Uniform Boundedness of Conditional Gauge and Schrödinger Equations

Zhongxin Zhao*
Institute of Systems Science and Mathematical Sciences, Academica Sinica, Beijing, People's Republic of China

Abstract. We prove that for a bounded domain $D \subset R^{n}$ with C^{2} boundary and $q \in K_{n}^{\text {loc }}(n \geqq 3)$ if $E^{x} \exp \int_{0}^{\tau_{D}} q\left(x_{t}\right) d t \equiv \infty$ in D, then

$$
\sup _{\substack{x \in D \\ z \in D D}} E_{z}^{x} \exp \int_{0}^{\tau_{D}} q\left(x_{t}\right) d t<+\infty \quad\left(\left\{x_{t}\right\}: \text { Brownian motion }\right) .
$$

The important corollary of this result is that if the Schrödinger equation $\frac{\Delta}{2} u+q u=0$ has a strictly positive solution on D, then for any $D_{0} \subset \subset D$, there exists a constant $C=C\left(n, q, D, D_{0}\right)$ such that for any $f \in L^{1}(\partial D, \sigma),(\sigma$: area measure on ∂D) we have

$$
\sup _{x \in D_{0}}\left|u_{f}(x)\right| \leqq C \int_{\partial D}|f(y)| \sigma(d y),
$$

where u_{f} is the solution of the Schrödinger equation corresponding to the boundary value f.

To prove the main result we set up the following estimate inequalities on the Poisson kernel $K(x, z)$ corresponding to the Laplace operator:

$$
C_{1} \frac{d(x, \partial D)}{|x-z|^{n}} \leqq K(x, z) \leqq C_{2} \frac{d(x, \partial D)}{|x-z|^{n}}, \quad x \in D, \quad z \in \partial D,
$$

where C_{1} and C_{2} are constants depending on n and D.

Let D be a bounded domain in $R^{n}(n \geqq 3)$ with C^{2} boundary, $\left(x_{t}, t>0\right)$ be the Brownian motion and $\tau_{D}=\inf \left(t>0: x_{t} \notin D\right)$. According to Doob [3], for any positive harmonic function h on D, h-conditioned Brownian motion in D is

[^0]determined by the following transition probability density:
\[

$$
\begin{equation*}
P_{h}(t, x, y)=\frac{1}{h(x)} P^{D}(t, x, y) h(y), \quad t>0, \quad x, y \in D \tag{1}
\end{equation*}
$$

\]

where $P^{D}(t, x, y)$ is the density of the Brownian motion killed outside D (see [6]).
In this paper, we only consider $h(x)$ as the Poisson kernel of $D: K(x, z)$, $(x \in D, z \in \partial D)$. For any $x \in D, K(x, \cdot)$ is defined as the density of the harmonic measure on ∂D :

$$
\begin{equation*}
K(x, z) \sigma(d z)=P^{x}\left(x\left(\tau_{D}\right) \in d z\right) . \tag{2}
\end{equation*}
$$

According to the Green formula and smoothness of the boundary, $K(x, z)$ can also be defined as follows:

$$
\begin{equation*}
K(x, z)=\frac{\partial G}{\partial n_{z}}(x, z), \tag{3}
\end{equation*}
$$

where $G(\cdot, \cdot)$ is the Green function of D and $\frac{\partial G}{\partial n_{z}}$ is the internal normal derivative. G also has the following probabilistic meaning: (see [6])

$$
\begin{equation*}
G(x, y)=\int_{0}^{\infty} P^{D}(t, x, y) d t . \tag{4}
\end{equation*}
$$

For any $z \in \partial D$, if we let $h(\cdot)$ be $K(\cdot, z)$ in (1), then the corresponding process is called z-conditioned Brownian motion in D. Let P_{z}^{x} and E_{z}^{x} denote respectively the probability and expectation determined by z-conditioned Brownian motion starting at x.

By (1) and (2), it is easy to check the following properties:
For any positive and $F_{\tau_{D}}$-measurable function Φ, we have

$$
\begin{equation*}
E^{x}\left[\Phi(\omega) \mid x\left(\tau_{D}\right)\right]=E_{x\left(\tau_{D}\right)}^{x} \Phi(\omega) . \tag{5}
\end{equation*}
$$

For any stopping time $T<\tau_{D}$ and any positive, F_{T}-measurable function Φ,

$$
\begin{equation*}
E_{z}^{x} \Phi(\omega)=\frac{1}{K(x, z)} E^{x}\left[\Phi(\omega) K\left(x_{T}, z\right)\right] . \tag{6}
\end{equation*}
$$

Let q be a Borel function belonging to the class $K_{n}^{\text {loc }}$ (see $[1,7]$), i.e. q satisfies the condition: for each $R>0$,

$$
\begin{equation*}
\lim _{\alpha \downarrow 0}\left[\sup _{|x| \leqq R} \int_{|y-x| \leqq \alpha} \frac{|q(y)|}{|y-x|^{n-2}} d y\right]=0 . \tag{7}
\end{equation*}
$$

Set $e_{q}(t)=\exp \int_{0}^{t} q\left(x_{s}\right) d s,(t \geqq 0)$.
The main result in this paper is the following:
Theorem 1. If $E^{x} e_{q}\left(\tau_{D}\right) \equiv \infty$ in D, then

$$
\sup _{\substack{x \in D \\ z \in D D}} E_{z}^{x}\left[e_{q}\left(\tau_{D}\right)\right]<+\infty .
$$

Remark 1. This result improves the main theorems in [1] by Aizenman and Simon, in [4] by Falkner, and in [9] by Zhao.

Remark 2. By Theorem A.4.1 and Theorem A.4.9 in [1], the condition $E^{x} e_{q}\left(\tau_{D}\right) \equiv \equiv \infty$ can be replaced by condition (A):

$$
\sup \left[\operatorname{spec}\left(\frac{\Delta}{2}+q\right)\right]=\sup _{\substack{v \in C^{\infty}(D) \\\|v\|_{L^{2}}^{2}=1}}\left[-\int_{D}|\nabla v|^{2}+\int_{D} q v^{2}\right]<0
$$

or condition (B): there exists a solution u of $\left(\frac{\Delta}{2}+q\right) u=0$ with a positive lower
bound on D.
Theorem 1 has the following important corollary:
Theorem 2. If (D, q) satisfies (A) or (B), then for any domain $D_{0}, \bar{D}_{0} \subset D$, there exists a constant $C=C\left(n, q, D, D_{0}\right)$ such that for any $f \in L^{1}(\partial D, \sigma)$, we have

$$
\sup _{x \in D_{0}}\left|u_{f}(x)\right| \leqq C \int_{\partial D}|f(z)| \sigma(d z),
$$

where $u_{f}(x)=E^{x}\left[e_{q}\left(\tau_{D}\right) f\left(x_{\tau_{D}}\right)\right]$. (u_{f} is the solution of the Schrödinger boundary problem corresponding to f.)

Proof. By the Harnack inequality, for $D_{0} \subset \subset D$,

$$
J_{1}=\sup _{\substack{x \in D_{0} \\ z \in D D}} K(x, z)<+\infty .
$$

According to Theorem 1, $J_{2}=\sup _{\substack{x \in D \\ z \in D D}} E_{z}^{x} e_{q}\left(\tau_{D}\right)<+\infty$. By definition and (5), we have

$$
u_{f}(x)=\int_{\partial D} f(z) E_{z}^{x} e_{q}\left(\tau_{D}\right) K(x, z) \sigma(d z)
$$

Hence

$$
\sup _{x \in D_{0}}\left|u_{f}(x)\right| \leqq J_{1} J_{2} \int_{\partial D}|f(z)| \sigma(d z) .
$$

To prove Theorem 1 we need some lemmas. The following lemma has independent interest:

Lemma 1. There exist two constants C_{1} and C_{2}, which only depend on n and D, such that

$$
\begin{equation*}
C_{1} \frac{d(x)}{|x-z|^{n}} \leqq K(x, z) \leqq C_{2} \frac{d(x)}{|x-z|^{n}}, \quad x \in D, \quad z \in \partial D \tag{8}
\end{equation*}
$$

where $d(x)=d(x, \partial D)$.
Proof. By Theorem 2.3 in [8], there exists some $C>0$ such that

$$
\left|\frac{\partial}{\partial y_{i}} G(x, y)\right| \leqq C \frac{d(x)}{|x-y|^{n}}, \quad x, y \in D, \quad i=1, \ldots, n .
$$

Considering the continuity of $\frac{\partial}{\partial y_{i}} G(x, y)$ on \bar{D}, we have

$$
K(x, z)=\frac{\partial}{\partial n_{z}} G(x, z) \leqq C \sqrt{n} \frac{d(x)}{|x-z|^{n}} .
$$

The inequality on the right hand of (8) is proved.
Since D is of class C^{2}, there exists $r>0$ such that for any $z \in \partial D$, a ball of radius $r, B_{z} \subset D$ and $z \in \partial B_{z}$.

Set

$$
D_{1}=\left\{x \in D: d(x, \partial D)<\frac{r}{2}\right\} .
$$

By the Harnack inequality, there exists a constant $C>0$ such that for all $x \in D \backslash D_{1}$, $z \in \partial D$,

$$
\begin{equation*}
K(x, z) \geqq C . \tag{9}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
K(x, z) \geqq \frac{C r^{n}}{d(D) 2^{2}} \cdot \frac{d(x)}{|x-z|^{n}} \tag{10}
\end{equation*}
$$

where $d(D)$ is the diameter of D.
For $x \in D_{1}, \exists w \in \partial D$ such that $d(x)=|w-x|$. Let u_{0} be the center of ball B_{w} and

$$
\bar{B}\left(u_{0} ; \frac{r}{2}\right)=\left(u:\left|u-u_{0}\right| \leqq \frac{r}{2}\right) .
$$

We consider the domain $R=B_{w} \backslash \bar{B}\left(u_{0} ; \frac{r}{2}\right)$ and introduce a function v as in Lemma 3.4 in [5]:

$$
\begin{gathered}
v(u)=\exp \left(-\frac{2 n}{r^{2}}\left|u-u_{0}\right|^{2}\right)-\exp (-2 n), \quad u \in R, \\
\Delta v(u)=\exp \left(-\frac{2 n}{r^{2}}\left|u-u_{0}\right|^{2}\right)\left(\frac{16 n^{2}}{r^{4}}\left|u-u_{0}\right|^{2}-\frac{4 n^{2}}{r^{2}}\right) \geqq 0, \quad u \in R .
\end{gathered}
$$

Set $\quad \varepsilon=\frac{C}{\exp (-n / 2)-\exp (-2 n)}$. Since $\quad \bar{B}\left(u_{0} ; r / 2\right) \subset D \backslash D_{1}, \quad$ if $\quad u \in \partial \bar{B}\left(u_{0} ; r / 2\right)$, $K(u, z) \geqq C \geqq \varepsilon v(u),(z \in \partial D)$. If $u \in \partial B_{w}, v(u)=0$. So for all $u \in \partial R$,

$$
F_{z}(u) \equiv \varepsilon v(u)-K(u, z) \leqq 0 .
$$

On the other hand we have

$$
\Delta F_{z}(u)=\varepsilon \Delta v(u) \geqq 0, \quad u \in R .
$$

Now the maximum principle implies that

$$
\begin{aligned}
K(x, z) & \geqq \varepsilon v(x)=\varepsilon\left\{\exp \left[-\frac{2 n}{r^{2}}(r-d(x))^{2}\right]-\exp (-2 n)\right\} \\
& \geqq \frac{2 n \varepsilon}{r} \exp (-2 n) d(x), \quad x \in R .
\end{aligned}
$$

So we have

$$
\begin{equation*}
K(x, z) \geqq\left[\frac{2 n C}{r[\exp (-n / 2)-\exp (-2 n)]} \cdot \exp (-2 n) d(x)\right], \quad x \in D_{1} . \tag{11}
\end{equation*}
$$

Since the normal unit vectors n_{z} are uniformly continuous with respect to z on ∂D, there exists some $b>0$ such that if $z_{1}, z_{2} \in \partial D,\left|z_{1}-z_{2}\right|<b$, then

$$
\begin{equation*}
\sin \frac{\angle\left(n_{z_{1}}, n_{z_{2}}\right)}{2}<1 / 8 \tag{12}
\end{equation*}
$$

where $\angle(\cdot, \cdot)$ denotes the angle between two vectors.
Take $a=\min (b / 2, r / 8)$. For any $z \in \partial D$, set $D_{z}=(u \in D:|u-z|<a)$. From (11), for any $x \in D_{1} \backslash D_{z}$, we have

$$
\begin{equation*}
K(x, z) \geqq \frac{2 n C a^{n} \exp (-2 n)}{r[\exp (-n / 2)-\exp (-2 n)]} \cdot \frac{d(x)}{|x-z|^{n}} . \tag{13}
\end{equation*}
$$

For $x \in D_{z}, \exists w \in \partial D$ such that $|w-x|=d(x)$. Set $D_{0}=B_{z} \cup B_{w}$. Since $D_{0} \subset D, D$, and D_{0} have the same normal direction at z, we have

$$
\begin{equation*}
K(x, z) \geqq K_{D_{0}}(x, z) . \tag{14}
\end{equation*}
$$

Let o_{z} and o_{w} be the centers of B_{z} and B_{w} respectively. Then we have

$$
\left|o_{z}-o_{w}\right| \leqq|z-w|+2 r \sin \frac{\angle\left(n_{z}, n_{w}\right)}{2}
$$

Take a point $u \in \partial B_{z} \cap \partial B_{w}$. Set $\theta=\angle\left(o_{w} u, o_{w} o_{z}\right)$. Since
and (12),

So we have

$$
\sin \frac{\angle\left(n_{z}, n_{w}\right)}{2}<1 / 8
$$

$$
\begin{equation*}
\cos \theta=\frac{\left|o_{z}-o_{w}\right|}{2 r} \leqq a / r+\sin \frac{\angle\left(n_{z}, n_{w}\right)}{2} \leqq 1 / 8+1 / 8=1 / 4 \tag{15}
\end{equation*}
$$

Fig. 1

Take $\alpha=\theta-\angle\left(o_{w} z, o_{w} o_{z}\right)$. We set up a polar coordinate system with principal axis $o_{w} z$. Set

$$
S=\left\{y=\left(\varrho, \varphi_{1}, \ldots, \varphi_{n-1}\right): \varrho=r, \varphi_{1}<\alpha / 2\right\}, \quad S_{1}=\partial B_{w} \cap B_{z} .
$$

Obviously $S \subset S_{1}$.
According to the harmonic property of the Poisson kernel and the Green formula, we have

$$
\begin{align*}
K_{D_{0}}(x, z) & \geqq\left[1 / \omega_{n-1}(r)\right] \int_{S_{1}} K_{B_{w}}(x, y) K_{B_{z}}(y, z) \sigma(d y) \\
& \geqq \frac{r^{2 n-4}}{\omega_{n-1}(r)}\left(r^{2}-\left|x-o_{w}\right|^{2}\right) \int_{S} \frac{r^{2}-\left|y-o_{z}\right|^{2}}{|x-y|^{n}|y-z|^{n}} \sigma(d y), \tag{16}
\end{align*}
$$

where $\omega_{n-1}(r)=\sigma[\partial B(0 ; r)]$.
When $y \in S$,

$$
\begin{align*}
&|x-y| \leqq|x-z|+|y-z| \leqq 2|x-z| \\
&\left|y-o_{z}\right|^{2}=r^{2}+\left|o_{w}-o_{z}\right|^{2}-2 r\left|o_{w}-o_{z}\right| \cos \angle\left(o_{w} y, o_{w} o_{z}\right), \\
&\left|o_{w}-o_{z}\right|=2 r \cos \theta, \quad \angle\left(o_{w} y, o_{w} o_{z}\right) \leqq \theta-\alpha / 2 . \tag{17}
\end{align*}
$$

Then

$$
\begin{align*}
r^{2}-\left|y-o_{z}\right|^{2} & \geqq 4 r^{2} \cos \theta \cos (\theta-\alpha / 2)-4 r^{2} \cos ^{2} \theta \\
& =8 r^{2} \cos \theta \sin (\theta-\alpha / 4) \sin \alpha / 4 \tag{18}
\end{align*}
$$

Set $L=\left|z-o_{w}\right|, A=\cos \theta, B=\cos (\theta-\alpha)$. Then we have

$$
\begin{align*}
& r^{2}=\left|z-o_{z}\right|^{2}= \\
&=L^{2}-4 r^{2} \cos ^{2} \theta-4 L r \cos \theta \cos (\theta-\alpha) ; \\
& L^{2}-4 r A B L-\left(4 r^{2} A^{2}-r^{2}\right)=0 ; \\
& L=2 r A B+\left(4 r^{2} A^{2} B^{2}-4 r^{2} A^{2}+r^{2}\right)^{1 / 2} ; \tag{19}\\
& L-r= \frac{\left(4 r^{2} A^{2} B^{2}-4 r^{2} A^{2}+r^{2}\right)-(r-2 r A B)^{2}}{\left(4 r^{2} A^{2} B^{2}-4 r^{2} A^{2}+r^{2}\right)^{1 / 2}+r-2 r A B} \\
&= \frac{4 r A(B-A)}{\left(1-4 A^{2}+4 A^{2} B^{2}\right)^{1 / 2}+1-2 A B} \\
& \leqq \frac{8 r \cos \theta \sin (\theta-\alpha / 2) \sin \alpha / 2}{2(1-2 A)} \\
& \leqq 8 r \cos \theta \sin (\theta-\alpha / 2) \sin \alpha / 2, \quad(A=\cos \theta \leqq 1 / 4) ; \\
&|y-z|^{2}= L^{2}+r^{2}-2 L r \cos \varphi_{1}(y) \\
&=(L-r)^{2}+2 L r\left[1-\cos \varphi_{1}(y)\right] \quad(L \leqq 2 r) \\
& \leqq(L-r)^{2}+4 r^{2} \sin ^{2} \varphi_{1}(y) . \tag{20}
\end{align*}
$$

By (17), (18) and (20), we have

$$
\begin{align*}
& \int_{S} \frac{r^{2}-\left|y-o_{z}\right|^{2}}{|x-y|^{n}|y-z|^{n}} \sigma(d y) \\
& \geqq \frac{8 r^{2} \cos \theta \sin (\theta-\alpha / 4) \sin (\alpha / 4)}{2^{n}|x-z|^{n}} \int_{S} \frac{\sigma(d y)}{\left[(L-r)^{2}+4 r^{2} \sin ^{2} \varphi_{1}(y)\right]^{n / 2}} . \tag{21}\\
& \int_{S} \frac{\sigma(d y)}{\left[(L-r)^{2}+4 r^{2} \sin ^{2} \varphi_{1}(y)\right]^{n / 2}}=\omega_{n-2}(1) \int_{0}^{r \sin (\alpha / 2)} \frac{u^{n-2} d u}{\left[(L-r)^{2}+4 u^{2}\right]^{n / 2}\left(r^{2}-u^{2}\right)^{1 / 2} / r} \\
& \geqq \frac{\omega_{n-2}(1)}{L-r} \int_{0}^{\frac{r \sin (\alpha / 2)}{L-r}} \frac{v^{n-2} d v}{\left(1+4 v^{2}\right)^{n / 2}} \\
& \underset{(19)}{\sum} \frac{\omega_{n-2}(1)}{8 r \cos \theta \sin (\theta-\alpha / 2) \sin (\alpha / 2)} \int_{0}^{\frac{1}{8 \cos \theta \sin (\theta-\alpha / 2)}} \frac{v^{n-2} d v}{\left(1+4 v^{2}\right)^{n / 2}} ; \tag{22}\\
& r^{2}-\left|x-o_{w}\right|^{2} \geqq r d(x) ; \tag{23}\\
& \frac{\sin (\alpha / 4)}{\sin (\alpha / 2)} \geqq 1 / \pi . \tag{24}
\end{align*}
$$

By (14), (16), and (21)-(24), we have

$$
\begin{align*}
K(x, z) & \geqq \frac{r^{2 n-2} d(x) \sin (\theta-\alpha / 4) \sin (\alpha / 4) \omega_{n-2}(1)}{\omega_{n-1}(r) 2^{n}|x-z|^{n} \sin (\theta-\alpha / 2) \sin (\alpha / 2)} \int_{0}^{1 / 2} \frac{v^{n-2}}{\left(1+4 v^{2}\right)^{n / 2}} \\
& \geqq \frac{r^{n-1} \omega_{n-2}(1)}{2^{n} \pi \omega_{n-1}(1)} \int_{0}^{1 / 2} \frac{v^{n-2} d v}{\left(1+4 v^{2}\right)^{n / 2}} \cdot \frac{d(x)}{|x-z|^{n}} . \tag{25}
\end{align*}
$$

So by (10), (13), and (25), if we take

$$
C_{1}=\min \left(\frac{C r^{n}}{d(D) 2^{n}}, \frac{2 n C a^{n} \exp (-2 n)}{r[\exp (-n / 2)-\exp (-2 n)]}, \frac{r^{n-1} \omega_{n-1}(1)}{2^{n} \pi \omega_{n-1}(1)} \int_{0}^{1 / 2} \frac{v^{n-2} d v}{\left(1+4 v^{2}\right)^{n / 2}}\right),
$$

we have

$$
K(x, z) \geqq C_{1} \frac{d(x)}{|x-z|^{n}}, \quad \text { for all } x \in D, z \in \partial D
$$

Lemma 2. There exists a constant C_{3} such that for all $x, y \in D$,

$$
\begin{equation*}
G(x, y) \leqq C_{3} \frac{d(x)}{d(y)} \cdot \frac{1}{|x-y|^{n-2}} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x, y) \leqq C_{3} \frac{d(x) d(y)}{|x-y|^{n}} \tag{27}
\end{equation*}
$$

Proof. It is known that

$$
G(x, y) \leqq A_{n} \frac{1}{|x-y|^{n-2}}, \quad\left(A_{n}=\frac{\Gamma(n / 2-1)}{(2 \pi)^{n / 2}}\right) .
$$

By Theorem 2.3 in [8], we have

$$
G(x, y) \leqq C \frac{d(x)}{|x-y|^{n-1}} .
$$

Since $d(y) \leqq d(x)+|x-y|$,

$$
\begin{gathered}
d(y) G(x, y) \leqq d(x) G(x, y)+|x-y| G(x, y) \leqq A_{n} \frac{d(x)}{|x-y|^{n-2}}+C \frac{d(x)}{|x-y|^{n-2}} . \\
G(x, y) \leqq\left(A_{n}+C\right) \frac{d(x)}{d(y)} \cdot \frac{1}{|x-y|^{n-2}} .
\end{gathered}
$$

Inequality (26) is proved.
For any $x, y \in D$, take a point $z \in D$ such that $|y-z|=d(y)$. Set

$$
\begin{align*}
f(t) & =G(x, z+t(y-z)), \quad 0 \leqq t \leqq 1 . \\
G(x, y) & =f(1)=f(1)-f(0)=f^{\prime}(\theta), \quad(0 \leqq \theta \leqq 1) \\
& =\sum_{i=1}^{n}\left[\frac{\partial}{\partial y_{i}} G(x, z+\theta(y-z))\right]\left(y_{i}-z_{i}\right) \\
& \leqq|y-z|\left\{\sum_{i=1}^{n}\left[\frac{\partial}{\partial y_{i}} G(x, z+\theta(y-z))\right]^{2}\right\}^{1 / 2} \\
& \left.\leqq n^{1 / 2} C d(y) \frac{d(x)}{\mid x-\left(z+\left.\theta(y-z)\right|^{n}\right.}, \quad \text { (since Theorem } 2.3 \text { in }[5]\right) . \tag{28}
\end{align*}
$$

If $|x-y|>2 d(y)$,

$$
\begin{aligned}
|x-(z+\theta(y-z))| & \geqq|x-y|-|(y-z)(1-\theta)| \\
& \geqq|x-y|-d(y) \geqq \frac{1}{2}|x-y| .
\end{aligned}
$$

From (28),

$$
G(x, y) \leqq n^{1 / 2} 2^{n} C \frac{d(x) d(y)}{|x-y|^{n}}
$$

If $|x-y| \leqq 2 d(y)$, also by Theorem 2.3 in [8],

$$
G(x, y) \leqq C \frac{d(x)}{|x-y|^{n-1}} \leqq 2 C \frac{d(x) d(y)}{|x-y|^{n}}
$$

Inequality (27) is proved.
Similar to (4), we define the Green function corresponding the z-conditioned Brownian motion as follows:

$$
\begin{equation*}
G_{z}(x, y)=\int_{0}^{\infty} P_{z}(t, x, y) d t . \tag{29}
\end{equation*}
$$

So by (1) and (4), we have

$$
\begin{equation*}
G_{z}(x, y)=\frac{1}{K(x, z)} G(x, y) K(y, z) \tag{30}
\end{equation*}
$$

Lemma 3. For any sub-domain $D_{0} \subset D$ such that $\partial D \subset \partial D_{0}$, we have

$$
\operatorname{sub}_{\substack{x \in D_{0} \\ z \in O D}} \int_{D_{0}} G_{z}(x, y)|q(y)| d y \leqq C \sup _{x \in \bar{D}_{0}} \int_{D_{0}} \frac{|q(y)|}{|x-y|^{n-2}} d y,
$$

where the constant C only depends on n and D.
Proof. For any given $x \in D_{0}, z \in \partial D$, set

$$
\begin{aligned}
& D_{1}=\left(y \in D_{0}:|y-x|<|z-x| / 2\right), \\
& D_{2}=\left(y \in D_{0}:|y-x| \geqq|z-x| / 2\right) .
\end{aligned}
$$

By Lemmas 1 and 2 and (30), we obtain

$$
\begin{aligned}
& \int_{D_{0}} G_{z}(x, y)|q(y)| d y \leqq \frac{C_{2} C_{3}}{C_{1}} \frac{|x-z|^{n}}{d(x)} \int_{D_{1}} \frac{d(x)}{d(y)|x-y|^{n-2}} \cdot \frac{d(y)}{|y-z|^{n}}|q(y)| d y \\
&+\frac{C_{2} C_{3}}{C_{1}} \frac{|x-z|^{n}}{d(x)} \int_{D_{2}} \frac{d(x) d(y)}{|x-y|^{n}} \frac{d(y)}{|y-z|^{n}}|q(y)| d y \\
& \leqq \frac{C_{2} C_{3}}{C_{1}} 2^{n}\left(\int_{D_{1}} \frac{|q(y)|}{|x-y|^{n-2}} d y+\int_{D_{2}} \frac{d(y)^{2}}{|z-y|^{n}}|q(y)| d y\right) \\
& \leqq \frac{C_{2} C_{3}}{C_{1}} 2^{n}\left(\int_{D_{0}} \frac{|q(y)|}{|x-y|^{n-2}} d y+\int_{D_{0}} \frac{|q(y)|}{|z-y|^{n-2}} d y\right) \\
& \leqq \frac{C_{2} C_{3}}{C_{1}} 2^{n+1} \sup _{x \in \bar{D}_{0}} \int_{D_{0}} \frac{|q(y)|}{|x-y|^{n-2}} d y . \quad \square
\end{aligned}
$$

Now for any $\delta>0$, set

$$
\begin{aligned}
& D(\delta)=(x \in D: d(x, \partial D)<\delta), \\
& S(\delta)=(x \in D: d(x, \partial D)=\delta), \\
& B(\delta)=(x \in D: d(x, \partial D)>\delta) .
\end{aligned}
$$

Lemma 4. There exists some $\delta_{1}>0$ such that for any $0<\delta \leqq \delta_{1}$,

$$
\begin{equation*}
\sup _{\substack{x \in D(\delta) \\ z \in \partial D}} E_{z}^{x} e_{|q|}\left(\tau_{D(\delta)}\right) \leqq 4 / 3, \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x \in D(\delta)} E^{x} e_{|q|}\left(\tau_{D(\delta)}\right) \leqq 4 / 3 \tag{32}
\end{equation*}
$$

Proof. For any $x \in D$, measurable set $D_{0} \subset D$ and $\alpha>0$, we have

$$
\begin{equation*}
\int_{D_{0}} \frac{|q(y)|}{|x-y|^{n-2}} d y \leqq \int_{|x-y| \leqq<} \frac{|q(y)|}{|x-y|^{n-2}} d y+\frac{1}{\alpha^{n-2}} \int_{D_{0}}|q(y)| d y . \tag{33}
\end{equation*}
$$

By definition (7), we can take some $\alpha>0$ such that

$$
\begin{equation*}
\sup _{x \in \bar{D}} \int_{|x-y| \leqq<} \frac{|q(y)|}{|x-y|^{n-2}} d y \leqq 1 /(8 C), \tag{34}
\end{equation*}
$$

where C is given in Lemma 3.

It is easy to see from (7) that $\int_{D}|q(y)| d y<+\infty$. Then there exists some $\delta_{1}>0$ such that for any $0<\delta \leqq \delta_{1}$.

$$
\begin{equation*}
\int_{D(\delta)}|q(y)| d y \leqq \alpha^{n-2} /(8 C) . \tag{35}
\end{equation*}
$$

It follows from (33), (34), and (35) that

$$
\begin{equation*}
\sup _{x \in \bar{D}(\delta)} \int_{D(\delta)} \frac{|q(y)|}{|x-y|^{n-2}} d y \leqq 1 /(4 C) \tag{36}
\end{equation*}
$$

By (29), Lemma 3, and (36), we have

$$
\begin{align*}
\sup _{\substack{x \in D(\delta) \\
z \in \partial D}} E_{z}^{x} \int_{0}^{\tau_{D(\delta)}}\left|q\left(x_{t}\right)\right| d t & \leqq \sup _{\substack{x \in D(\delta) \\
z \in \partial D}} E_{z}^{x} \int_{0}^{\tau_{D}}\left|1_{D(\delta)} q\left(x_{t}\right)\right| d t \\
& =\sup _{\substack{x \in D(\delta) \\
z \in D D}} \int_{D(\delta)} G_{z}(x, y)|q(y)| d y \\
& \leqq C \sup _{x \in D(\delta)} \int_{D(\delta)} \frac{|q(y)|}{|x-y|^{n-2}} d y \leqq 1 / 4 \tag{37}
\end{align*}
$$

For any $x \in D(\delta), z \in \partial D$, by the Markov property of z-Brownian motion and (37), we have

$$
\begin{aligned}
E_{z}^{x} e_{|q|}\left(\tau_{D(\delta)}\right) & =1+\sum_{k=1}^{\infty} E_{z}^{x}\left(\int_{0<t_{1}<\ldots<t_{k}<\tau_{D(\delta)}}\left|q\left(x_{t_{1}}\right)\right| \ldots\left|q\left(x_{t_{k}}\right)\right| d t_{1} \ldots d t_{k}\right) \\
& \leqq \sum_{k=0}^{\infty}(1 / 4)^{k}=4 / 3 .
\end{aligned}
$$

Similarly, since

$$
\begin{aligned}
\sup _{x \in D(\delta)} E^{x}\left(\int_{0}^{\tau_{D(\delta)}}\left|q\left(x_{t}\right)\right| d t\right) & \leqq \sup _{x \in D(\delta)} \int_{D(\delta)} G(x, y)|q(y)| d y \\
& \leqq \sup _{x \in D(\delta)} A_{n} \int_{D(\delta)} \frac{|q(y)|}{|x-y|^{n-2}} d y \leqq 1 / 4
\end{aligned}
$$

for any $x \in D(\delta)$, we have

$$
E^{x} e_{|q|}\left(\tau_{D(\delta)}\right) \leqq 4 / 3
$$

Lemma 5. If $E^{x} e_{q}\left(\tau_{D}\right) \neq \infty$ in D, then

$$
u(x)=E^{x} e_{q}\left(\tau_{D}\right), \quad x \in \bar{D}
$$

is a continuous function on \bar{D}.
Proof. By Theorem 7 in [9], we have $M=\sup _{x \in D} u(x)<+\infty$. Set

$$
G(q u)(x)=\int_{D} G(x, y) q(y) u(y) d y, \quad x \in \bar{D} .
$$

Since for any measurable set $A \subset D$,

$$
\int_{A} G(x, y)|q(y) u(y)| d y \leqq M \int_{A} G(x, y)|q(y)| d y,
$$

it follows from (7) and (33) that the integrals $\left\{\int_{A} G(x, y) q(y) u(y) d y: A \subset D\right\}$ are uniformly absolutely continuous with respect to $x \in D$. Hence it is easy to see that $G(q u)(\cdot)$ is a continuous function on \bar{D}.

Simulating the proof of Theorem 2.1 in [2], we have $u=1+G(q u)$. This shows that u is continuous on \bar{D}.

Lemma 6. If $E^{x} e_{q}\left(\tau_{D}\right) \equiv \infty$, then there exists some $\delta_{2}>0$ such that for any $0 \leqq \delta<\delta_{2}$, $x \in B(\delta) \backslash B\left(\delta_{2}\right)$, we have

$$
2 / 3 \leqq E^{x} e_{q}\left(\tau_{B(\delta)}\right) \leqq 4 / 3
$$

Proof. Take an $\varepsilon>0$ such that $2 / 3 \leqq(1-\varepsilon) /(1+\varepsilon) \leqq(1+\varepsilon) /(1-\varepsilon) \leqq 4 / 3$. By Lemma 5, there exists some $\delta_{2}>0$ such that if $x \in D \backslash B\left(\delta_{2}\right)$, then

$$
1-\varepsilon \leqq E^{x} e_{q}\left(\tau_{D}\right) \leqq 1+\varepsilon
$$

For any $0 \leqq \delta<\delta_{2}, x \in B(\delta) \backslash B\left(\delta_{2}\right)$,

$$
\begin{aligned}
& 1+\varepsilon \geqq E^{x} e_{q}\left(\tau_{D}\right)=E^{x}\left\{e_{q}\left(\tau_{B(\delta)}\right) E^{x\left(\tau_{B(\delta)}\right)}\left[e_{q}\left(\tau_{D}\right)\right]\right\} \geqq(1-\varepsilon) E^{x} e_{q}\left(\tau_{B(\delta)}\right), \\
& 1-\varepsilon \leqq E^{x} e_{q}\left(\tau_{D}\right)=E^{x}\left\{e_{q}\left(\tau_{B(\delta)}\right) E^{x\left(\tau_{B(\delta)}\right)}\left[e_{q}\left(\tau_{D}\right)\right]\right\} \leqq(1+\varepsilon) E^{x} e_{q}\left(\tau_{B(\delta)}\right) .
\end{aligned}
$$

Hence

$$
2 / 3 \leqq(1-\varepsilon) /(1+\varepsilon) \leqq E^{x} e_{q}\left(\tau_{B(\delta)}\right) \leqq(1+\varepsilon) /(1-\varepsilon) \leqq 4 / 3
$$

Proof of Theorem 1. Set $b=\min \left(\delta_{1}, \delta_{2}\right)$, where δ_{1} and δ_{2} are given by Lemmas 4 . and 6 , respectively.

Since $\phi(x)=P^{x}\left[x\left(\tau_{D(b)}\right) \in S(b)\right]$ is a continuous function on $\overline{D(b)}$ and $\phi(z)=0$ for $z \in \partial D$, there exists a number $0<r<b$ such that for all $x \in D \backslash B(r)$,

$$
\begin{equation*}
P^{x}\left[x\left(\tau_{D(b)}\right) \in S(b)\right]<1 / 3 . \tag{38}
\end{equation*}
$$

Set $T_{0}=0$,

$$
\begin{gather*}
T_{1}=\inf \left(t>0: x_{t} \notin B(r)\right), \\
T_{2 k}=\inf \left(t>T_{2 k-1}: x_{t} \notin D(b)\right), \\
T_{2 k+1}=\inf \left(t>T_{2 k}: x_{t} \notin B(r), T_{2 k}<\tau_{D}\right) .
\end{gather*}
$$

We want to prove inductively that for any $k \geqq 1$,

$$
\begin{equation*}
\sup _{y \in S(r)} E^{y}\left[e_{q}\left(T_{2 k+1}\right), T_{2 k}<\tau_{D}\right] \leqq(8 / 9)^{k} . \tag{39}
\end{equation*}
$$

Fig. 2

When $k=1$, by Lemma 6, (38), and Lemma 4, (32), we have

$$
\begin{aligned}
\sup _{y \in S(r)} E^{y}\left[e_{q}\left(T_{3}\right), T_{2}<\tau_{D}\right] & =\sup _{y \in S(r)} E^{y}\left\{e_{q}\left(T_{2}\right) E^{x\left(T_{2}\right)}\left[e_{q}\left(T_{1}\right)\right], T_{2}<\tau_{D}\right\} \\
& \leqq(4 / 3) \sup _{y \in S(r)} E^{y}\left[e_{q}\left(T_{2}\right), T_{2}<\tau_{D}\right] \\
& \leqq(4 / 3)\left\{\sup _{y \in S(r)} P^{y}\left(T_{2}<\tau_{D}\right)+\sup _{y \in S(r)} E^{y}\left[e_{|q|}\left(\tau_{D(b)}\right)-1\right]\right\} \\
& \leqq 8 / 9 .
\end{aligned}
$$

Suppose (39) is true for $k \geqq 1$.

$$
\begin{aligned}
& \sup _{y \in S(r)} E^{y}\left[e_{q}\left(T_{2 k+3}\right), T_{2 k+2}<\tau_{D}\right] \\
& \quad=\sup _{y \in S(r)} E^{y}\left\{e_{q}\left(T_{3}\right) E^{x\left(T_{3}\right)}\left[e_{q}\left(T_{2 k+1}\right), T_{2 k}<\tau_{D}\right], T_{2}<\tau_{D}\right\} \\
& \quad \leqq(8 / 9)^{k} \sup _{y \in S(r)} E^{y}\left[e_{q}\left(T_{3}\right), T_{2}<\tau_{D}\right] \\
& \leqq(8 / 9)^{k+1} .
\end{aligned}
$$

By Theorem 7 in [9], $M=\sup _{x \in D} E^{x} e_{q}\left(\tau_{D}\right)<+\infty$.
For all $x \in B(r)$, by Lemma 6, we have

$$
M \geqq E^{x} e_{q}\left(\tau_{D}\right)=E^{x}\left\{e_{q}\left(T_{1}\right) E^{x\left(T_{1}\right)}\left[e_{q}\left(\tau_{D}\right)\right]\right\} \geqq(2 / 3) E^{x} e_{q}\left(T_{1}\right) .
$$

Then

$$
\begin{equation*}
\sup _{x \in B(r)} E^{x} e_{q}\left(T_{1}\right) \leqq(3 / 2) M . \tag{40}
\end{equation*}
$$

For all $x \in B(r), z \in \partial D$, by Lemma 4, (31) and (6), we have

$$
\begin{aligned}
E_{z}^{x} e_{q}\left(\tau_{D}\right) & =\sum_{k=1}^{\infty} E_{z}^{x}\left[e_{q}\left(\tau_{D}\right), \tau_{D}=T_{2 k}\right] \\
& =\sum_{k=1}^{\infty} E_{z}^{x}\left\{e_{q}\left(T_{2 k-1}\right) E_{z}^{x\left(T_{2 k-1}\right)}\left[e_{q}\left(T_{2}\right), \tau_{D}=T_{2}\right], T_{2 k-2}<\tau_{D}\right\} \\
& \leqq(4 / 3) \sum_{k=1}^{\infty} \frac{1}{K(x, z)} E^{x}\left[e_{q}\left(T_{2 k-1}\right) K\left(x\left(T_{2 k-1}\right), z\right), T_{2 k-2}<\tau_{D}\right] .
\end{aligned}
$$

By the Harnack inequality, there exist two positive numbers b_{1} and b_{2} such that for all $x \in B(r) \cup S(r), z \in \partial D, b_{1} \leqq K(x, z) \leqq b_{2}$. Continuing the above inequalities and using (39), (40),

$$
\begin{align*}
E_{z}^{x} e_{q}\left(\tau_{D}\right) & \leqq \frac{4 b_{2}}{3 b_{1}} \sum_{k=1}^{\infty} E^{x}\left[e_{q}\left(T_{2 k-1}\right), T_{2 k-2}<\tau_{D}\right] \\
& \leqq \frac{4 b_{2}}{3 b_{1}} \sum_{k=0}^{\infty} E^{x}\left\{e_{q}\left(T_{1}\right) E^{x\left(T_{1}\right)}\left[e_{q}\left(T_{2 k+1}\right), T_{2 k}<\tau_{D}\right]\right\} \\
& \leqq \frac{4 b_{2}}{3 b_{1}} \sum_{k=0}^{\infty}(8 / 9)^{k} E^{x} e_{q}\left(T_{1}\right) \\
& \leqq \frac{4 b_{2}}{3 b_{1}}(3 / 2) M \frac{1}{1-(8 / 9)}=18 M\left(b_{2} / b_{1}\right) . \tag{41}
\end{align*}
$$

For all $x \in D \backslash B(r), z \in \partial D$, by (41) and Lemma 4, (31), we have

$$
\begin{align*}
E_{z}^{x} e_{q}\left(\tau_{D}\right) & =E_{z}^{x}\left[e_{q}\left(\tau_{D(b)}\right), \tau_{D(b)}=\tau_{D}\right]+E_{z}^{x}\left[e_{q}\left(\tau_{D}\right), \tau_{D(b)}<\tau_{D}\right] \\
& \leqq(4 / 3)+E_{z}^{x}\left\{e_{q}\left(\tau_{D(b)}\right) E_{z}^{x\left(\tau_{D(b))}\right.}\left[e_{q}\left(\tau_{D}\right)\right], \tau_{D(b)}<\tau_{D}\right\} \\
& \leqq(4 / 3)+18 M\left(b_{2} / b_{1}\right) E_{z}^{x}\left[e_{q}\left(\tau_{D(b)}\right), \tau_{D(b)}<\tau_{D}\right] \\
& \leqq(4 / 3)+24 M\left(b_{2} / b_{1}\right) . \tag{42}
\end{align*}
$$

It follows from (41) and (42) that

$$
\sup _{\substack{x \in D \\ z \in \partial D}} E_{z}^{x} e_{q}\left(\tau_{D}\right)<+\infty
$$

Acknowledgements. I would like to thank my adviser K. L. Chung for his guidance and encouragement, N. Falkner and P. Li for helpful discussions.

References

1. Aizenman, N., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Commun. Pure Appl. Math. 35, 209-273 (1982)
2. Chung, K.L., Rao, K.M.: Feynman-Kac functional and Schrödinger equation. In: Seminar on Stochastic Process. Boston: Birkhäuser 1981
3. Doob, J.L.: Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France 85, 431-458 (1957)
4. Falkner, N.: Feynman-Kac functional and positive solutions of $\frac{1}{2} \Delta u+q u=0$. Z . Wahrscheinlichkeitstheorie verw. Gebiete (to appear)
5. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin, Heidelberg, New York: Springer 1977
6. Port, S.C., Stone, C.J.: Brownian motion and classical potential theory. New York Academic Press 1978
7. Simon, B. : Schrödinger semigroup. Bull. Am. Math. Soc. (N.S.) 7, 447-526 (1982)
8. Widman, K.-O.: Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand. 21, 17-37 (1967)
9. Zhao, Z.: Conditional gauge with unbounded potential. Z. Wahrscheinlichkeitstheorie verw. Gebiete (to appear)

Communicated by B. Simon

Received March 24, 1983 ; in revised form August 31, 1983

[^0]: * Visiting Department of Mathematics, Stanford University, Stanford, CA 94305, USA

