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Abstract. We prove that for a bounded domain DcRn with C2 boundary and

qeKι

n

oc (n^3) if £*exp f q{xt)dtφ oo in D, then

sup£*exp j q(xt)dt< + oo ({xj: Brownian motion).
xeD o
zedD

The important corollary of this result is that if the Schrodinger equation

—-u + qu = 0 has a strictly positive solution on D, then for any D 0C CD, there

exists a constant C = C{n,q,D,D0) such that for any feL1(dD, σ), (σ: area
measure on dD) we have

sup\uf(x)\^C $ \f(y)\σ(dy),
xεDo dD

where uf is the solution of the Schrodinger equation corresponding to the
boundary value /

To prove the main result we set up the following estimate inequalities on
the Poisson kernel K(x, z) corresponding to the Laplace operator:

where Cx and C2 are constants depending on n and D.

Let D be a bounded domain in Rn (n^3) with C 2 boundary, (χ t,ί>0) be the
Brownian motion and τD = inf(t > 0: xtφD). According to Doob [3], for any
positive harmonic function h on D, ^-conditioned Brownian motion in D is
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determined by the following transition probability density:

where PD(ί, x, y) is the density of the Brownian motion killed outside D (see [6]).
In this paper, we only consider h(x) as the Poisson kernel of D:K(xf z),

(xeD,zedD). For any xeD, K(x, ) is defined as the density of the harmonic
measure on dD:

According to the Green formula and smoothness of the boundary, K(x, z) can
also be defined as follows:

where G( , •) is the Green function of D and -— is the internal normal derivative. G
dnz

also has the following probabilistic meaning: (see [6])
oo

G(x,y)=\PD{t,x,y)dt. (4)
0

For any zedD, if we let h( ) be K(-,z) in (1), then the corresponding process is
called z-conditioned Brownian motion in D. Let Px and Ex denote respectively the
probability and expectation determined by z-conditioned Brownian motion
starting at x.

By (1) and (2), it is easy to check the following properties:
For any positive and Ftr>-measurable function Φ, we have

For any stopping time T< τD and any positive, immeasurable function Φ,

Ex

zΦ(ω) = — 1 — ExlΦ(ω)K(xT, z)] . (6)

Let q be a Borel function belonging to the class Kι°c (see [1,7]), i.e. q satisfies
the condition: for each R > 0,

r f f \g(y)\hm sup J T^
l θ [ \ \ ί R J \ y χ \ n

= 0. (7)

Set eq(t) = exp$q(χs)ds, (t^O).
o

The main result in this paper is the following:

Theorem 1. // Exeq(τD)^ oo in D, then

sup Ex

z[e(τD)~] < + oo .
xeD H

zedD
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Remark ί. This result improves the main theorems in [1] by Aizenman and Simon,
in [4] by Falkner, and in [9] by Zhao.

Remark 2. By Theorem A.4.1 and Theorem A.4.9 in [1], the condition
Exeq(τD) φ oo can be replaced by condition (A):

s u p s p e d - + 4 = s u p f- f \Vv\2+ j > 2 ] < 0 ,

(Δ \
or condition (B): there exists a solution u of —\-q\u~O with a positive lower
bound on D. ^ '

Theorem 1 has the following important corollary:

Theorem 2. // (D, q) satisfies (A) or (B), then for any domain Do, Do C D, there exists
a constant C = C(n,q,D,D0) such that for any feL1(dD,σ\ we have

sup|M(x)|^C j\f(z)\σ(dz),
xeDo dD

where uf{x) = Ex[eq(τD)f(xτD)]. (uf is the solution of the Schrodinger boundary
problem corresponding to f.)

Proof By the Harnack inequality, for DQCCD,

J1=supK{x,z)< + oo.
xeDo
zεδD

According to Theorem 1, J 2 = sup Exe (τD) < + oo. By definition and (5), we have
xeD
zedD

uf(x)= J f{z)E*eq(τD)K(x,Z)σ(dz).
δD

Hence

sup|uf(x)\^J1J2 J|/(z)|σ(dz). D
xeDo dD

To prove Theorem 1 we need some lemmas. The following lemma has inde-
pendent interest:

Lemma 1. There exist two constants Cγ and C2, which only depend on n and D, such
that

where d(x) = d(x, 3D).

Proof. By Theorem 2.3 in [8], there exists some C>0 such that

a
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Considering the continuity of -r— G(x, y) on D, we have
dyt

\x-z\n'

The inequality on the right hand of (8) is proved.
Since D is of class C2, there exists r > 0 such that for any zedD, a ball of radius

r,BzCD and zedBz.
S e t D

By the Harnack inequality, there exists a constant C > 0 such that for all xeD\Dv

zedD,
K(x,z)^C. (9)

Then we have

^ W α0)

where rf(D) is the diameter of D.
For X E D 1 ? Ξwe^D such that d(x) = \w — x\. Let u0 be the center of ball Bw and

-/ A ( A
B[U°;2) = [u:\u~uo\=2j'

-/ A

We consider the domain R = Bw\Biu0;-\ and introduce a function v as in

Lemma 3.4 in [5] :

— -JIM — WO|2 — exp( — 2n),

Set e= - ^ ——-. Since B(uo;r/2)CD\DV if uedB(uo;r/2),
exp( - n/2) - exp( - In)

,z)^C^εv(ul (zedD). If uedBw, υ(u) = 0. So for all uedR,

On the other hand we have

AFz(u) = εAv{u)^0, ueR.

Now the maximum principle implies that

exp - -^ (r - ^(x))2 - exp(- 2n)

2ΐis
^ exp( - 2n)d{x),
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So we have

2nC

23

r[exp( — n/2) — exp( — 2ήj\
exp( — 2ή)d(x) , xeD,. (11)

Since the normal unit vectors nz are uniformly continuous with respect to z on
3D, there exists some b>0 such that if zvz2edD, \z1 — z2\<b, then

s i n ^ - ( y J < 1 / 8 ; (12)

where Z_( , •) denotes the angle between two vectors.
Take α = min(fe/2,r/8). For any zedD, set Dz = (ueD:\u — z\<a). From (11), for

any xeDx\Dz, we have

2nCanexp{-2n) d(x)
r[exp(— n/2) — exp( — Irίj] \x — z\n'

(13)

For xeDz, 3wedD such that |w-x | = φc). Set D0 = BzuBw. Since D0CD, D,
and Do have the same normal direction at z, we have

fez). (14)

Let oz and ow be the centers of Bz and Bw respectively. Then we have

Take a point ueδBzr\dBw. Set θ = L{owu,owoz). Since

and (12),

So we have

' ^ ^1/8 + 1/8^ (15)

W u

Fig. 1
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Take α = θ ~ L (owz, owoz). We set up a polar coordinate system with principal
axis owz. Set

S={y = (ρ,φv...,φn_ί):ρ = r,φί<a/2}, S1=dBwnBz.

Obviously SCSV

According to the harmonic property of the Poisson kernel and the Green
formula, we have

^ ^ [ 1 / ( 0 , . , ^ J KBn(x,y)KBz(y,z)σ(dy)
s,

where ωΛ_1(r) = σ[δβ(0;r)].
When yeS,

\y-oz\
2 = r2 + \ow-oz\

2-2r\ow-oz\cosL(owy,owoz),

\ow-oz\ = 2rcosθ, L(owy,owoz)^θ-(x/2. (17)

Then

r 2 - | j ;-oJ 2 ^4r 2 cosθcos(0-α/2)-4r 2 cos 2 θ

= 8r2cos^sin(θ~α/4)sinα/4. (18)

Set L = \z — ow\, A = cosθ, B = cos(θ — cή. Then we have

r2 = \z-oz\
2 = \z-oj2 + \ow~oz\

2-2\z-oj\ow-oz\cos(θ-a)

= L2-4r2cos2θ-4Lrcosθcos(Θ-a);

L2 - ArABL - (4r2Λ2 - r2) = 0
(19)

L = 2MB + ( 4 r 2 ^ 2 ^ 2 - 4 r 2 ^ 2 + r 2 ) 1 / 2

r (4r2A2B2-4r2A2 + r2)ll2 +

4rA{B-A)

~ (1 - 4.4 2 + 4A2B2)112 + 1 - 2AB

< 8r cos θ sin (θ - α/2) sin α/2
= 2(1-2,4)

^ 8r cos 0 sin (θ- α/2) sin α/2, (4 = cos 0^1/4);

\y— z\2 = L2 + r2 — 2Lr cos φ x (y)

= (L — r)2 + 2Lr[l — cos φ1(y)'] (L ̂  2r)

ήx^φ^y). (20)
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By (17), (18) and (20), we have

(r
2-\y-of

l
Sr2 cos θ sin (θ - a/4) sin (a/4) , σ(dy)

2Π |JC-Z|Π ί[(L-r2

f σ(^) =

\[_(L-r)2+4r2ύn2φ1(y)γ12 ω « " 2 U j J-

L-r I (l+4v2)n2 ) n l 2

8cosβsin(ff-α/2)

sin (α/2)

By (14), (16), and (21)-(24), we have

K(x,z)^r—

rn-ιωn_2{l)1'2 vn~2dv d(x)

~ 2nπωn_i(l) J

o (l+4v2)n/2 \x-z\n

So by (10), (13), and (25), if we take

Crn 2nCanQxp(-2n) rn'1ωn__ι(l)1'2 vn~2dv

(19) 8r cos θ sin (θ — α/2) sin (α/2)

(22)

sin(α/4) ^ ^
(24)

UD)2-'r[exp(-n/2)-exp(-2n)]' 2"πωI1_1(l) i (l+4v2)nl2)'

we have

^ - , forallxeD, zeδD. D

Lemma 2. 77zere exfsίs α constant C 3 .swc/z ίftαί /or β/Z x.yeD,

\χ-y\n'

Proof. It is known that

(27)
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By Theorem 2.3 in [8], we have

Since d(y)^d(x) + \x-y\,

\χ-y

d(y)G(x, y) S d(x)G(x, y) + \x~ y\G(x, y) ̂  An ]χ_^-2 + C ̂ f ^ z

d(x) 1

'd(y) \x-yr2'

Inequality (26) is proved.

For any x,yeD, take a point zeD such that \y—z\=d(y). Set

f{t) = G{x,z + t{y-z)), Ogίgl.

G(x,y)=f(ί)=f(ί)-f(O)=f'(θ), (O^θ^ί)

A [ d

21 1/2

= l

(since Theorem 2.3 in [5]). (28)

lf\x-y\>2d(y),

From (28),

-(z + θ(y~z))\^\x-y\~\(y-z)(l-θ)\

If |x-j;|^2J(3;), also by Theorem 2.3 in [8],

Inequality (27) is proved. •

Similar to (4), we define the Green function corresponding the z-conditioned
Brownian motion as follows:

00

Gz{x,y)=\Pz{t,x,y)dt. (29)

So by (1) and (4), we have

{x, y) =
pe, z)

x, y)K{y, z). (30)
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Lemma 3. For any sub-domain D0CD such that dDCdD0, we have

sub f Gz(x9y)\q{y)\dy^Cswp J lq^i2dy9

zfdξoDo xeDoDo \X~ y\

where the constant C only depends on n and D.

Proof. For any given xeD0, zedD, set

D2 = (yeD0:\y-x\^\z-x\/2).

By Lemmas 1 and 2 and (30), we obtain

k(y)\ , \q(y)\
< r j ^ 2 " ( J ' ,;'-2rfy+ j , ,,'-2dy

Now for any <5>0, set

) = (xeD:d(x,dD)<δ)9

) = (xeD:d(x,dD) = δ),

) = (xeD:d(x,dD)>δ).

Lemma 4. There exists some δί>0 such that for any

sup Ex

zeM(τD(δ))ί4β, (31)
xeD(δ)
zeδD

and
supE*eM(τm)£4β. (32)

Proof. For any xeD, measurable set D0CD and α>0, we have

Dol^"^! \x-y\ύoc \X~y\ α Do

By definition (7), we can take some α > 0 such that

sup ί rJ^jdySWQ, (34)

where C is given in Lemma 3.
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It is easy to see from (7) that j \q(y)\dy < + oo. Then there exists some δί>0
such that for any 0<δ^δv

 D

J \q(y)\dy^*»-2/(SQ. (35)
D(δ)

It follows from (33), (34), and (35) that

*%> l\^w^dy-wc)' (36)

By (29), Lemma 3, and (36), we have

sup Ex

z J \q(xt)\dt^ sup Ex

z J \1 D(δ)q(xt)\dt
xeD(δ) o xeD(δ) Q
zedD zedD

= sup j Gz{x,y)\q(y)\dy
xeD(δ) D(δ)
zedD

c \q(v)\
^C sup j -— ιn-2~dy= 1/4- (37)

For any xeD((SX ze5D, by the Markov property of z-Brownian motion and (37),
we have

Keφm))=i + Σ K ( ί I«M • k(χjdt1... dtk
fc=l \ 0 < ί i < ... < ί k < τ D ( < 5 )

g Σ (V4)fc = 4/3.

Similarly, since

sup ExΓf\q(xt)\dt)s sup j G(x, y)\q(y)\dy
xeD(δ) \ 0 J xeD(δ) £)($)

for any xeD(^), we have

£ ^ 1 , 1 ( ^ ^ 4 / 3 . D

Lemma 5. // Exeq(τD) φ oo in D, t/ieπ

is α continuous function on D.

Proof. By Theorem 7 in [9], we have M= supu(x)< + oo. Set
xeD

G(qu)(x) = j G(x,y)q(y)u(y)dy, xeD.
D

Since for any measurable set A C A

A
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it follows from (7) and (33) that the integrals ίj G{x,y)q(y)u(y)dy:AcD\ are
\A J

uniformly absolutely continuous with respect to xeD. Hence it is easy to see that
G{qu)(') is a continuous function on D.

Simulating the proof of Theorem 2.1 in [2], we have u = 1 + G(qu). This shows
that u is continuous on D. •

Lemma 6. If Exeq(τD)φ oo, then there exists some δ2>0 such that for any 0^
xeB(δ)\B{δΛ we have

Proof Take an ε>0 such that 2/3^(l-ε)/(l+ε)^(l+ε)/(l-β)^4/3. By
Lemma 5, there exists some δ2>0 such that if xeD\B{δ2), then

For any 0^δ<δ2, xeB{δ)\B{δ2),

1 + ε *> E\(τD) = Ex{eq(

- β ^ £

2 / 3 ^ ( 1 - ε)/(l + ε) ̂  £ % ( τ W ) ) g (1 + ε)/(l - ε) g 4/3. D

Proof o/ Theorem ί. Set 6 = min(^1?(52), where (51 and (52 are given by Lemmas 4'
and 6, respectively.

Since φ(x) = Pxίx{'τDib})eS(b)'] is a continuous function on D(b) and φ(z) = 0 for
, there exists a number 0<r<b such that for all xeD\B(r),

Pxίx(τD(b))eS(b)-]< 1/3. (38)

Set T 0 =0,

We want to prove inductively that for any fe^ 1,

(39)

Fig. 2
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When k= 1, by Lemma 6, (38), and Lemma 4, (32), we have

sup EΊ>β(T3), T 2 < τ D ] = sup E>{eβ(T2)E«™[eβ(TJ], T 2 <τ D }
yeS(r) yeS(r)

^(4/3) sup £^(T 2 ), T 2 <τJ

^ (4/3) j sup P^(T2<τD)+ sup E ^ ί τ ^ -
\yeS(r) yeS(r)

^8/9.

Suppose (39) is true for /eg: 1.

yeS(r)

= sup ^ { ^ ( T 3 ) £ ^ T 3 ) [ ^ ( Γ 2 k + 1 ) , T2k<τDl T2<τD}
yεS(r)

up£^(T 3 ), T2<τD]
S ( )

By Theorem 7 in [9], M= supExe (τD)< + oo.
xeD

For all xe5(r), by Lemma 6, we have

sup £*β (7;)^(3/2)M. (40)

For all xeβ(r), zeδD, by Lemma 4, (31) and (6), we have

KφD)= Σ^Ceβ(τβ),τD=T2J
fc=l

= Σ K{eqiT2k-dEfT2k-ι)ίeq{T2),τD=T2-\, T2k_2<τD}
k=l

^(4/3) Σ ^T 1—Γ^C^T^-JKWΓ^^XZ), T2 t_2<τJ.

By the Harnack inequality, there exist two positive numbers b1 and fo2 such that
for all xeB(r)uS(r\ zedD, bi^K(x,z)^b2. Continuing the above inequalities and
using (39), (40),

Ah °°

JO I k=ί

Ah °°
ύ ^ Σ B-ί

Ah



Conditional Gauge and Schrodinger Equations 31

For all xeD\B(r), zedD, by (41) and Lemma 4, (31), we have

T?xo (r \ — T?XYP (r λ T — r Ί 4- PXΓP (T \ r <Γ r Ίnzeq\τD/~~j:jzLeq\['D(b)h L D{b) ~ LD^ ^ n z L^q\ LD^ LD(b) ^ LD-i

<(ά/Vi-\- Fxίp (r )Fx{τD{b))Γp (τ Yl τ < τ \
= Vv->)ι rjzltq\iD{byrjz L^VC£)/J> ιD{b)^lD>

:/^i)^zL^(τD(fo)Λ τD(Z7) ̂  τD-l

./fei). (42)

It follows from (41) and (42) that
sup Exeq(τD) < + oo . G

zeδD

Acknowledgements. I would like to thank my adviser K. L. Chung for his guidance and encouragement,

N. Falkner and P. Li for helpful discussions.

References

1. Aizenman, N., Simon, B.: Brownian motion and Harnack inequality for Schrodinger operators.
Commun. Pure Appl. Math. 35, 209-273 (1982)

2. Chung, K.L., Rao, K.M.: Feynman-Kac functional and Schrodinger equation. In: Seminar on
Stochastic Process. Boston: Birkhauser 1981

3. Doob, J.L.: Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc.
Math. France 85, 431-458 (1957)

4. Falkner, N.: Feynman-Kac functional and positive solutions of ^Δu + qu = 0. Z.
Wahrscheinlichkeitstheorie verw. Gebiete (to appear)

5. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin,
Heidelberg, New York: Springer 1977

6. Port, S.C., Stone, C.J.: Brownian motion and classical potential theory. New York Academic Press
1978

7. Simon, B.: Schrodinger semigroup. Bull. Am. Math. Soc. (N.S.) 7, 447-526 (1982)
8. Widman, K.-O.: Inequalities for the Green function and boundary continuity of the gradient of

solutions of elliptic differential equations. Math. Scand. 21, 17-37 (1967)
9. Zhao, Z.: Conditional gauge with unbounded potential. Z. Wahrscheinlichkeitstheorie verw.

Gebiete (to appear)

Communicated by B. Simon

Received March 24, 1983; in revised form August 31, 1983






