H expl(mes g + 1 P)XET NS —esl XS T, k>0. (59)

For k=0, ¢y is replaced by ¢ =cg—c;, to allow for the modification in Lemma 5.1.
Now we use the inequality

X ONSE | Sd PIXET NS, k>0, (5.10)
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Fig. 1

to estimate the argument of the exponential as follows:

(M sy + 1 PXF NS — sl XE NS,
<[(mysq+ C1dk~—1{2)(1 + Czd;:_liz) + csczdk_—liz]lfgk_ 1)\Sk— = Clefsk_ DSl

émle—gk_l)\Sk—ll_cS,XESk—l)mSk—ll' (5.11)

Here my . ; =my(1 +cod; *|*) ™, with ¢, chosen appropriately. Now we can use
(4.19) to obtain

5.9 = 1}3 ny(k)2!*!|4|! (5.12)

which completes the proof of Proposition 4.1, assuming (5.10) and Lemma 5.1.
[For the case k=0, we have my , | +c,d; {* < m,, so by (5.1) we estimate (5.9) (with
¢ replacing cg) by 2!#!|8|! to complete the proof.]

To verify (5.10), note that to each singular component C*~ 1 §?_, contained
in X~V we can attach a large C-connected subset, X ,, of X*~\§, _,.(See Fig. 1.)
If k=1 then |X,| =1, otherwise we have only that diam(X,)>d,_ . The fact that
diam(X,)=d,_, follows by noticing that (X¥~\S,_,)n[C% D]+ 0. This is
because all o(X*~Vys with C¥~Vc X*~1 X*~ D C*~ 1) were removed when we
divided by z(C%*~") — see condition (d) after (4.3). All the X’s are disjoint because
dist(C§ ™Y, 8, - \C¥ ™ V) 2 4y

Lemma 5.2. If a C-connected set X does not intersect S, _ and it has diameter at
least d,_ /2, then
|X|=(1-3d; “ Y?)diamX . (5.13)

Proof. The set X can lose volume because of empty space in C{’ C X. However, by
(2.3),dist(CY, CP) 2 d, , ; =dj and by (2.1), diam C¥ < d{' *?/2. Thus the fraction of
diam X lost due to CYs is less than 2d$' *®/?/d% =247~ V2, j> 1. Similarly, the
fraction lost due to C{”s is less than d; !, and the total loss is

k—2
3 247U 4 d <3, (5.14)

which yields (5.13).
Using the lemma we find that
(Xl Z3d, 1 23d:2|CE7Y), (5.15)

since by (2.2), |C¥~V|<]/d, ;. The bound (5.10) now follows by summing over
ClVEXEDASI .
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Fig. 2

Proof of Lemma 5.1. We use the method of [7]. Assume the lemma for smaller
n+P. For n+ P=1 the lemma is trivial. We decompose G, into G, uG,UG.: G,
contains lines {X¢ "V, X% M} o, Qc{l,..,p}; G, contains lines
{X(""” X 2 cicntn, jeo; and G{ contains lines {X{f; " ,XE Yo, 25150+
It is easy to see that G, is arbltrary, while G, is a graph in Wthh each X, ]f),

j € Qis ultimately connected to X§ Y, ..., X%~ Horto X7, j € Q. Summing up
1+a(L)=u(¥) for € G,, we obtain (see Fig. 2)

2 I a@)=% T1 a(&) [T wAY T1 a(&).

G, LG, 2 ZLeGy Z= {X”‘ ) X(k “}2<1<,1 or l=n+m Ge ZLeGe

ea (5.16)
We bound u(.#) by 1 and a(¥) by 1 for £ € G,; however we enforce the condition
that X*1 intersect X¥~VnS{_, (overlap X§~ 1 if k=0) for all jeQ, since
a(¥)=0 otherwise. We also write
1
PP @ (XD, X 1) p!
P 1 P—|0| 1

= 3 on z 2 Z
|?]=0 |Q|' Xk, .. X§k+|slz)|) p'=0 X981+ 10 XEOB) 4 p0) (p |Q|)'

(5.17)
For k>0 the left-hand side of (5.8) is now bounded by
P 1 P-lol
121=0 |Q! o0 TxEB) p=0 P @EIE L XS 0
n+[Q|+p’ - -
= I ae) 11 eko?gk—1>>e"'k+1lX3"-“\skle—cslanskl
G: LeGe I=n+1
o 1 k= 1)
= ol > lo(X )l
121=0 [Q|! %0~ 1:a@0D, R~ )50
-expl(my 4 +c1di 1 1/2)|X(k_1)\Sk|—Csli(k_l)nskl]}ml
- €Xp [1_220101{ X l)\Sk|:|' (5.18)

We have used the induction hypothesis, (5.8) with P»P —|Q|, n»>n+|Q|—1,n+ P
—n+ P —1. The lemma clearly follows from (5.18), provided that

. 2 lou(X® 1))
Xk=1):q(X k= 1) X(k— m=+*0
-exp(my 4 +cdy 1/2)|X(k_ NS, =gl XE DS, 1< C1dk_—1{2|X(1k_ NSyl
(5.19)
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We prove (5.19) by noting that a(X*~ ", X~ V) + 0 implies that X*~ VX~V
NSY_,+0. Now there are at most c,d; *[?|X¢~\S,| sites in X¢~VnSZ_,, by
(5.10). Furthermore, m, , ; +c,d; [ <my, so (5.19) follows from

(k= 1)y e X~ D\Spe| —cs| XK~ D Sy|
5 e EE e <1. (520)
This is a special case of Proposition 4.4, which was shown in Sect. 4 to follow from
our induction hypothesis, Proposition 4.1. Thus Lemma 5.1 is proven for k> 0.

The case k=0 is only slightly different. On the right-hand side of (5.18)
|X{*~\S,| must be replaced with |X{*~")|, and we have an additional term
¢ dy 121 X%~ VS, inside the first exponential. Since cg—c;d~1/? is equal to the
constant ¢ in (5.1), the lemma follows from

i} leo(X™V)lexpl(m; +c;d= 1) X T \So| =l X" PnS,[]

X D:a(X(=D,X(~D)*0

<c dZ1PXC). (5.21)

This follows from (5.1), because m, +c,d_1/> <m, and because there are at most
¢i|X{" V| sites overlapping X{™". [Only XV overlapping X{"" have
a(XD, X Y)+0.]

6. Estimates on Activities of Singular Sets

In this section we prove Proposition 4.2. It is crucial to obtain lower bounds on the
activities z(C%) because we obtain g, , ; from g, ; by dividing by these activities.
The lower bound is not obvious from the expansion (4.9) defining z(C®), but by
resuming the expansion we can express z(C¥) as a ratio of certain partition
functions, and the lower bound z(C®)>1 follows.

Let (- ), ¢ denote the normalized measure on spin configurations in CJ
obtained by restricting the original measure, Ae ##, to configurations with
o=0¢"" in [CW]". Thus

{(Bp,cgo =Bl ego/[11n,e90»
with

[Blicgo= 2 B(a)A(a)exp

(/3 > o0;+B ¥ hioi>a (6.1)
{oJiccy <, j>céPuacyo e )

and o =¢™" outside C¥. We claim that
2(CE) ™ =M CE) .o (6.2)

where y™*(CP) is the characteristic function of the event g =¢™" in C{.
We prove (6.2) by comparing the expansions for [x™*(C¥)], cgo and [1];, cgo-
By (4.10) we have
[(1cgo=Zy+1=2Z4exp <Z V(k)(7(k))> 2(CY), (6.3)
Y
where Z, ., is given by (4.2), (4.3), except that everything is computed in C{°. Thus
the sum over Y9 is restricted to Y¥ ¢ C®; the product over « is restricted to o such
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that C{’C$9nC%. When we expand [y™*(CP)],, cgo» We pretend that CP is not
part of the 1nteract10n region. This is possible because ¢ is fixed to 6™ there. Then
we do not obtain any clusters intersecting C®. Clusters otherwise vary arbitrarily
in C% — in the first expansion, analogous to (3.2), there are even Y®’s containing
sites neighboring C®. Each ZY produced for j < k is exactly as in the expansion for
[1],, ego» because they do not involve clusters intersecting C%. Similarly, we have

the same factor exp( > V“"(T"’”)), but there is no z(C¥) in Z®. Thus

O

™™ (CENIn,e90=Zi exp( 2 V(k)(?(k))>, (6.4)
yoi ey
and (6.2) follows immediately by dividing by (6.3).
Since a characteristic function is bounded by 1, we have z(C®)~1 <1, by (6.2).
More generally, we obtain simple estimates on derivatives of z(C%)~!, since

(«a%>@ 2(CW) 1 = <ﬁ> (G

—<xm'"(c<"> Iloly . (6.5)

b, €0
[Recall that a factor A(a)=exp<2 5;,0;) is present in the measure.] After this
ied

truncated expectation is expanded into sums of products of ordinary expectations,
we estimate each ordinary expectation by 1, since 1xmi“(C§,"’) IT oi’ <1, for any
ieR

B’ C%. Thus
9
0s) 4

because there are at most 2%!|%|! terms in the expansion. (This is easily seen
because after applying r—1 derivatives, each term has at most r expectations
multiplied together. Each expectation can be differentiated in numerator or
denominator, yielding at most 2r new terms for each existing term. Taking a
product over r=1, ..., |%)|, we obtain at most 2!#!|%|! terms.) This completes the
proof of Proposition 4.2.

Corollary 6.1.

“H =24, (6.6)

<2l of|—1)!. 6.7)

0

il (le)
(asLlogz(ca )
Proof. By (6.2) we have

0 0 0 .
9 wy— [ 2 o — min(C0N],
<6s>m« logz(C;”) (as>d10g[1]h,0g) <as>d10g[l (Ce)h, ego

Each of these terms is a truncated expectation of the o;, i€ «/. Hence it can be
estimated as above by 21! (|| —1)!.
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7. Exponential Clustering of Correlations in the RFIM for Large H

In this section we harvest the fruits of our efforts in Sects. 2—6. We prove the results
described in Sect. 1.3(i), i.e. we show that, in the RFIM, model (1), the thermody-
namic limit of arbitrary correlations exists and is independent of boundary
conditions, and connected correlations have tree decay, provided f and H are so
large that

eveolf £ 1 (7.1)

where ¢, is a small number. Thus we consider the regime where the external field is
so strong that, most of the time, the orientation of the spin, g;, follows sgnh;.
The starting point of our considerations is Eq. (4.13), i.e.

0 A A
log[A4],= —BE™™+ ¥ siof"+ ¥ [ > logz(CO)+ ¥ VU)(Y‘f’)],
ieod j=0 a:C&”CSJ@ Y
(7.2)

A —
where 3 indicates that all the sets, C’ and YY), to be summed over must be
contained in A, and

A= ] . (7.3)

ied

Clearly,
<6i1; ey Uin>5,A(h)

© A A
=5 5 (2) oeaens 3 (2) voro)
j=0| a:CYox 0s o Y G-covering o 0s o
(7.4)

where we have set o/ ={i,, ...,i,}. The notion of “G-covering” of a set in Z" has
been defined in Sect. 4. A site i is G-covered by YW if ie YY), or if ie C¥, with
CPCYY. For n=1, a term ¢™" must be included on the right-hand side of (7.4). It
comes from the second term on the right-hand side of (7.2) which is linear in {s;}.
Reflecting on (7.4) it is clear what the thermodynamic limit of {o;; ...; 6; > 4(h)
is: For all j < oo, the restriction that C¥ and Y lie in A is simply dropped on the
right-hand side of (7.4). All terms then become independent of A, as soon as A is
sufficiently large (depending on j and on YY),

We now propose to study, with the help of the estimates proven in Sects. 5 and
6, whether the limits j— co and A/ Z" (thermodynamic limit) really exist, and how
fast the thermodynamic limit is approached. We suppose that

dist(«, A)=d,, for some k, (7.5)

where d, is as in Sect. 2, i.e. d, =2*"". By (2.8), we may estimate the probability that
s/ CCY, for some o and j=k, by

Prob(«/ CCP, jzk)< ,Zk dy(c'e)* <(ce)*", (7.6)
Jjz
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for finite constants ¢’ and ¢. Here we use once again the fact that « must be chosen
to be <2. We now assume that the magnetic fields {h;} are chosen such that

L ¢CY, forallyandall j=k. (7.7

Since ) _
diam (C(y”) SO +ddy <34,

for <k, those components C? for which .o/ C CY are, by (7.5), properly contained
in the interior of A. We conclude that under these conditions the terms involving
derivatives of logz(C{) on the right-hand side of (7.4) are independent of A. By (7.6)
we find therefore that on sets of magnetic fields {;} of probability =1 —(ce)?*, and
for arbitrary A’ 4,

i 50505, 40 —<03,5 .5 00,05 4(W) = ji %T(%)ﬂ VXD - V(YD)
where 3 * ranges over all YV which G-cover o and at least one site in A'\A4 or in
0A. Since Y G-covers o/ and at least one ie A\, and since YV'nS;=0,

diam Y9 2 dist (7, 04)/2. (7.8)
From condition (2.3) and the definition of C¥), more precisely
dist(5C9, C9) = d;,
and from our construction of YV in Sect. 4, (4.4)-(4.6), it follows that
diam YV > d;.

We may therefore use Lemma 5.2 and (7.8) to conclude that

Y9 > max {d,/2, dist (s, 0.4)/4} (7.9)
The bounds in Proposition 4.1, namely (4.15), and the simple fact that

m;zmy,=zcm, forsome ¢>0,

for all j, show that

Z*<—8~> YOTO) < (j+ D211 |l ~emmaxidy/2, dis, 0004} (7.10)

O \0s/ 4
From (7.10) we obtain the bound
Koy -3 030,40 — <05 o5 03,05, 4 (W]
<2"n!exp(—cmdist(s,04)/8) ( ﬁo 2+ 1)"e"°'”"f/4> (7.11)
<ci(m) ¥ exp(—cmdist(, aj1)),

for constants c,, ¢,, and ¢, which is valid with probability >1—(ce)*". The decay
rate m is given by

m=2H —4v)~c;eHp, for large Hf. (7.12)

We have thus proven
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Theorem 7.1. With probability 1 the limit
lim <O-i1; s Jin>ﬁ,A(h)E<o-i‘; s 0'i,.>;;(h)

ALY

exists and is independent of boundary conditions, for arbitrary {iy, ..., 1,}. The limit
is approached exponentially fast and is given by the formula

{6,530, 0= §|: > <ﬁ) logz(CY) + > <g) V(j)(?(j)):l’
" j=0l a:CPO ds o Y() G-covering o 0s o

where o ={iy, ..., 1,}, and V(YY) is calculated in any volume A that is somewhat
larger than YY. These terms satisfy bounds (4.15), (6.7).

Next, we turn to our proof of tree decay of the correlations <a; ; ...; 6; »(h).
We fix narbitrary sites x;, ..., x,in Z’and seti;=0x;,j=1,...,n,with0=1,2,3, ... .
Let o/, ={iy, ..., 1,}. We begin by estimating the probability, P(f,), of the event that

AynCP =0, foranyoand j=p,, andforall [=0,1,2,.... (7.14)
Here 0,=0,+1, p, is the largest integer with the property that 6,>d,,. Clearly,

P(8y)21— ¥ Prob(oly,nCP +0, for some o and j=p)). (7.15)
=0
By (7.6),
Prob(e/p,nCP %0, j = p) <n(ce)*” .
Hence
3 Prob(e/p,nCO40, j2p)< 3 27 "n(ce)” <n(c’ef,  (1.16)
=0 P=po

when 6,— o0, py— 0. Hence
1—n(c"e)** £P0,) /1 as 0,—>0, (7.17)

if ¢ is small enough.
Let us now assume (7.14), and prove an estimate on <o;; ...; 0; >4(h), with
{iy, ..., iny =y, Since

diam CP <d{' *9* + 4d;<d;, ,, (7.18)

we have that o7, C C{ for j < p,, because diam o7y, > 0,>d,,. By (7.14), 7, ¢ C¥ for
j=p;. Therefore, we do not have to worry about derivatives of logz(C{) in
Theorem 7.1, and we conclude that

0;5 .50, 05h)= B <ﬁ> VoY), (7.19)

j=0 Y G-covering ¢, aS o,

Every YV contributing to the right-hand side of (7.19) G-covers ;. Thus YV

contains a C-connected tree passing through /. (The statement that a

C-connected set X passes through o/ means that each site i € o7 is either contained

in X orin a set C? with the property that C¥ C X.) As in the proof of Lemma 5.2 it
then follows that

YO >4 TGy, ...,i,)| ++diam YV, (7.20)
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where T(i,, ...,1,) is the shortest tree containing /. The details of the argument
leading to (7.20) are a little lengthy, but straightforward. We only remark that (7.14)
is used to insure that 0,, the minimum distance between points in .27, is much
larger than d} *9/2 +4d,, _,, the largest possible diameter of a C intersecting 7,

Repeating the arguments leading to (7.10) and (7.11) and using (7.17) we get the
following result.

Theorem 7.2. Let i;=0x;,j=1,2,...,n, with 6=0,+1, [=0,1,2, ... . With proba-
bility P(6,)=1—n(c"e)*™,

01,3 -3 03,0 (W= i) T exp[ —com| T(y, ..., i)/,

for some finite constants ¢, (depending on x,...,x, and 0,) and c,, and some
small ¢

It follows that, with probability 1, {a; ; ...; o; )(h) has tree decay with decay
rate M =const-m>0, provided Hp is sufficiently large.

A simple application of the ergodic theorem shows that M is almost surely
independent of the chosen sample, .

8. Extensions to Other Models

Many of the features of our expansion method are model-independent, and we
show here how to treat some other disordered systems. We consider two random
Ising models. The first has randomness in the nearest-neighbor couplings J;; as
well as (possibly) a random magnetic field, and we consider the high-temperature
regime. The second has a random J;; but typically J;;~J>0; we take zero
magnetic field and low temperatures. Altogether we will have treated the three
basic types of expansions for Ising systems — large magnetic field, high tempera-
ture, and low temperature expansions.

We remark that a much simpler high temperature expansion can be given if |J;;
is never larger than a fixed constant. For then the standard high temperature
expansion exp(X.pJ;0,0;)=>T1(e?’7?7—1) converges for p sufficiently small
(depending on the range of J;;). However, the temperature domain for convergence
is unnecessarily restrictive, and deteriorates as the range of J;; increases. We
consider J;;’s taking arbitrary real values, yet obtain a convergent expansion for
0= =B, with f,>0.

Similar remarks apply to the low temperature case, where a standard Peierls
expansion can be given if 0 <C <J;;. The domain of convergence disappears as
C—0, whereas we consider J;;s taking arbitrary real values.

High Temperature Spin Glass
This model is defined as follows:

[Al; = X A(G)eXPﬁ[ > AJijGiO'j‘Fi;lhiai]s

{oi}iceA (i,jyCAvd

<A>J,h=[A]J,h/[1]J,h' 8.1)
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The observable A is as before, ¢ is specified arbitrarily in A°. The measure for the
h;’s is an arbitrary probability measure, except that the h;’s are independent and
identically distributed. We take independent, identically distributed J;;’s also,
Gaussian, with (J;;>=J, {(J;;—J)*> =42

We expand only the J;;’s that are not too large, and we require that large J;;’s
are unlikely. By rescaling f5, we can change the scale of the J;;’s. Thus it is no loss
of generality to choose the cutoff at |J;;|=1, and we require

1
2nA 131>1

e VIR =41, (8.2)

For a good high temperature expansion, we need <1 also.
The singular sets S,, S and the singular components C® are constructed
exactly as in Sect. 2, starting with

So=1{j:J;j|>1 for some nearest neighbor i of j} .

The entropy estimates are unchanged.

As in the model considered in the body of the paper, it pays to be careful about
what one perturbs about. In each component C¥ we define ¢™*|C* as the con-
figuration minimizing the energy in C%),

E@,CP)=—- X Jijoi0;— 2 hio;. 8.3)

L ipyccg ieC)

Then we put E™*(C®) = E(¢™", C¥). We do not define ™" in S because we are
perturbing about fully disordered spins. However, we need the free energy of a
site with a fully disordered spin,
e PETTD =z ofhy ol je S (8.4)

Finally, we define E™"= ¥ E™n(i)+ 3 E™%(C®), A similar process yields the

ieS§ ak
analog of A(¢™"). We put

Bhi+si —Bhi—si
gmin ()= e +e

’

ePhi +e” Bhi

Ami“(@”)ECXP( > soft (8.5)

iecfo >’
A(g™)= TT A™n(G) [T Am(CE).
ieS§ a,k
The cluster expansion consists in writing
eﬁ]ija'id'jz 1 + (eﬂJ.-ja',-aJ__ 1)

for bonds (i,j» CAUdA such that i or jis in S5 (|J;/ <1). Expanding the product
over such {i,j», we obtain a sum of terms. In each term we define the clusters
(XD, Y9} as the connected components of Sou{ie A: (i,j> is a bond where
e?i?i—1 is selected for some j}. As before, we let the X§*”s be the components
intersecting S,. Resuming all terms leading to the same clusters, we obtain the
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cluster expansion (3.2), with

XM= ¥ 3 TII (e’”""""”"—l)exp[ 2 (ﬁhi+5i)ai]

o|XC=1 g, i, jdege ieX(~1\So

. exp[ > BJ(o0;—c™g™ 4 Y ) (Bh;+s) (0, — o.;nin)]

CirjyCSonX(-1) ieSonX(-1
: [ PE™O gmingj =1, (8.6)
ieX(-D\So

Here X~V is either an X{” or a Y%, and g, is summed over all subsets of bonds
(,j> withiorjin 5, withie X™1,je X" VU A°, and such that all sitesin X~ P\§,
are in some bond in g,.

We prove estimates (3.7), (3.8) for these cluster activities, with m=1/2[log2p|
—2vlog2, and with an extra |%|! on the right-hand sides. First, consider % =0.
Note that o(X(" V) is an expectation of

£ I @rm=bepl 2 po0,—oror)

ge < i>ege i, jyC8onX(-1)
+ 2 (ﬂhi+si)(0i—0‘i“i“)} 8.7)
ieSonX(- 1

1 _
in a normalized measure Nexp[ > (Bh;+s;)o;] on ol X \S,. [The last
ieX(~1\So

factor in (8.6) is the normalization.] A factor 21X~ "ol provides the normalization
for the uniform measure on 6|X~ S, thus we take the supremum of (8.7) over
all 6|X~ V. The exponential is bounded by exp Z_( )si(o,- — o?‘“‘)) <e? by
ieSonX(~1
definition of ™", There are at most 2v| X~ \S,| bonds that can appear in g, hence
at most 22¥1X” "\Sol possible graphs g,. We bound ef:i71% — 1 by 2, for small 5, and
there are at least 1/2| X" \S,| such factors. This proves (3.7), (3.8) for #=0. In
general, taking s-derivatives generates truncated expectations in the measure on
o] X \S,. As in Sect. 6, these are expanded into at most 2!#'°/|\S|! terms, each
of which is a product of ordinary expectations involving derivatives of (8.7) and g,
i€ B\S,. We use the bounds

(ﬁ) (&7)[ < 2I%nsol2|2?“ Unso|ezae—m|)?<— D\Sof
63 BnSo
and |g;| < 1. Thus we obtain (3.7), (3.8) with an extra |4|!.

We proceed from the basic expansion (3.2) as in Sects. 3—4 — these steps are
essentially model-independent, as long as (3.7), (3.8) hold. As in the discussion after
(3.9), we consider new clusters which overlap, but do not intersect, some C¥ (they
contain nearest neighbor sites to C®). These cluster activities are defined by (8.6),
but we pretend that the CW’s overlapping but not intersecting X~V are in A° and
we fix o =¢™" there. [Note that if X~ abuts A°, then o(X~ ") depends on J;; for
ie X7V, je X" YuA] These new cluster activities are precisely the ones that
would arise from the expansion of unnormalized expectations of products of
characteristic functions y™*(C%) setting o =¢™" in C®. This is important so that
the formula (6.2) for z(C®)~! will hold.
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The exponentiation of clusters avoiding singular regions and extraction of
activities of singular regions are as in Sects. 3, 4. Even the inductive bounds are
proven as before. We actually proved (5.1) without the |4|! on the right-hand side;
now with |4|! in (3.7), (3.8) we obtain precisely (5.1), and no further modifications
are necessary in the estimates.

Estimates and formulas for z(C%) are proven as in Sect. 6. We need only
remark on how the measure - ), , cg, Which plays the role of -, &g in (6.2), is
defined. We simply take the original measure, set J;;=0 for {i,j)€dC¥, and
restrict it to spin configurations in C®. Then when expanding [1], ¢ OF
[x™"(C¥)];. 4.c40, We produce only clusters contained in CY, as required by the
definition of z(C¥).

The final result is a formula analogous to (4.13):

© - - —-—
log[ A4, 4= X log(e® s +e M™%+ ¥ [ > logz(C)+ X V“’(Y"))].
ieS§ j=0la:cQ)cse Yo
(8.8)
We apply s-derivatives to obtain expectations, and estimate the result as in Sect. 7.
Derivatives at i € S produce expectations of ¢; in the single-site measure -Ne”h"‘”,

instead of o™, which was produced in Sect. 7. Still, the term is bounded by 1, and
the remaining estimates are identical. Thus we obtain the following theorem on
decay and boundary condition independence of expectations.

Theorem 8.1. Let  be sufficiently small. Then, with probability 1, the limit
lim <Gi1; cees ain>ﬁ,A(J9 h)= <0'i1; s Ui,.>p(~]: h)

ALY
exists and is independent of boundary conditions, for arbitrary {iy,...,i,}. The
approach to the limit is exponential. Furthermore, the correlations
{0y ...50;,05(J,h) have almost surely tree decay, with decay rate
M = const|logf| >0, in the sense explained in Sect. 1.3, (1.14), and in Theorem 7.2.

It is worth noting that the expansion described in this section extends the
domain of convergent expansions for the fixed J;;, random h; case. We can obtain
the model considered in Sects. 1-7 by putting J =1, 4=0. Then S, =@ and we have
an expansion no matter what H=(h?)'/? is, for sufficiently small f. The expansion
before worked for large H, in particular H such that e>"#~V2%H <1 with & small.

Altogether the hatched region in Fig. 3 is covered.

H o303
oot Large-H
8o expansion
%0
K<
<]
o]
. Xt
High-T Y
expansion
Fig. 3 _~—Grdered phase? 3
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Near the H =0 axis, and at low temperatures, there is a possible ordered phase
[model (4) in the Introduction]. Of course, when H =0 there are convergent low
temperature (Peierls) expansions for the ordered phase.

Low Temperature, Predominantly Ferromagnetic Spin Glass

This model is defined in terms of

[4],= X A(")CXPﬂ[ > Jijaiaj]: (89)
{oiliea {i,j>CAuod

and we put ;=1 for i € A° (symmetry breaking boundary conditions). We assume
v=2 so that a Peierls argument can work. We again take independent Gaussian
Jij’s, with J;; —J (J3; —J)2 A*. By scaling f we can assume J=1. We require
that A be small in partlcular A%< (kP)~! for some constant k. Thus small or
negative J;;’s are unlikely. For a good low temperature expansion, we need > 1,

too.

We must make some modifications in the constructions of singular sets.
Starting with S, = {j: J;;<1/2 for some nearest neighbor i of j}, we go through the
constructions as before but with a modified notion of volume. For X CZ" we
define

vol(X)=Card X + [ > ﬁIJijl] , (8.10)
i, j>CX,J;i<0
where the brackets denote integer part. This allows for the especially poor
estimates we expect for clusters containing antiferromagnetic bonds. Thus in (2.2)
or in other appearances of vol(X) or | X|, we use (8.10). The proof of Proposition 2.1
(entropy bound and minimal volume bound) goes through with this new definition
of volume.

As before, we must verify that the volume factors (from entropy bounds or
estimates on cluster activities) can be dominated by the small probability of
occurrence of singular sets. Let C CZ". The probability that C is a component, C®),
of S{ is bounded by

3vCardCe*Nz/SAze—I\h/ZA2 exp < _ |J”|> é gvol(C) , (81 1)

2
247 G jycXay<o

where ¢ >0 as 4—0. The first factor allows us to choose which of the at most
vCard C bonds in C have J;;<0, which have 0<J;;< 1/2, and which have 1/2< J;;.

1 1/2 2 2 2
> | e U~ 24% ] by e~ ¥24%; on
]/ A 0

= (J—1)2/242

On the second class (N, bonds) we estimate

the first class (N, bonds) we estimate = by e~ T2D242 Allowing
74

a combinatoric factor el’//24” to control the J-integral, we obtain the left-hand side
of (8.11). This is bounded by £"°'© because N, + N, >1/2CardC.

The next step is to produce an expansion analogous to (3.2). We start by writing
a contour expansion without regard to singular regions with poor bounds. We
define g™ir=1, E™n= — Ji; and A(c™")= exp<2 s) Given a spin

(i, j>CAuda

configuration, let I' denote the set of sites in frustrated bonds (bonds <i,j) such
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that o,0;= —1). Let {y,} denote the connected components of I' —connectedness in
the nearest neighbor sense. These are the contours of the configuration. We label
each component of y° with a boundary condition, + or —, to indicate the sign of
spins in y adjacent to those components.

In order to avoid unpleasant constraints arising from matching of boundary
conditions of contours, and to treat the effect of contours on the observable, we use
collapsing expansions, emphasized in [8]. The spin configuration is resummed in
minus components of y° to produce a partition function with minus boundary
conditions. We multiply and divide by the corresponding partition function with
plus boundary conditions, and contour-expand the one in the numerator.
Continuing the process, we obtain a contour expansion, where each contour y has
+ boundary conditions on the component of y containing A°, and where for each
minus component of y¢ there is a corresponding factor of a ratio of partition
functions, minus over plus.

The result is the following expansion:

[A],=A(c™")e ™ FFm %} l:[ (), (8.12)
where
ry)= " comw%ble i, P LZV s{o;—1)+ <i’jz>c , BJifoio;— 1)]
11 A0L.v, (8.13)

v LAy,

For ¢ to be compatible with y,, it must equal 1 on the boundary of the component
of y° containing A°, and it must be constant on the boundary of every component of
7. Furthermore, each i € y must be in a frustrated bond <i,j) with 6,0,= —1. The
components of y° with minus boundary conditions are denoted {V,}, and we have
defined

AV )1 v, = > CXP[ > 80+ X ﬁJijUiO'j] . (814
{oi}iev, :0 = £1 for icdv, ieVy L, j>CVy
The contour activities obey the bound
) <efvolWe = #BINSol (8.15)

Each frustrated bond {i,j», i€y\S, yields a factor e 2#/ii<e i, Changing
variables, 0 — o, in [A(V,)]1; y,, we see that each ratio is really an expectation of
exp [ -2y siai] in an appropriate measure. Hence it is bounded by

ieV,
exp[ > 2|si|], and all the ratios and s-factors are bounded by e?°. The spin sum
ieV,

produces a factor 2°**?. Each frustrated bond {i,j»CynS, produces a factor
e~ 24, which is less than 1if J;;>0, less than e*/V/u! if J;; <0. Hence (8.15) holds
with our modified definition of volume.

Differentiation with respect to s-parameters are treated in a manner analogous
to that in the high temperature spin glass, since derivatives of the ratios in V,
produce truncated expectations of exp[—2 > siai} with ¢;s. The only new

ieV,
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feature is an extra factor 2!#! to allow for the choice of differentiating the
observable exp[—2 > sioi} or the measure
ieV,

([A(Vv)];r,vv)_le?(p[iszv soit 2 :BJijo'iGj]'

L, >V,

Thus we have

'(2) r(y)} S e vl 2810\Sol 4141\ g1 | (8.16)
0s) 4

We now obtain the standard form (3.2) for our expansion by summing (8.12)
within C-connected sets X©@ or Y©, We have

o(YO)=r(Y?),
oX= ¥ TIr@). (8.17)

{yu} filling X(©@
We obtain (3.7), (3.8) for these cluster activities, with 2!#! replaced by 4/%!|%|! and
with 2”0l replaced by ef¥o!* 50 Thus

0 -
<5§> e(X™h)

with m= /2 —c. The combinatorics of the sum over {y,} in (8.17) is by now trivial;
the combinatoric factors are bounded by e¢ €4 (0”< cvolX®) The large decay
181X ‘0)\SO| allows the replacement of vol(X (0’) with vol (X (O)\SO) The modifica-
tions in (3.7), (3.8) do not affect the estimates in Sect. 5 much; in particular, we still
obtain (5.1) with 4%/ replacing 2!%I.

We can proceed with the expansion as in Sects. 3 and 4. Some new clusters are
considered which as always are the ones resulting from an expansion of
unnormalized expectations of products of characteristic functions in C*”s. In this
case we have y™™C¥) setting ¢ =1 in C%, and the new clusters can contain sites in
OCW (just as if C® were part of A°). We obtain then the formula (6.2) for z(C®)~ 1,
only (- gg is replaced with (- ); gg. The latter is defined by restricting the
original measure to configurations with ¢ =1 in 0C®UC®", so that only clusters
contained in C%® arise in the reconstruction of z(C®)~1.

The end result is the expansion

é 4|.%| |g| ! ecvol(X(‘ 1)r'\So)e—mIX(‘ N\So| , (818)

log[4],=Tsi+ 3 Byt S

<i, jyCALDA 0fa:cPess

logz(C9) + VU’)(YU))],
Yo
(8.19)

from which we easily obtain expectations by differentiating with respect to the s;’s.
We find that the expectation of a single spin is strictly positive, with high
probability (symmetry breaking), as well as our usual results about decay of
truncated functions.

Theorem 8.2. Choose B sufficiently large. Then, with probability 1 with respect to J,
there is nonzero spontaneous magnetization, and connected correlations have tree
decay, with decay rate M =const- >0, in the sense of Sect. 1.3, (1.14).
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